1
|
Tian B, Wang N, Yang J, Jiang Z, Feng Y, Wang T, Zhou L, Huang X, Hao H. Insight into the Manipulation Mechanism of Polymorphic Transformation by Polymers: A Case of Cimetidine. Pharm Res 2024; 41:1521-1531. [PMID: 38955998 DOI: 10.1007/s11095-024-03734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Employing polymer additives is an effective strategy to realize the manipulation of polymorphic transformation. However, the manipulation mechanism is still not clear, which limit the precise selection of polymeric excipients and the development of pharmaceutical formulations. METHODS The solubility of cimetidine (CIM) in acetonitrile/water mixtures were measured. And the polymorphic transformation from CIM form A to form B with the addition of different polymers was monitored by Raman spectroscopy. Furthermore, the manipulation effect of polymers was determined based on the results of experiments and molecular simulations. RESULTS The solubility of form A is consistently higher than that of form B, which indicate that form B is the thermodynamically stable form within the examined temperature range. The presence of polyvinylpyrrolidone (PVP) of a shorter chain length could have a stronger inhibitory effect on the phase transformation process of metastable form, whereas polyethylene glycol (PEG) had almost no impact. The nucleation kinetics experiments and molecular dynamic simulation results showed that only PVP molecules could significantly decrease the nucleation rate of CIM, due to the ability of reducing solute molecular diffusion and solute-solute molecular interaction. A combination of crystal growth rate measurements and calculations of the interaction energies between PVP and the crystal faces of CIM indicate that smaller molecular weight PVP can suppress crystal growth more effectively. CONCLUSION PVP K16-18 has more impact on the stabilization of CIM form A and inhibition of the phase transformation process. The manipulation mechanism of polymer additives in the polymorphic transformation of CIM was proposed.
Collapse
Affiliation(s)
- Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhicheng Jiang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Lina Zhou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
- Zhejiang Institute of Tianjin University, Ningbo, 315200, China.
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
2
|
Mishra MK, Mahur P, Manimunda P, Mishra K. Recent Advances in Nanomechanical Measurements and Their Application for Pharmaceutical Crystals. Mol Pharm 2023; 20:4848-4867. [PMID: 37642458 DOI: 10.1021/acs.molpharmaceut.3c00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mechanical behavior of pharmaceutical crystals directly impacts the formulation development and manufacturing of drug products. The understanding of crystal structure-mechanical behavior of pharmaceutical and molecular crystals has recently gained substantial attention among pharmaceutical and materials scientists with the advent of advanced nanomechanical testing instruments like nanoindentation. For the past few decades, instrumented nanoindentation was a popular technique for measuring the mechanical properties of thin films and small-length scale materials. More recently it is being implemented to investigate the mechanical properties of pharmaceutical crystals. Integration of correlative microscopy techniques and environmental control opened the door for advanced structure-property correlation under processing conditions. Preventing the degradation of active pharmaceutical ingredients from external factors such as humidity, temperature, or pressure is important during processing. This review deals with the recent developments in the synchronized nanomechanical measurements of pharmaceutical crystals toward the fast and effective development of high-quality pharmaceutical drug products. This review also summarizes some recent reports to intensify how one can design and control the nanomechanical properties of pharmaceutical solids. Measurement challenges and the scope for studying nanomechanical properties of pharmaceutical crystals using nanoindentation as a function of crystal structure and in turn to develop fundamental knowledge in the structure-property relationship with the implications for drug manufacturing and development are discussed in this review. This review further highlights recently developed capabilities in nanoindentation, for example, variable temperature nanoindentation testing, in situ imaging of the indented volume, and nanoindentation coupled Raman spectroscopy that can offer new quantitative details on nanomechanical behavior of crystals and will play a decisive role in the development of coherent theories for nanomechanical study of pharmaceutical crystal.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | - Pinki Mahur
