1
|
Luo C, Li R, Tang M, Gao Y, Zhang J, Qian S, Wei Y, Shen P. Amorphous solid dispersion to facilitate the delivery of poorly water-soluble drugs: recent advances on novel preparation processes and technology coupling. Expert Opin Drug Deliv 2024:1-16. [PMID: 39484838 DOI: 10.1080/17425247.2024.2423813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/13/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
INTRODUCTION Amorphous solid dispersion (ASD) technique has recently been used as an effective formulation strategy to significantly improve the bioavailability of insoluble drugs. The main industrialized preparation methods for ASDs are mainly hot melt extrusion and spray drying techniques; however, they face the limitations of being unsuitable for heat-sensitive materials and organic reagent residues, respectively, and therefore novel preparation processes and technology coupling for developing ASDs have received increasing attention. AREAS COVERED This paper reviews recent advances in ASD and provides an overview of novel preparation methods, mechanisms for improving drug bioavailability, and especially technology coupling. EXPERT COVERED As a mature pharmaceutical technology, ASD has broad application prospects and values. During the period from 2012 to 2024, the FDA has approved 49 formulation products containing ASDs. However, with the diversification of drug types and clinical needs, the traditional formulation technology of ASDs is gradually no longer sufficient to meet the needs of clinical medication. Therefore, this review summarizes the studies on both novel preparation processes and technology combinations; and provides a comprehensive overview of the mechanisms of ASD to improve drug bioavailability, in order to better select appropriate preparation methods for the development of ASD formulations.
Collapse
Affiliation(s)
- Chengxiang Luo
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Ruipeng Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Mi Tang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
- Jiangsu Litaier Pharma Ltd, Nanjing, China
| | - Yuan Gao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Jianjun Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Shuai Qian
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yuanfeng Wei
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Peiya Shen
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
2
|
García MA, González PM, Aceituno A, Al-Gousous J. Novel analytical solutions for convolution in compartmental pharmacokinetic models and application to non-bioequivalent formulations. Eur J Pharm Sci 2024; 202:106892. [PMID: 39245356 DOI: 10.1016/j.ejps.2024.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Deconvolution and convolution are powerful tools that allow decomposition and reconstruction, respectively, of plasma versus time profiles from input and impulse functions. While deconvolution have commonly used compartmental approaches (e.g., Wagner-Nelson or Loo-Riegelman), convolution most typically used the convolution integral which can be solved with numerical methods. In 2005, an analytical solution for one-compartment pharmacokinetic was proposed and has been widely used ever since. However, to the best of our knowledge, analytical solutions for drugs distributed in more than one compartment have not been reported yet. In this paper, analytical solutions for compartmental convolution from both original and exact Loo-Riegelman approaches were developed and evaluated for different scenarios. While convolution from original approach was slightly more precise than that from the exact Loo-Riegelman, both methods were extremely accurate for reconstruction of plasma profiles after respective deconvolutions. Nonetheless, convolution from exact Loo-Riegelman was easier to interpret and to be manipulated mathematically. In fact, convolution solutions for three and more compartments can be easily written with this approach. Finally, our convolution analytical solution was applied to predict the failure in bioequivalence for levonorgestrel, demonstrating that equations in this paper may be useful tools for pharmaceutical scientists.
Collapse
Affiliation(s)
- Mauricio A García
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile.
| | - Pablo M González
- Innovation and Biopharmaceutical Evaluation Center (IBECenter), Santiago, Chile
| | - Alexis Aceituno
- National Drug Agency Department, Institute of Public Health (ISP), Santiago, Chile; Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Jozef Al-Gousous
- Departament of Biopharmaceutics and Pharmaceutical Technology, Johannes Gutenberg University Mainz, 55099, Mainz, Germany; Departament of Pharmaceutical Sciences, University of Michigan, 428 Church Street, Ann Arbor, MI, 48109, USA
| |
Collapse
|
3
|
Nyamba I, Sombié CB, Yabré M, Zimé-Diawara H, Yaméogo J, Ouédraogo S, Lechanteur A, Semdé R, Evrard B. Pharmaceutical approaches for enhancing solubility and oral bioavailability of poorly soluble drugs. Eur J Pharm Biopharm 2024; 204:114513. [PMID: 39313163 DOI: 10.1016/j.ejpb.2024.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
High solubility in water and physiological fluids is an indispensable requirement for the pharmacological efficacy of an active pharmaceutical ingredient. Indeed, it is well established that pharmaceutical substances exhibiting limited solubility in water are inclined towards diminished and inconsistent absorption following oral administration, consequently resulting in variability in therapeutic outcomes. The current advancements in combinatorial chemistry and pharmaceutical design have facilitated the creation of drug candidates characterized by increased lipophilicity, elevated molecular size, and reduced aqueous solubility. Undoubtedly, the issue of poorly water-soluble medications has been progressively escalating over recent years. Indeed, 40% of the top 200 oral medications marketed in the United States, 33% of drugs listed in the US pharmacopoeia, 75% of compounds under development and 90% of new chemical entities are insufficiently water-soluble compounds. In order to address this obstacle, formulation scientists employ a variety of approaches, encompassing both physical and chemical methods such as prodrug synthesis, salt formation, solid dispersions formation, hydrotropic substances utilization, solubilizing agents incorporation, cosolvent addition, polymorphism exploration, cocrystal creation, cyclodextrins complexation, lipid formulations, particle size reduction and nanoformulation techniques. Despite the utilization of these diverse approaches, the primary reason for the failure in new drug development persists as the poor aqueous solubility of pharmaceutical compounds. This paper, therefore, delves into the foundational principles that underpin the implementation of various formulation strategies, along with a discussion on the respective advantages and drawbacks associated with each approach. Additionally, a discourse is provided regarding methodological frameworks for making informed decisions on selecting an appropriate formulation strategy to effectively tackle the key challenges posed during the development of a poorly water-soluble drug candidate.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium; Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso; Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso.
