1
|
Wu J, Chen C, Luo C, Ning B, Liu Y, Li Z, Zhang S, Li Z. Therapeutic drug monitoring of posaconazole delayed-release tablets and injections in pediatric patients. Antimicrob Agents Chemother 2024; 68:e0111224. [PMID: 39503485 PMCID: PMC11619399 DOI: 10.1128/aac.01112-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
This study aimed to investigate the dose and trough concentration (Cmin) of posaconazole delayed-release tablets and injections, and their correlation with efficacy and safety in pediatric patients. Patients younger than 18 years old received posaconazole delayed-release tablets or injections for prophylaxis or treatment of invasive fungal disease (IFD). Blood samples were collected to determine the plasma Cmins, and dose regimen adjustments were made if necessary. Clinical data were collected. A total of 210 Cmins of 113 pediatric patients were detected. The median Cmins were 1.0 and 1.3 mg/L for tablets and injections, respectively (P < 0.05). The median doses required to achieve the target Cmin were about 6.0 mg/kg of body weight/day, and no statistical difference was observed between different age groups, formulations, or indications (P > 0.05). Concomitant treatment of tacrolimus and diarrhea were found to affect Cmins of tablets, while age, gender, and BMI were found to be correlated with Cmins of injections. IFD breakthrough occurred in 9.2% of patients with a median Cmins of 0.74 mg/L for prophylaxis, and infection progression occurred in 43.2% of patients with a median Cmins of 0.97 mg/L for treatment, respectively. Transaminitis was the most common adverse event. Posaconazole delayed-release tablets and injections are safe for prophylaxis and treatment of IFD in pediatric patients. An empirical initial dose of 6.0 mg/kg of body weight/day is appropriate for prophylaxis, while a higher dose should be required for the treatment of IFD. It is necessary to adjust the dose regimen according to the results of therapeutic drug monitoring.This study is registered with chictr.gov.cn under identifier ChiCTR2300070008.
Collapse
Affiliation(s)
- Juan Wu
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Changcheng Chen
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Chengjuan Luo
- Department of Hematology and Oncology, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Botao Ning
- Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yue Liu
- Pediatric Intensive Care Unit, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhuo Li
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Shunguo Zhang
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children’s Medical Center, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
2
|
Brader M, Kim HYA, Koo O, Nagapudi K, Su Y. Industrial Horizons in Pharmaceutical Science. Mol Pharm 2024; 21:4183-4188. [PMID: 38807456 DOI: 10.1021/acs.molpharmaceut.4c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Affiliation(s)
- Mark Brader
- Moderna, Inc., Cambridge, Massachusetts 02139, United States
| | - Hai-Young Anne Kim
- Therapeutic Discovery, Johnson and Johnson, Spring House, Pennsylvania 19477, United States
| | - Otilia Koo
- Emerging Technologies Portfolio Management, Novo Nordisk, Plainsboro, New Jersey 08536, United States
| | - Karthik Nagapudi
- Synthetic Molecule Pharmaceutics, Genentech, Inc., South San Francisco, California 94080, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
3
|
Cools L, Derveaux E, Reniers F, Dehaen W, Adriaensens P, Van den Mooter G. Exploring the influence of hydrogen bond donor groups on the microstructure and intermolecular interactions of amorphous solid dispersions containing diflunisal structural analogues. Int J Pharm 2024; 661:124438. [PMID: 38972518 DOI: 10.1016/j.ijpharm.2024.124438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Drug-polymer intermolecular interactions, and H-bonds specifically, play an important role in the stabilization process of a compound in an amorphous solid dispersion (ASD). However, it is still difficult to predict whether or not interactions will form and what the strength of those interactions would be, based on the structure of drug and polymer. Therefore, in this study, structural analogues of diflunisal (DIF) were synthesized and incorporated in ASDs with poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) as a stabilizing polymer. The respective DIF derivatives contained different types and numbers of H-bond donor groups, which allowed to assess the influence of these structural differences on the phase behavior and the actual interactions formed in the ASDs. The highest possible drug loading of these derivatives in PVPVA were evaluated through film casting. Subsequently, a lower drug loading of each compound was spray dried. These spray dried ASDs were subjected to an in-depth solid-state nuclear magnetic resonance (ssNMR) study, including 1D spectroscopy and relaxometry, as well as 2D dipolar HETCOR experiments. The drug loading study revealed the highest possible loading of 50 wt% for the native DIF in PVPVA. The methoxy DIF derivative reached the second highest drug loading of 35 wt%, while methylation of the carboxyl group of DIF led to a sharp decrease in the maximum loading, to around 10 wt% only. Unexpectedly, the maximum loading increased again when both the COOH and OH groups of diflunisal were methylated in the dimethyl DIF derivative, to around 30 wt%. The ssNMR study on the spray dried ASD samples confirmed intermolecular H-bonding with PVPVA for native DIF and methoxy DIF. Studies of the proton relaxation decay times and 2D 1H-13C dipolar HETCOR experiments indicated that the ASDs with native DIF and methoxy DIF were homogenously mixed, while the ASDs containing DIF methyl ester and dimethyl DIF were phase separated at the nm level. It was established that, for these systems, the availability of the carboxyl group was imperative in the formation of intermolecular H-bonds with PVPVA and in the generation of homogenously mixed ASDs.
