1
|
Mena-Porras E, Contreras-Aleman A, Guevara-Hidalgo MF, Avendaño Soto E, Batista Menezes D, Alvarez-Perez MA, Chavarría-Bolaños D. Comparison of Two Synthesis Methods for 3D PLA-Ibuprofen Nanofibrillar Scaffolds. Pharmaceutics 2025; 17:106. [PMID: 39861754 PMCID: PMC11768655 DOI: 10.3390/pharmaceutics17010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES This study aimed to synthesize polylactic acid (PLA) nanofibrillar scaffolds loaded with ibuprofen (IBU) using electrospinning (ES) and air-jet spinning (AJS). The scaffolds were evaluated for their physicochemical properties, drug release profiles, and biocompatibility to assess their potential for local analgesic applications. METHODS Solutions of 10% (w/v) PLA combined with IBU at concentrations of 10%, 20%, and 30% were processed into nanofibrillar membranes using ES and AJS. The scaffolds were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier-transformed infrared (FT-IR) spectroscopy. The drug release profile was assessed by ultraviolet-visible spectrophotometry (UV-Vis), and cell adhesion and viability were evaluated using fibroblast culture assays. Statistical analyses included qualitative analyses, t-tests, and Likelihood ratio tests. RESULTS SEM revealed randomly arranged nanofibers forming reticulated meshes, with more uniform dimensions observed in the AJS group. TGA and DSC analyses confirmed the thermodynamic stability of the scaffolds and enthalpy changes consistent with IBU incorporation, which FT-IR and UV-Vis validated. Drug release was sustained over 384 h, showing no significant differences between ES and AJS scaffolds (p > 0.05). Cytotoxicity and cell viability assays confirmed scaffold biocompatibility, with cellular responses proportional to drug concentration but within safe limits. CONCLUSIONS PLA-IBU nanofibrillar scaffolds were successfully synthesized using ES and AJS. Both methods yielded biocompatible systems with stable properties and controlled drug release. Further, in vivo studies are necessary to confirm their clinical potential.
Collapse
Affiliation(s)
- Esteban Mena-Porras
- School of Dentistry, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica; (E.M.-P.); (A.C.-A.); (M.F.G.-H.)
| | - Annaby Contreras-Aleman
- School of Dentistry, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica; (E.M.-P.); (A.C.-A.); (M.F.G.-H.)
| | - María Francinie Guevara-Hidalgo
- School of Dentistry, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica; (E.M.-P.); (A.C.-A.); (M.F.G.-H.)
| | - Esteban Avendaño Soto
- Centro de Ingeniería y Ciencia de Materiales (CICIMA), Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica;
| | - Diego Batista Menezes
- Laboratorio Nacional de Nanotecnología (LANOTEC), Centro Nacional de Alta Tecnología (CENAT), San Jose 10109, Costa Rica;
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI-FO, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Daniel Chavarría-Bolaños
- Programa de Posgrado en Odontología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Jose 11501-2060, Costa Rica
| |
Collapse
|
2
|
Harmon DM, Cao Z, Sherman AM, Takanti N, Murati K, Wimsatt MM, Cousineau ML, Hwang Y, Taylor LS, Simpson GJ. Diffusion Mapping with Diffractive Optical Elements for Periodically Patterned Photobleaching. Anal Chem 2024; 96:10161-10169. [PMID: 38864607 DOI: 10.1021/acs.analchem.3c05728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Fourier transform-fluorescence recovery after photobleaching (FT-FRAP) using a diffractive optical element (DOE) is shown to support distance-dependent diffusion analysis in biologically relevant media. Integration of DOEs enables patterning of a dot array for parallel acquisition of point-bleach FRAP measurements at multiple locations across the field of view. In homogeneous media, the spatial harmonics of the dot array analyzed in the spatial Fourier transform domain yield diffusion recovery curves evaluated over specific well-defined distances. Relative distances for diffusive recovery in the spatial Fourier transform domain are directly connected to the 2D (h,k) Miller indices of the corresponding lattice lines. The distribution of the photobleach power across the entire field of view using a multidot array pattern greatly increases the overall signal power in the spatial FT-domain for signal-to-noise improvements. Derivations are presented for the mathematical underpinnings of FT-FRAP performed with 2D periodicity in the photobleach patterns. Retrofitting of FT-FRAP into instrumentation for high-throughput FRAP analysis (Formulatrix) supports automated analysis of robotically prepared 96-well plates for precise quantification of molecular mobility. Figures of merit are evaluated for FT-FRAP in analysis for both slow diffusion of fluorescent dyes in glassy polymer matrices spanning several days and model proteins and monoclonal antibodies within aqueous solutions recovering in matters of seconds.