| | - Charles B Sombié
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Moussa Yabré
- Institut Supérieur des Sciences de la Santé (INSSA), Université Nazi Boni, 01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
| | - Hermine Zimé-Diawara
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Josias Yaméogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Salfo Ouédraogo
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| | - Rasmané Semdé
- Laboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, Université de Liège, 4000 Liège, Belgium
| |
Collapse
|
4
|
Wu D, Liu J, Paragas EM, Yadav J, Aliwarga T, Heimbach T, Escotet-Espinoza MS. Assessing and mitigating pH-mediated DDI risks in drug development - formulation approaches and clinical considerations. Drug Metab Rev 2024:1-20. [PMID: 38700278 DOI: 10.1080/03602532.2024.2345632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024]
Abstract
pH-mediated drug-drug interactions (DDI) is a prevalent DDI in drug development, especially for weak base compounds with highly pH-dependent solubility. FDA has released a guidance on the evaluation of pH-mediated DDI assessments using in vitro testing and clinical studies. Currently, there is no common practice of ways of testing across the academia and industry. The development of biopredictive method and physiologically-based biopharmaceutics modeling (PBBM) approaches to assess acid-reducing agent (ARA)-DDI have been proven with accurate prediction and could decrease drug development burden, inform clinical design and potentially waive clinical studies. Formulation strategies and careful clinical design could help mitigate the pH-mediated DDI to avoid more clinical studies and label restrictions, ultimately benefiting the patient. In this review paper, a detailed introduction on biorelevant dissolution testing, preclinical and clinical study requirement and PBPK modeling approaches to assess ARA-DDI are described. An improved decision tree for pH-mediated DDI is proposed. Potential mitigations including clinical or formulation strategies are discussed.
Collapse
Affiliation(s)
- Di Wu
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Jiaying Liu
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | - Erickson M Paragas
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Jaydeep Yadav
- Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc, Boston, MA, USA
| | - Theresa Aliwarga
- Pharmacokinetics and Drug Metabolism Department, Amgen Research, South San Francisco, CA, USA
| | - Tycho Heimbach
- Pharmaceutical Sciences & Clinical Supply, Merck & Co., Inc, Rahway, NJ, USA
| | | |
Collapse
|
5
|
Desai M, Patil PH, Rao RR, Shenoy GG, Rao M, Mutalik S, Jagadish PC. Should the Use of Acid Reducing Agents in Conjunction with Ribociclib be Avoided? An Integrated QbD Approach for Assessment of pH-Mediated Interaction. J Chromatogr Sci 2024; 62:175-181. [PMID: 36241222 DOI: 10.1093/chromsci/bmac084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/12/2022]
Abstract
The objective of the study was to evaluate the possible pH-dependent interaction of ribociclib succinate with acid-reducing agents, which are concomitantly administered as supportive care medicines in cancer. Quality by Design-based analytical method development for a weakly basic drug ribociclib succinate supposedly having the characteristic ability of pH-dependent solubility was carried out for analyzing micro-dissolution experiment samples in biorelevant media to study pH-dependent interaction. An accurate and robust analytical method was developed using a three-level three-factorial box-behnken design for quantification of ribociclib succinate in micro-dissolution samples by the implementation of the Analytical Quality by Design approach. Here, pH of aqueous mobile phase and flow rate proved to be critical process parameters. The gastric compartment solubility was found to be 814.05 μg/mL, which dropped down to 494.71 μg/mL after a pH shift from pH 1.2-6.5. In the intestinal compartment, initial solubility was 717.58 μg/mL, which reduced to 463.20 μg/mL after a pH shift from 6.5 to 6.8. Concluded results state that pH shift does not impact the solubility or the absorption of the drug to a significant extent in the presence of acid-reducing agents. However, the study would prove to be a practical approach for examination of the behavior of the drugs at the initial stages.