Collapse
Affiliation(s)
- Lennert Cools
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium; Applied and Analytical Chemistry, NMR group, Institute for Materials Research (imo-imomec), UHasselt, 3590 Diepenbeek, Belgium
| | - Elien Derveaux
- Applied and Analytical Chemistry, NMR group, Institute for Materials Research (imo-imomec), UHasselt, 3590 Diepenbeek, Belgium
| | - Felien Reniers
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnelaan 200f b2404, 3001 Leuven, Belgium
| | - Wim Dehaen
- Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Celestijnelaan 200f b2404, 3001 Leuven, Belgium
| | - Peter Adriaensens
- Applied and Analytical Chemistry, NMR group, Institute for Materials Research (imo-imomec), UHasselt, 3590 Diepenbeek, Belgium
| | - Guy Van den Mooter
- Drug Delivery and Disposition, KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Campus Gasthuisberg ON2, Herestraat 49 b921, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Rayapolu RG, Yadav B, Apte SS, Venuganti VVK. Development of posaconazole nanocrystalline solid dispersion: preparation, characterization and in vivo evaluation. Pharm Dev Technol 2024; 29:530-540. [PMID: 38713634 DOI: 10.1080/10837450.2024.2353314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE Posaconazole (PCZ) is an antifungal drug, which acts by inhibiting the lanosterol-14α-demethylase enzyme. It is a biopharmaceutical classification system class II drug with its bioavailability being limited by poor aqueous solubility. The aim of this study was to improve the oral bioavailability of PCZ by preparing nanocrystalline solid dispersion (NCS). METHODS PCZ-NCS was prepared by a combination of precipitation and high-pressure homogenization followed by freeze-drying. Several different surfactants and polymers were screened to produce NCS with smaller particle size and higher stability. RESULTS The optimized NCS formulation containing 0.2% Eudragit S100 and 0.2% SLS was found to provide the average particle size of 73.31 ± 4.7 nm with a polydispersity index of 0.23 ± 0.03. Scanning electron microscopy revealed the preparation of homogeneous and rounded particles. Differential scanning calorimetry and X-ray diffraction confirmed crystalline nature of NCS. Nanonization increased the saturation solubility of PCZ by about 18-fold in comparison with the neat drug. Intrinsic dissolution study showed 93% dissolution of PCZ within the first 10 min. In vivo pharmacokinetic study in Wistar rats showed that Cmax and AUCtotal of PCZ-NCS increased by 2.58- and 2.64-fold compared to the marketed formulation. CONCLUSION PCZ-NCS formulation presents a viable approach for enhancing the oral bioavailability of PCZ.
Collapse
Affiliation(s)
- Ranga Goud Rayapolu
- Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Shameerpet, Hyderabad, Telangana, India
- Natco Research Center, Natco Pharma Limited, Sanath Nagar, Hyderabad, Telangana, India
| | - Balvant Yadav
- Natco Research Center, Natco Pharma Limited, Sanath Nagar, Hyderabad, Telangana, India
| | - Shashank S Apte
- Natco Research Center, Natco Pharma Limited, Sanath Nagar, Hyderabad, Telangana, India
| | | |
Collapse
|
5
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
6
|
Al-Japairai K, Hamed Almurisi S, Mahmood S, Madheswaran T, Chatterjee B, Sri P, Azra Binti Ahmad Mazlan N, Al Hagbani T, Alheibshy F. Strategies to improve the stability of amorphous solid dispersions in view of the hot melt extrusion (HME) method. Int J Pharm 2023; 647:123536. [PMID: 37865133 DOI: 10.1016/j.ijpharm.2023.123536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Oral administration of drugs is preferred over other routes for several reasons: it is non-invasive, easy to administer, and easy to store. However, drug formulation for oral administration is often hindered by the drug's poor solubility, which limits its bioavailability and reduces its commercial value. As a solution, amorphous solid dispersion (ASD) was introduced as a drug formulation method that improves drug solubility by changing the molecular structure of the drugs from crystalline to amorphous. The hot melt extrusion (HME) method is emerging in the pharmaceutical industry as an alternative to manufacture ASD. However, despite solving solubility issues, ASD also exposes the drug to a high risk of crystallisation, either during processing or storage. Formulating a successful oral administration drug using ASD requires optimisation of the formulation, polymers, and HME manufacturing processes applied. This review presents some important considerations in ASD formulation, including strategies to improve the stability of the final product using HME to allow more new drugs to be formulated using this method.