Collapse
Affiliation(s)
- Dustin M Harmon
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyi Cao
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alex M Sherman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nita Takanti
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kevin Murati
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Maura M Wimsatt
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michelle L Cousineau
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Emel'yanenko VN, Zherikova KV, Verevkin SP. Quantum Chemistry and Pharmacy: Diagnostic Check of the Thermochemistry of Ibuprofen. Chemphyschem 2024; 25:e202400066. [PMID: 38470129 DOI: 10.1002/cphc.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 03/13/2024]
Abstract
The thermodynamic data on ibuprofen available in the literature shows that the disarray of experimental results is unacceptable for this very important drug. The data on ibuprofens available in the literature were collected, combined with our complementary experimental results and evaluated. The enthalpies of combustion and formation of the crystalline RS-(±)- and S-(+)-ibuprofens were measured using high-precision combustion calorimetry. The temperature dependence of the vapour pressure of S-(+)-ibuprofen was measured using the transpiration method and the enthalpy of vaporization was derived from this measurement. The enthalpies of fusion of both compounds were measured using DSC. The G4 calculations have been carried out to determine the enthalpy of formation in the gaseous state of the most stable conformer. Thermochemical properties of the compounds studied were evaluated and tested for consistency with the "centerpiece approach". A set of reliable and consistent values of thermodynamic properties of ibuprofens at 298.15 K is recommended for thermochemical calculations of the pharmaceutical processes. The diagnostic protocol was developed to distinguish between the "sick" or "healthy" thermodynamic data. This diagnostic is also applicable to other drugs with a different structure than ibuprofen.
Collapse
Affiliation(s)
- Vladimir N Emel'yanenko
- Competence Centre CALOR of Faculty of Interdisciplinary Research at University of Rostock, 18059, Rostock, Germany
| | - Kseniya V Zherikova
- Nikolaev Institute of Inorganic Chemistry of Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russian Federation
| | - Sergey P Verevkin
- Competence Centre CALOR of Faculty of Interdisciplinary Research at University of Rostock, 18059, Rostock, Germany
- Department of Physical Chemistry, Kazan Federal University, 420008, Kazan, Russian Federation
| |
Collapse
|
4
|
Mechanistic insights into the crystallization of coamorphous drug systems. J Control Release 2023; 354:489-502. [PMID: 36646287 DOI: 10.1016/j.jconrel.2023.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/18/2023]
Abstract
In our previous study, the coamorphous formulation of lurasidone hydrochloride (LH) with saccharin (SAC) showed significantly enhanced dissolution and physical stability compared to crystalline/amorphous LH. However, the coamorphous system is still in amorphous state, and has the tendency to recrystallization, which will in turn result in the loss of above advantages. In this study, the crystallization kinetics under isothermal and non-isothermal conditions was investigated. Compared to amorphous LH, coamorphous LH-SAC showed 68.3-361.2 and 2.6-6.1 times lower crystallization rates in glassy state and supercooled liquid state, respectively. After co-amorphization, the addition of SAC changed the crystallization mechanism of amorphous LH from nucleation-controlled to diffusion-controlled manner. Amorphous LH followed the site-saturated nucleation, whereas the coamorphous system exhibited a fixed number of nuclei. The non-isothermal crystallization indicated amorphous LH and coamorphous LH-SAC showed two-dimensional (JMAEK 2) and three-dimensional (JMAEK 3) growth of nuclei, respectively. Furthermore, coamorphous LH-SAC exhibited higher molecular mobility and dynamic fragility (mD) than amorphous LH, which is kinetically unfavorable for its physical stability. However, from thermodynamic perspective, coamorphous LH-SAC had a higher configurational entropy, i.e., a higher entropy barrier for crystallization, which is beneficial to hinder its crystallization. Therefore, it was concluded that the higher configurational entropy rather than the molecular mobility was proposed to be responsible for its improved stability. In addition, molecular dynamics simulations with miscibility, radial distribution function and binding energy calculations suggested coamorphous components exhibited good miscibility and strong intermolecular interactions, which was also conductive to the enhancement in its stability. This study offers an in-depth understanding about the effect of the coformer on the crystallization kinetics of coamorphous systems, and points out the important contribution of the configurational entropy in stabilizing the coamorphous systems.