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| | | | - Kamini Mishra
- Department of Chemistry, School of Advanced Sciences (SAS), VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
3
|
Yu D, Nie H. Evaluation of Alternative Metallic Stearates as Lubricants in Pharmaceutical Tablet Formulation. AAPS PharmSciTech 2022; 23:200. [PMID: 35882653 DOI: 10.1208/s12249-022-02338-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/19/2022] [Indexed: 11/30/2022] Open
Abstract
Magnesium stearate (MgSt) is perhaps one of the most frequently used lubricants in tablet formulation due to its superior lubrication capacity, yet it could also negatively affect the critical quality attributes of pharmaceutical products. Therefore, we provided a rather comprehensive evaluation of another two FDA-approved metallic stearates, sodium stearate (NaSt) and calcium stearate (CaSt), as alternative tablet lubricants. The primary objective of the present study is to comparatively evaluate the physicochemical properties and lubrication efficiency of the three metallic stearates. In addition, it was also aimed to specify the most influential factor for ranking and differentiating the lubricity of various lubricants using principal component analysis. Unit ejection force could be used herein as a simple and the most powerful parameter to evaluate the lubrication performance instead of the friction coefficient. The results suggested that CaSt, MgSt, and NaSt had similar impacts on the mechanical strength of tablets. However, CaSt exhibited insufficient lubrication effects as the formulations containing CaSt showed low pressure transmission ratios, high unit ejection forces, and high friction coefficients. In contrast, both MgSt and NaSt displayed satisfactory lubrication efficiency without negatively impacting tabletability. Notably, the lubrication performance of the formulation containing 0.5 wt% NaSt was almost identical to that of the formulation with 1 wt% MgSt, indicating that NaSt had a remarkable lubrication capability probably due to its high specific surface area. In summary, the findings of this investigation should provide practical information and feasible methodologies to readily determine the lubricity and to sensibly select alternative lubricants for pharmaceutical tablet formulations.
Collapse
Affiliation(s)
- Dongyue Yu
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD, USA.,Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA
| | - Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, , West Point, PA, 19486, USA. .,Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
4
|
Majumder S, Sun CC, Mara NA. Nanomechanical testing in drug delivery: Theory, applications, and emerging trends. Adv Drug Deliv Rev 2022; 183:114167. [PMID: 35183656 DOI: 10.1016/j.addr.2022.114167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 11/01/2022]
Abstract
Mechanical properties play a central role in drug formulation development and manufacturing. Traditional characterization of mechanical properties of pharmaceutical solids relied mainly on large compacts, instead of individual particles. Modern nanomechanical testing instruments enable quantification of mechanical properties from the single crystal/particle level to the finished tablet. Although widely used in characterizing inorganic materials for decades, nanomechanical testing has been relatively less employed to characterize pharmaceutical materials. This review focuses on the applications of existing and emerging nanomechanical testing methods in characterizing mechanical properties of pharmaceutical solids to facilitate fast and cost-effective development of high quality drug products. Testing of pharmaceutical materials using nanomechanical techniques holds potential to develop fundamental knowledge in the structure-property relationships of molecular solids, with implications for solid form selection, milling, formulation design, and manufacturing. We also systematically discuss pitfalls and useful tips during sample preparation and testing for reliable measurements from nanomechanical testing.