Collapse
Affiliation(s)
- Khater Al-Japairai
- Department of Pharmaceutical Engineering, Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Gambang 26300, Malaysia.
| | - Samah Hamed Almurisi
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | - Bappaditya Chatterjee
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, V.L.Mehta Road, Mumbai 400055, India.
| | - Prasanthi Sri
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia.
| | | | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia.
| | - Fawaz Alheibshy
- Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il 81442, Saudi Arabia; Department of Pharmaceutics, College of Pharmacy, Aden University, Aden 6075, Yemen.
| |
Collapse
|
7
|
Chen Z, Nie H, Benmore CJ, Smith PA, Du Y, Byrn S, Templeton AC, Su Y. Probing Molecular Packing of Amorphous Pharmaceutical Solids Using X-ray Atomic Pair Distribution Function and Solid-State NMR. Mol Pharm 2023; 20:5763-5777. [PMID: 37800667 DOI: 10.1021/acs.molpharmaceut.3c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The structural investigation of amorphous pharmaceuticals is of paramount importance in comprehending their physicochemical stability. However, it has remained a relatively underexplored realm primarily due to the limited availability of high-resolution analytical tools. In this study, we utilized the combined power of X-ray pair distribution functions (PDFs) and solid-state nuclear magnetic resonance (ssNMR) techniques to probe the molecular packing of amorphous posaconazole and its amorphous solid dispersion at the molecular level. Leveraging synchrotron X-ray PDF data and employing the empirical potential structure refinement (EPSR) methodology, we unraveled the existence of a rigid conformation and discerned short-range intermolecular C-F contacts within amorphous posaconazole. Encouragingly, our ssNMR 19F-13C distance measurements offered corroborative evidence supporting these findings. Furthermore, employing principal component analysis on the X-ray PDF and ssNMR data sets enabled us to gain invaluable insights into the chemical nature of the intermolecular interactions governing the drug-polymer interplay. These outcomes not only furnish crucial structural insights facilitating the comprehension of the underlying mechanisms governing the physicochemical stability but also underscore the efficacy of synergistically harnessing X-ray PDF and ssNMR techniques, complemented by robust modeling strategies, to achieve a high-resolution exploration of amorphous structures.
Collapse
Affiliation(s)
- Zhenxuan Chen
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Chris J Benmore
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pamela A Smith
- Improved Pharma, West Lafayette, Indiana 47906, United States
| | - Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Stephen Byrn
- Improved Pharma, West Lafayette, Indiana 47906, United States
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
8
|
Zheng Z, Su Y, Schmidt-Rohr K. Corrected solid-state 13 C nuclear magnetic resonance peak assignment and side-group quantification of hydroxypropyl methylcellulose acetyl succinate pharmaceutical excipients. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:595-605. [PMID: 37649159 DOI: 10.1002/mrc.5390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Hydroxypropyl methylcellulose acetyl succinate (HPMCAS) is widely used as a pharmaceutical excipient, making a detailed understanding of its tunable structure important for formulation design. Several recently reported peak assignments in the solid-state 13 C NMR spectrum of HPMCAS have been corrected here using peak integrals in quantitative spectra, spectral editing, empirical chemical-shift predictions based on solution NMR, and full spectrum simulation analogous to deconvolution. Unlike in cellulose, the strong peak at 84 ppm must be assigned to C2 and C3 methyl ethers, instead of regular C4 of cellulose. The proposed assignment of signals at <65 ppm to OCH sites, including C5 of cellulose, could not be confirmed. CH2 spectral editing showed two resolved OCH2 bands, a more intense one from O-CH2 ethers of C6 at >69 ppm and a smaller one from its esters and possibly residual CH2 -OH groups, near 63 ppm. The strong intensities of resolved signals of acetyl, succinoyl, and oxypropyl substituents indicated the substitution of >85% of the OH groups in HPMCAS. The side-group concentrations in three different grades of HPMCAS were quantified.