Collapse
|
5
|
Study of Thermal Properties, Molecular Dynamics, and Physical Stability of Etoricoxib Mixtures with Octaacetylmaltose near the Glass Transition. Int J Mol Sci 2022; 23:ijms23179794. [PMID: 36077212 PMCID: PMC9456116 DOI: 10.3390/ijms23179794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
In this paper, we thoroughly investigated the physical stability of the anti-inflammatory drug etoricoxib, which has been reported earlier to be resistant to recrystallization in its glassy and supercooled states at ambient pressure. Our unique application of the standard refractometry technique showed that the supercooled liquid of the drug was able to recrystallize during isothermal experiments in atmospheric conditions. This enabled us to determine the crystallization onset timescale and nucleation energy barrier of etoricoxib for the first time. As the physical instability of etoricoxib requires working out an efficient method for improving the drug’s resistance to recrystallization to maintain its amorphous form utility in potential pharmaceutical applications, we focused on finding a solution to this problem, and successfully achieved this purpose by preparing binary mixtures of etoricoxib with octaacetylmaltose. Our detailed thermal, refractometry, and molecular dynamics studies of the binary compositions near the glass transition revealed a peculiar behavior of the glass transition temperatures when changing the acetylated disaccharide concentration in the mixtures. Consequently, the anti-plasticization effect on the enhancement of physical stability could be excluded, and a key role for specific interactions in the improved resistance to recrystallization was expected. Invoking our previous results obtained for etoricoxib, the chemically similar drug celecoxib, and octaacetylmaltose, we formulated a hypothesis about the molecular mechanisms that may cause an impediment to crystal nuclei formation in the amorphous mixtures of etoricoxib with octaacetylmaltose. The most plausible scenario may rely on the formation of hydrogen-bonded heterodimers of the drug and excipient molecules, and the related drop in the population of the etoricoxib homodimers, which disables the nucleation. Nevertheless, this hypothesis requires further investigation. Additionally, we tested some widely discussed correlations between molecular mobility and crystallization properties, which turned out to be only partially satisfied for the examined mixtures. Our findings constitute not only a warning against manufacturing the amorphous form of pure etoricoxib, but also evidence for a promising outcome for the pharmaceutical application of the amorphous compositions with octaacetylmaltose.
Collapse
|
6
|
Okada K, Hayashi Y, Tsuji T, Onuki Y. Low-Field NMR to Characterize the Crystalline State of Ibuprofen Confined in Ordered or Nonordered Mesoporous Silica. Chem Pharm Bull (Tokyo) 2022; 70:550-557. [DOI: 10.1248/cpb.c22-00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kotaro Okada
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| | - Yoshihiro Hayashi
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Takahiro Tsuji
- Formulation Development Department, Nichi-Iko Pharmaceutical Co., Ltd
| | - Yoshinori Onuki
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy and Pharmaceutical Science, University of Toyama
| |
Collapse
|
7
|
Červinka C, Fulem M. Structure and Glass Transition Temperature of Amorphous Dispersions of Model Pharmaceuticals with Nucleobases from Molecular Dynamics. Pharmaceutics 2021; 13:1253. [PMID: 34452214 PMCID: PMC8400648 DOI: 10.3390/pharmaceutics13081253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/20/2022] Open
Abstract
Glass transition temperature (Tg) is an important material property, which predetermines the kinetic stability of amorphous solids. In the context of active pharmaceutical ingredients (API), there is motivation to maximize their Tg by forming amorphous mixtures with other chemicals, labeled excipients. Molecular dynamics simulations are a natural computational tool to investigate the relationships between structure, dynamics, and cohesion of amorphous materials with an all-atom resolution. This work presents a computational study, addressing primarily the predictions of the glass transition temperatures of four selected API (carbamazepine, racemic ibuprofen, indomethacin, and naproxen) with two nucleobases (adenine and cytosine). Since the classical non-polarizable simulations fail to reach the quantitative accuracy of the predicted Tg, analyses of internal dynamics, hydrogen bonding, and cohesive forces in bulk phases of pure API and their mixtures with the nucleobases are performed to interpret the predicted trends. This manuscript reveals the method for a systematic search of beneficial pairs of API and excipients (with maximum Tg when mixed). Monitoring of transport and cohesive properties of API-excipients systems via molecular simulation will enable the design of such API formulations more efficiently in the future.