Collapse
|
5
|
Structural Insights and Supramolecular Description of Gliclazide and its Impurity F. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Nie H, Klinzing G, Xu W. A Comparative Study of Applying Backscattering and Transmission Raman Spectroscopy to Quantify Solid-State Form Conversion in Pharmaceutical Tablets. Int J Pharm 2022; 617:121608. [PMID: 35202722 DOI: 10.1016/j.ijpharm.2022.121608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/05/2022] [Accepted: 02/18/2022] [Indexed: 11/18/2022]
Abstract
Selecting appropriate Raman measurement and data processing method are of importance to enable effective quantification of solid form conversions upon processing or storage. Therefore, a comparative evaluation is presented herein on using backscattering and transmission Raman spectroscopy to quantify salt disproportionation in tablet matrices. The second part focuses on different spectra processing approaches and calibration models for quantifications. Finally, samples under different mechanical stresses were comprehensively analyzed using different Raman measurements. Much as transmission Raman spectrometry may provide accuracy on bulk measurements by having large sampling volume, it has the drawback of signal attenuation and may overlook process-induced phase transitions occurring on local regions of tablet surface. To overcome this limitation, backscattering Raman with deliberate subsampling can be used as an orthogonal method to probe the existence of low-level form conversion distributed over a tablet's surface. In the present case, different levels of the form conversions were found at the edge and the center of tablets due to the uneven shear stress distribution invoked during tablet compression. In such a scenario, it would be beneficial to apply deliberate-focused backscattering and transmission Raman spectrometry together as complementary techniques to capture chemical information both locally and within the bulk of the tablet.
Collapse
Affiliation(s)
- Haichen Nie
- Center for Materials Science and Engineering, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, United States.
| | - Gerard Klinzing
- Pharmaceutical Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ 07065, USA
| |
Collapse
|
7
|
Park H, Kim JS, Hong S, Ha ES, Nie H, Zhou QT, Kim MS. Tableting process-induced solid-state polymorphic transition. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-021-00556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Won DH, Park H, Ha ES, Kim HH, Jang SW, Kim MS. Optimization of bilayer tablet manufacturing process for fixed dose combination of sustained release high-dose drug and immediate release low-dose drug based on quality by design (QbD). Int J Pharm 2021; 605:120838. [PMID: 34197909 DOI: 10.1016/j.ijpharm.2021.120838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 12/20/2022]
Abstract
A fixed dose combination (FDC) bilayer tablet, consisting of high-dose metformin HCl in a sustained release layer and low-dose evogliptin tartrate in an immediate release layer, was developed based on a quality by design (QbD) approach. To implement QbD approach, the bilayer tableting process parameters judged as high risk through risk analysis were optimized by a central composite face-centered design as a design of experiment (DOE) methodology. Using DOE, the optimized conditions of the tableting process for drug products that satisfy the established quality target product profiles were obtained. The content uniformity of low-dose evogliptin tartrate in the optimized bilayer tablet prepared on a large scale was confirmed by at-line transmittance Raman spectroscopy as a process analytical technology. In addition, the in vitro drug release and in vivo pharmacokinetic studies showed that metformin HCl and evogliptin tartrate in the bilayer tablet is bioequivalent to those of the respective reference drugs. Furthermore, the physicochemical stability of the optimized bilayer tablet during storage under long-term and accelerated conditions was also confirmed. Therefore, it can be concluded that the QbD approach is an effective way to develop a new FDC bilayer tablet that is easy to scale up for successful commercialization.
Collapse
Affiliation(s)
- Dong Han Won
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Heejun Park
- College of Pharmacy, Duksung Women's University, 33, Samyangro 144-gil, Dobong-gu, Seoul 01369, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Hwan-Ho Kim
- Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Sun Woo Jang
- Dong-A ST Co. Ltd., Giheung-gu, Yongin, Gyeonggi 446-905, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Pusan National University, 63 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| |
Collapse
|
9
|
Gabriele BPA, Williams CJ, Lauer ME, Derby B, Cruz-Cabeza AJ. Impact of polymorphism on mechanical properties of molecular crystals: a study of p-amino and p-nitro benzoic acid with nanoindentation. CrystEngComm 2021. [DOI: 10.1039/d1ce00041a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on nanoindentation data for two pairs of polymorphic compounds of p-aminobenzoic acid (pABA) and p-nitrobenzoic acid (pNBA) and compare it with existing data in the literature. We also explore on a new parameter, s-PBC, as a tool to estimate hardness.
Collapse
Affiliation(s)
| | | | | | - Brian Derby
- Department of Materials
- University of Manchester
- UK
| | | |
Collapse
|