Collapse
Affiliation(s)
- Zhaoxi Zheng
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts, USA
| |
Collapse
|
9
|
Gui Y. Solid Form Screenings in Pharmaceutical Development: a Perspective on Current Practices. Pharm Res 2023; 40:2347-2354. [PMID: 37537423 DOI: 10.1007/s11095-023-03573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
Solid form screening is a crucial step in new drug development because solid forms of a drug substance significantly affect stability, dissolution and manufacturing processes of its drug products. This perspective introduces solid-state science from a practical standpoint, aiming to reduce knowledge gaps and promote communications among scientists with diverse background. This perspective starts with a concise overview that followed by discussion on timeline and goals of solid form screening. Techniques for solid from identification and characterization are then discussed. Subsequently, the perspective presents commonly used methods in solid form screening and introduces criteria and strategies to effectively select a favorable solid form based on screening results. The last section summarizes current practices in pharmaceutical industries and suggests potential opportunities for future research and development.
Collapse
Affiliation(s)
- Yue Gui
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai, China.
| |
Collapse
|
10
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Gupta KM, Chin X, Kanaujia P. Molecular Interactions between APIs and Enteric Polymeric Excipients in Solid Dispersion: Insights from Molecular Simulations and Experiments. Pharmaceutics 2023; 15:pharmaceutics15041164. [PMID: 37111649 PMCID: PMC10143979 DOI: 10.3390/pharmaceutics15041164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Solid dispersion of poorly soluble APIs is known to be a promising strategy to improve dissolution and oral bioavailability. To facilitate the development and commercialization of a successful solid dispersion formulation, understanding of intermolecular interactions between APIs and polymeric carriers is essential. In this work, first, we assessed the molecular interactions between various delayed-release APIs and polymeric excipients using molecular dynamics (MD) simulations, and then we formulated API solid dispersions using a hot melt extrusion (HME) technique. To assess the potential API–polymer pairs, three quantities were evaluated: (a) interaction energy between API and polymer [electrostatic (Ecoul), Lenard-Jones (ELJ), and total (Etotal)], (b) energy ratio (API–polymer/API–API), and (c) hydrogen bonding between API and polymer. The Etotal quantities corresponding to the best pairs: NPX-Eudragit L100, NaDLO–HPMC(P), DMF–HPMC(AS) and OPZ–HPMC(AS) were −143.38, −348.04, −110.42, and −269.43 kJ/mol, respectively. Using a HME experimental technique, few API–polymer pairs were successfully extruded. These extruded solid forms did not release APIs in a simulated gastric fluid (SGF) pH 1.2 environment but released them in a simulated intestinal fluid (SIF) pH 6.8 environment. The study demonstrates the compatibility between APIs and excipients, and finally suggests a potential polymeric excipient for each delayed-release API, which could facilitate the development of the solid dispersion of poorly soluble APIs for dissolution and bioavailability enhancement.
Collapse
Affiliation(s)
- Krishna M. Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
| | - Parijat Kanaujia
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Singapore
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117559, Singapore
| |
Collapse
|
12
|
Iyer J, Brunsteiner M, Modhave D, Paudel A. Role of Crystal Disorder and Mechanoactivation in Solid-State Stability of Pharmaceuticals. J Pharm Sci 2023; 112:1539-1565. [PMID: 36842482 DOI: 10.1016/j.xphs.2023.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/28/2023]
Abstract
Common energy-intensive processes applied in oral solid dosage development, such as milling, sieving, blending, compaction, etc. generate particles with surface and bulk crystal disorder. An intriguing aspect of the generated crystal disorder is its evolution and repercussion on the physical- and chemical stabilities of drugs. In this review, we firstly examine the existing literature on crystal disorder and its implications on solid-state stability of pharmaceuticals. Secondly, we discuss the key aspects related to the generation and evolution of crystal disorder, dynamics of the disordered/amorphous phase, analytical techniques to measure/quantify them, and approaches to model the disordering propensity from first principles. The main objective of this compilation is to provide special impetus to predict or model the chemical degradation(s) resulting from processing-induced manifestation in bulk solid manufacturing. Finally, a generic workflow is proposed that can be useful to investigate the relevance of crystal disorder on the degradation of pharmaceuticals during stability studies. The present review will cater to the requirements for developing physically- and chemically stable drugs, thereby enabling early and rational decision-making during candidate screening and in assessing degradation risks associated with formulations and processing.