Collapse
Affiliation(s)
- Ctirad Červinka
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, CZ-166 28 Prague, Czech Republic;
| | | |
Collapse
|
8
|
Liu B, Theil F, Lehmkemper K, Gessner D, Li Y, van Lishaut H. Crystallization Risk Assessment of Amorphous Solid Dispersions by Physical Shelf-Life Modeling: A Practical Approach. Mol Pharm 2021; 18:2428-2437. [PMID: 34032433 DOI: 10.1021/acs.molpharmaceut.1c00270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amorphous solid dispersions (ASDs) of a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can enhance the water solubility and therefore generally improve the bioavailability of the API. Although examples of long-term stability are emerging in the literature, many ASD products are kinetically stabilized, and inhibition of crystallization of a drug substance within and beyond shelf life is still a matter of debate, since, in some cases, the formation of crystals may impact bioavailability. In this study, a risk assessment of API crystallization in packaged ASD drug products and a mitigation strategy are outlined. The risk of shelf-life crystallization and the respective mitigation steps are assigned for different drug product development scenarios and the scientific principles of each step are discussed. Ultimately, the physical stability of ASD drug products during shelf-life storage is modeled. The methodology is based on the quantification of crystal growth kinetics by transmission Raman spectroscopy (TRS), modeling the impact of water sorption on the glass-transition temperature of the ASD, and the prediction of moisture uptake by the packaged ASD drug product during storage. This approach is applied to an ASD of fenofibrate that features both fast API crystallization under accelerated storage conditions and long-term stability in a suitable protective packaging under conventional storage conditions.
Collapse
Affiliation(s)
- Bo Liu
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Frank Theil
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Kristin Lehmkemper
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - David Gessner
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yanxia Li
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Holger van Lishaut
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
9
|
Karava V, Siamidi A, Vlachou M, Christodoulou E, Zamboulis A, Bikiaris DN, Kyritsis A, Klonos PA. Block copolymers based on poly(butylene adipate) and poly(L-lactic acid) for biomedical applications: synthesis, structure and thermodynamical studies. SOFT MATTER 2021; 17:2439-2453. [PMID: 33491719 DOI: 10.1039/d0sm02053b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work describes the synthesis of poly(butylene adipate) (PBAd), by melt polycondensation, poly(l-lactic acid) (PLLA), by ring opening polymerization, and the new block copolymer PLLA/PBAd in ratios 90/10, 95/5, 75/25 and 50/50. Due to the biocompatibility and low toxicity of neat PBAd and PLLA, these copolymers are suitable to be used in biomedical applications. The 1H and 13C nuclear magnetic resonance spectroscopy techniques were employed for structural characterization. The thermal transitions, with an emphasis on crystallization, were assessed by differential scanning calorimetry, supplemented by X-ray diffraction and polarized optical microscopy. Molecular mobility studies were conducted using two advanced techniques, broadband dielectric spectroscopy and thermally stimulated depolarization currents. The results from the structural techniques, in combination with each other, provided proof of the presence of PLLA and PBAd blocks and, moreover, the successful copolymer synthesis. The overall data showed that the different co-polymer compositions result directly in severe changes in the polymer crystal distribution and, indirectly, the formation of PBAd micro/nano domains surrounded by PLLA. Furthermore, it was demonstrated that both the continuity of the two polymers throughout the copolymer volume and the semicrystalline morphology can be tuned to a wide extent. The latter makes these systems quite promising envisaging biomedical applications, including the encapsulation of small molecules, e.g. drug solutions. The molecular mobility map was constructed for these systems for the first time, revealing the local (short scale) and segmental (larger nm scale) mobility of PBAd and PLLA, as well as intermediate behaviors of the copolymers.
Collapse
Affiliation(s)
- Vasiliki Karava
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Aggeliki Siamidi
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Marilena Vlachou
- Department of Pharmacy, Section of Pharmaceutical Technology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Evi Christodoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece and Department of Physics, National Technical University of Athens (NTUA), Zografou Campus, 15780, Athens, Greece.
| |
Collapse
|