Collapse
Affiliation(s)
- Jayant Iyer
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | | | - Dattatray Modhave
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH (RCPE), Graz, Austria; Graz University of Technology, Institute of Process and Particle Engineering, Graz Austria.
| |
Collapse
|
13
|
Moseson DE, Hiew TN, Su Y, Taylor LS. Formulation and Processing Strategies which Underpin Susceptibility to Matrix Crystallization in Amorphous Solid Dispersions. J Pharm Sci 2023; 112:108-122. [PMID: 35367246 DOI: 10.1016/j.xphs.2022.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/18/2022]
Abstract
Through matrix crystallization, an amorphous solid may transform directly into its more stable crystalline state, reducing the driving force for dissolution. Herein, the mechanism of matrix crystallization in an amorphous solid dispersion (ASD) was probed. ASDs of bicalutamide/copovidone were prepared by solvent evaporation and hot melt extrusion, and sized by mortar and pestle or cryomilling techniques, modulating the level of mechanical activation experienced by the sample. Drug loading (DL) of the binary ASD was varied from 5-50%, and ternary systems were formulated at 30% DL with two surfactants (sodium dodecyl sulfate, Vitamin E TPGS). Imaging of partially dissolved or crystallized compacts by scanning electron microscopy with energy-dispersive X-ray analysis and confocal fluorescence microscopy was performed to investigate pathways of hydration, phase separation, and crystallization. Monitoring drug and polymer release of ASD powder under non-sink conditions provided insight into supersaturation and desupersaturation profiles. Systems at the greatest risk of matrix crystallization had high DLs, underwent mechanical activation, and/or contained surfactant. Systems having greatest resistance to matrix crystallization had rapid and congruent drug and polymer release. This study has implications for formulation and process design of ASDs and risk assessment of matrix crystallization.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yongchao Su
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States; Analytical Research and Development, Merck & Co., Inc., Rahway, NJ 07065, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States.
| |
Collapse
|
14
|
Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid-liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J Control Release 2023; 353:42-50. [PMID: 36414193 DOI: 10.1016/j.jconrel.2022.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New Development in Understanding Drug-Polymer Interactions in Pharmaceutical Amorphous Solid Dispersions from Solid-State Nuclear Magnetic Resonance. Mol Pharm 2022; 19:3685-3699. [PMID: 36037249 PMCID: PMC9644399 DOI: 10.1021/acs.molpharmaceut.2c00479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/08/2023]
Abstract
Pharmaceutical amorphous solid dispersions (ASDs) represent a widely used technology to increase the bioavailability of active pharmaceutical ingredients (APIs). ASDs are based on an amorphous API dispersed in a polymer, and their stability is driven by the presence of strong intermolecular interactions between these two species (e.g., hydrogen bond, electrostatic interactions, etc.). The understanding of these interactions at the atomic level is therefore crucial, and solid-state nuclear magnetic resonance (NMR) has demonstrated itself as a very powerful technique for probing API-polymer interactions. Other reviews have also reported exciting approaches to study the structures and dynamic properties of ASDs and largely focused on the study of API-polymer miscibility and on the identification of API-polymer interactions. Considering the increased use of NMR in the field, the aim of this Review is to specifically highlight recent experimental strategies used to identify API-polymer interactions and report promising recent examples using one-dimensional (1D) and two-dimensional (2D) experiments by exploiting the following emerging approaches of very-high magnetic field and ultrafast magic angle spinning (MAS). A range of different ASDs spanning APIs and polymers with varied structural motifs is targeted to illustrate new ways to understand the mechanism of stability of ASDs to enable the design of new dispersions.
Collapse
Affiliation(s)
- Andrea Pugliese
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Michael Tobyn
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Lucy E. Hawarden
- Drug
Product Development, Bristol-Myers Squibb, Moreton CH46 1QW, United Kingdom
| | - Anuji Abraham
- Drug
Product Development, Bristol-Myers Squibb, New Brunswick, New Jersey 08903, United States
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, United Kingdom
| |
Collapse
|
16
|
Du Y, Phyo P, Li M, Sorman B, McNevin M, Xu W, Liu Y, Su Y. Quantifying Micromolar Crystallinity in Pharmaceutical Materials Utilizing 19F Solid-State NMR. Anal Chem 2022; 94:15341-15349. [DOI: 10.1021/acs.analchem.2c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Pyae Phyo
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Mingyue Li
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Bradley Sorman
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Michael McNevin
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Yong Liu
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co. Inc., Rahway, New Jersey07065, United States
| |
Collapse
|
17
|
Duan P, Dregni AJ, Hong M. Solid-State NMR 19F- 1H- 15N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins. J Phys Chem A 2022; 126:7021-7032. [PMID: 36150071 PMCID: PMC10867861 DOI: 10.1021/acs.jpca.2c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several solid-state NMR techniques have been introduced recently to measure nanometer distances involving 19F, whose high gyromagnetic ratio makes it a potent nuclear spin for structural investigation. These solid-state NMR techniques either use 19F correlation with 1H or 13C to obtain qualitative interatomic contacts or use the rotational-echo double-resonance (REDOR) pulse sequence to measure quantitative distances. However, no NMR technique is yet available for disambiguating 1H-19F distances in multiply fluorinated proteins and protein-ligand complexes. Here, we introduce a three-dimensional (3D) 19F-15N-1H correlation experiment that resolves the distances of multiple fluorines to their adjacent amide protons. We show that optimal polarization transfer between 1H and 19F spins is achieved using an out-and-back 1H-19F REDOR sequence. We demonstrate this 3D correlation experiment on the model protein GB1 and apply it to the multidrug-resistance transporter, EmrE, complexed to a tetrafluorinated substrate. This technique should be useful for resolving and assigning distance constraints in multiply fluorinated proteins, leading to significant savings of time and precious samples compared to producing several singly fluorinated samples. Moreover, the method enables structural determination of protein-ligand complexes for ligands that contain multiple fluorines.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
18
|
Du Y, Su Y. 19F Solid-state NMR characterization of pharmaceutical solids. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101796. [PMID: 35688018 DOI: 10.1016/j.ssnmr.2022.101796] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Solid-state NMR has been increasingly recognized as a high-resolution and versatile spectroscopic tool to characterize drug substances and products. However, the analysis of pharmaceutical materials is often carried out at natural isotopic abundance and a relatively low drug loading in multi-component systems and therefore suffers from challenges of low sensitivity. The fact that fluorinated therapeutics are well represented in pipeline drugs and commercial products offers an excellent opportunity to utilize fluorine as a molecular probe for pharmaceutical analysis. We aim to review recent advancements of 19F magic angle spinning NMR methods in modern drug research and development. Applications to polymorph screening at the micromolar level, structural elucidation, and investigation of molecular interactions at the Ångström to submicron resolution in drug delivery, stability, and quality will be discussed.
Collapse
Affiliation(s)
- Yong Du
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, United States; Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, IN, 47907, United States; Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, United States; Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, 06269, United States.
| |
Collapse
|
19
|
Liu L, Chen L, Müllers W, Serno P, Qian F. Water-Resistant Drug-Polymer Interaction Contributes to the Formation of Nano-Species during the Dissolution of Felodipine Amorphous Solid Dispersions. Mol Pharm 2022; 19:2888-2899. [PMID: 35759395 DOI: 10.1021/acs.molpharmaceut.2c00250] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-polymer interactions are of great importance in amorphous solid dispersion (ASD) formulation for both dissolution performance and physical stability considerations. In this work, three felodipine ASD systems with drug loading ranging from 5 to 20% were prepared using PVP, PVP-VA, or HPMC-AS as the polymer matrix. The amorphization and homogeneity were confirmed by differential scanning calorimetry and powder X-ray diffraction. The intrinsic dissolution behavior of these ASDs was studied in 0.05 M HCl and phosphate-buffered saline (PBS) (pH 6.5). In 0.05 M HCl, PVP-VA ASDs with low drug loading (<15%) showed rapid dissolution accompanied with nano-species generation, while in the PVP system, rapid dissolution and nano-species generation were observed only when drug loading was less than 10%, and HPMC-AS ASDs always released slowly with no nano-species formation. In PBS, PVP-VA ASDs with drug loading less than 10% showed rapid dissolution accompanied with nano-species generation, while for PVP ASDs, rapid dissolution and nano-species generation were observed only when drug loading was 5%. However, 20% drug loading HPMC-AS ASDs exhibited rapid dissolution of felodipine and nano-species generation. When the drug loading was above the transition point of PVP-VA ASDs and PVP ASDs, the release rate was significantly lowered, and no nano-species was generated. To understand this phenomenon, drug-polymer interactions were studied using the melting point depression method and the Flory-Huggins model fitting. The Flory-Huggins interaction parameters (χ) for felodipine/HPMC-AS, felodipine/PVP, and felodipine/PVP-VA were determined to be 0.62 ± 0.07, -0.55 ± 0.20, and -1.02 ± 0.21, respectively, indicating the existence of the strongest attractive molecular interaction between felodipine and PVP-VA, followed by felodipine/PVP, but not in felodipine/HPMC-AS. Furthermore, dynamic vapor sorption further revealed that the molecular interactions between felodipine and PVP or PVP-VA were resistant to water. We concluded that water-resistant drug-polymer interactions in felodipine/polymer systems were responsible for the formation of nano-species, which further facilitated the rapid initial drug dissolution.
Collapse
Affiliation(s)
- Lei Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 10084, China
| | - Linc Chen
- Chemical and Pharmaceutical Development, Research and Development, Bayer AG, Beijing 100020, China
| | - Wouter Müllers
- Chemical and Pharmaceutical Development, Research and Development, Bayer AG, Berlin 13342, Germany
| | - Peter Serno
- Chemical and Pharmaceutical Development, Research and Development, Bayer AG, Wuppertal 42096, Germany
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 10084, China
| |
Collapse
|
20
|
Formulating a heat- and shear-labile drug in an amorphous solid dispersion: Balancing drug degradation and crystallinity. Int J Pharm X 2021; 3:100092. [PMID: 34977559 PMCID: PMC8683684 DOI: 10.1016/j.ijpx.2021.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
We seek to further addresss the questions posed by Moseson et al. regarding whether any residual crystal level, size, or characteristic is acceptable in an amorphous solid dispersion (ASD) such that its stability, enhanced dissolution, and increased bioavailability are not compromised. To address this highly relevant question, we study an interesting heat- and shear-labile drug in development, LY3009120. To study the effects of residual crystallinity and degradation in ASDs, we prepared three compositionally identical formulations (57–1, 59–4, and 59–5) using the KinetiSol process under various processing conditions to obtain samples with various levels of crystallinity (2.3%, 0.9%, and 0.1%, respectively) and degradation products (0.74%, 1.97%, and 3.12%, respectively). Samples with less than 1% crystallinity were placed on stability, and we observed no measurable change in the drug's crystallinity, dissolution profile or purity in the 59–4 and 59–5 formulations over four months of storage under closed conditions at 25 °C and 60% humidity. For formulations 57–1, 59–4, and 59–5, bioavailability studies in rats reveal a 44-fold, 55-fold, and 62-fold increase in mean AUC, respectively, compared to the physical mixture. This suggests that the presence of some residual crystals after processing can be acceptable and will not change the properties of the ASD over time.
Collapse
|
21
|
Optimizing Solvent Selection and Processing Conditions to Generate High Bulk-Density, Co-Precipitated Amorphous Dispersions of Posaconazole. Pharmaceutics 2021; 13:pharmaceutics13122017. [PMID: 34959298 PMCID: PMC8705469 DOI: 10.3390/pharmaceutics13122017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Co-precipitation is an emerging method to generate amorphous solid dispersions (ASDs), notable for its ability to enable the production of ASDs containing pharmaceuticals with thermal instability and limited solubility. As is true for spray drying and other unit operations to generate amorphous materials, changes in processing conditions during co-precipitation, such as solvent selection, can have a significant impact on the molecular and bulk powder properties of co-precipitated amorphous dispersions (cPAD). Using posaconazole as a model API, this work investigates how solvent selection can be leveraged to mitigate crystallization and maximize bulk density for precipitated amorphous dispersions. A precipitation process is developed to generate high-bulk-density amorphous dispersions. Insights from this system provide a mechanistic rationale to control the solid-state and bulk powder properties of amorphous dispersions.
Collapse
|
22
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and Computational Methods for the Determination of Drug-Polymer Solubility and Miscibility. Mol Pharm 2021; 18:2835-2866. [PMID: 34041914 DOI: 10.1021/acs.molpharmaceut.1c00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the pharmaceutical industry, poorly water-soluble drugs require enabling technologies to increase apparent solubility in the biological environment. Amorphous solid dispersion (ASD) has emerged as an attractive strategy that has been used to market more than 20 oral pharmaceutical products. The amorphous form is inherently unstable and exhibits phase separation and crystallization during shelf life storage. Polymers stabilize the amorphous drug by antiplasticization, reducing molecular mobility, reducing chemical potential of drug, and increasing glass transition temperature in ASD. Here, drug-polymer miscibility is an important contributor to the physical stability of ASDs. The current Review discusses the basics of drug-polymer interactions with the major focus on the methods for the evaluation of solubility and miscibility of the drug in the polymer. Methods for the evaluation of drug-polymer solubility and miscibility have been classified as thermal, spectroscopic, microscopic, solid-liquid equilibrium-based, rheological, and computational methods. Thermal methods have been commonly used to determine the solubility of the drug in the polymer, while other methods provide qualitative information about drug-polymer miscibility. Despite advancements, the majority of these methods are still inadequate to provide the value of drug-polymer miscibility at room temperature. There is still a need for methods that can accurately determine drug-polymer miscibility at pharmaceutically relevant temperatures.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Junia Akhtar
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ranjna Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
24
|
Miotke-Wasilczyk M, Józefowicz M, Strankowska J, Kwela J. The Role of Hydrogen Bonding in Paracetamol-Solvent and Paracetamol-Hydrogel Matrix Interactions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1842. [PMID: 33917724 PMCID: PMC8068172 DOI: 10.3390/ma14081842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023]
Abstract
The photophysical and photochemical properties of antipyretic drug - paracetamol (PAR) and its two analogs with different substituents (acetanilide (ACT) and N-ethylaniline (NEA)) in 14 solvents of different polarity were investigated by the use of steady-state spectroscopic technique and quantum-chemical calculations. As expected, the results show that the spectroscopic behavior of PAR, ACT, and NEA is highly dependent on the nature of the solute-solvent interactions (non-specific (dipole-dipole) and specific (hydrogen bonding)). To characterize these interactions, the multiparameter regression analysis proposed by Catalán was used. In order to obtain a deeper insight into the electronic and optical properties of the studied molecules, the difference of the dipole moments of a molecule in the ground and excited state were determined using the theory proposed by Lippert, Mataga, McRae, Bakhshiev, Bilot, and Kawski. Additionally, the influence of the solute polarizability on the determined dipole moments was discussed. The results of the solvatochromic studies were related to the observations of the release kinetics of PAR, ACT, and NEA from polyurethane hydrogels. The release kinetics was analyzed using the Korsmayer-Peppas and Hopfenberg models. Finally, the influence of the functional groups of the investigated compounds on the release time from the hydrogel matrix was analyzed.
Collapse
Affiliation(s)
- Marta Miotke-Wasilczyk
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland; (J.S.); (J.K.)
| | - Marek Józefowicz
- Insitute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland; (J.S.); (J.K.)
| | | | | |
Collapse
|
25
|
|
26
|
Viger-Gravel J, Pinon AC, Björgvinsdóttir S, Skantze U, Svensk Ankarberg A, Von Corswant C, Schantz S, Emsley L. High Sensitivity Detection of a Solubility Limiting Surface Transformation of Drug Particles by DNP SENS. J Pharm Sci 2021; 110:2452-2456. [PMID: 33417900 DOI: 10.1016/j.xphs.2020.12.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/13/2023]
Abstract
We investigate the presence of a surface species for the active pharmaceutical ingredient (API) AZD9496 with dynamic nuclear polarization surface enhanced nuclear spectroscopy (DNP SENS). We show that using DNP we can elucidate the presence of an amorphous form of the API at the surface of crystalline particles of the salt form. The amorphous form of the API has distinguishable 13C chemical shifts when compared to the salt form under various acidic conditions. The predominant form in frozen particles of AZD9496 is the salt, and we provide evidence to suggest that the amorphous layer at the surface is mainly made up of the dissociated free form.
Collapse
Affiliation(s)
- Jasmine Viger-Gravel
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Organic Chemistry Department, School of Chemistry and Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Arthur C Pinon
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Swedish NMR Center, 413 90 Gothenburg, Sweden
| | - Snædís Björgvinsdóttir
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Urban Skantze
- Advanced Drug Delivery, Pharmaceutical Science, AstraZeneca, Gothenburg, Sweden
| | - Anna Svensk Ankarberg
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Christian Von Corswant
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
27
|
Zhang J, Liu Z, Wu H, Cai T. Effect of polymeric excipients on nucleation and crystal growth kinetics of amorphous fluconazole. Biomater Sci 2021; 9:4308-4316. [DOI: 10.1039/d1bm00104c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three chemically distinct polymeric excipients show significantly different effects on the nucleation and crystal growth kinetics of amorphous fluconazole, a classical antifungal drug.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Zhengyu Liu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Haomin Wu
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| | - Ting Cai
- State Key Laboratory of Natural Medicines
- Department of Pharmaceutics
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
28
|
Zhang Z, Dong L, Guo J, Li L, Tian B, Zhao Q, Yang J. Prediction of the physical stability of amorphous solid dispersions: relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv 2020; 18:249-264. [PMID: 33112679 DOI: 10.1080/17425247.2021.1844181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Solid dispersion has been considered to be one of the most promising methods for improving the solubility and bioavailability of insoluble drugs. However, the physical stability of solid dispersions (SDs), including its aging and recrystallization, or phase separation, has always been one of the most challenging problems in the process of formulation development and storage.Areas covered: The high energy state of SDs is one of the primary reasons for the poor physical stability. The factors affecting the physical stability of SDs have been described from the perspective of thermodynamics and kinetics, and the corresponding theoretical model is put forward. We briefly summarize several commonly used techniques to characterize the thermodynamic and kinetic properties of SDs. Specific measures to improve the physical stability of SDs have been proposed from the perspective of prescription screening, process parameters, and storage conditions.Expert opinion: The separation of the drug from the polymer, the formation, and migration of drug crystals will cause the SDs to shift toward the direction of energy reduction, which is the intrinsic cause of instability. Furthermore, computational simulation can be used for efficient and rapid screening suitable for the excipients to improve the physical stability of SDs.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Luning Dong
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jueshuo Guo
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Li Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Bin Tian
- Department of Pharmaceutical Sciences, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, People's Republic of China
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, People's Republic of China
| |
Collapse
|