Collapse
Affiliation(s)
- Mrunal Desai
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Prajakta Harish Patil
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Rajat Radhakrishna Rao
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Gurupur Gautham Shenoy
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| | - Puralae Channabasavaiah Jagadish
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Udupi District, Karnataka State, India
| |
Collapse
|
6
|
Moens F, Larsson A, De Blaiser A, Vandevijver G, Spreafico F, Nicolas JM, Lacombe L, Segregur D, Flanagan T, Berben P. Contribution of the Dynamic Intestinal Absorption Model (Diamod) to the Development of a Patient-Centric Drug Formulation. Mol Pharm 2023; 20:6197-6212. [PMID: 37955627 DOI: 10.1021/acs.molpharmaceut.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs. As a result, the development of a formulation resulting in robust performance that is not sensitive to the exposed gastric pH levels is of crucial importance. The dynamic intestinal absorption MODel (Diamod), an advanced in vitro gastrointestinal transfer tool that allows to study the gastrointestinal dissolution and interconnected permeation of drugs, was selected as an in vitro tool for the formulation optimization activities given its promising predictive capacity and its capability to generate insights into the mechanisms driving formulation performance. Different pH-modifiers were screened for their potential to mitigate the pH-effect by decreasing the microenvironmental pH at the dissolution surface. Finally, an optimized formulation containing a clinically relevant dose of the drug and a functional amount of the selected pH-modifier was evaluated for its performance in the Diamod. This monolayer tablet formulation resulted in rapid gastric dissolution and supersaturation, inducing adequate intestinal supersaturation and permeation of compound X, irrespective of the gastric acidity level in the stomach. In conclusion, this study describes the holistic biopharmaceutics approach driving the development of a patient-centric formulation of compound X.
Collapse
Affiliation(s)
| | - Adam Larsson
- ProDigest BV, Technologiepark 82, 9052 Ghent, Belgium
| | | | | | | | - Jean-Marie Nicolas
- UCB Pharma SA, Early Solutions, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Lucie Lacombe
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Domagoj Segregur
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Talia Flanagan
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| | - Philippe Berben
- UCB Pharma SA, Product Design & Performance, Chemin du Foriest 1, 1420 Braine l'Alleud, Belgium
| |
Collapse
|
7
|
Hens B, Sarcevica I, Tomaszewska I, McAllister M. Digitalizing the TIM-1 Model Using Computational Approaches─Part Two: Digital TIM-1 Model in GastroPlus. Mol Pharm 2023; 20:5429-5439. [PMID: 37878668 DOI: 10.1021/acs.molpharmaceut.3c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A TIM-1 model is an in vitro gastrointestinal (GI) simulator considering crucial physiological parameters that will affect the in vivo drug release process. The outcome of these experiments can indicate the critical bioavailability attributes (CBAs) that will impact the fraction absorbed in vivo. The model is widely used in the nonclinical stage of drug product development to assess the bioaccessible fraction of drugs for numerous candidate formulations. In this work, we developed a digital TIM-1 model in the GastroPlus platform. In a first step, we performed validation experiments to assess the luminal concentrations and bioaccessible fractions for two marker compounds. The digital TIM-1 was able to adequately reflect the luminal concentrations and bioaccessible fractions of these markers under different prandial conditions, confirming the appropriate integration of mass transfer in the TIM-1 model. In a second set of experiments, a case example with PF-07059013 was performed, where luminal concentrations and bioaccessible fractions were predicted for 200 and 1000 mg doses under fasted and achlorhydric conditions. Experimental and simulated data pointed out that the achlorhydric effect was more pronounced at the 1000 mg dose, showing a solubility-limited dissolution and, consequently, decreased bioaccessible fraction. Toward future applications, the digital TIM-1 model will be thoroughly applied to explore a link between in vitro and in vivo outcomes based on more case examples with model compounds with the access of TIM-1 and plasma data. Ideally, this digital TIM-1 can be directly used in GastroPlus to explore an in vitro-in vivo correlation (IVIVC) between the fraction dissolved (digital TIM-1 settings) and the fraction absorbed (human PBPK settings).
Collapse
Affiliation(s)
- Bart Hens
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Inese Sarcevica
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Irena Tomaszewska
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| | - Mark McAllister
- Drug Product Design, Pfizer, Discovery Park, Ramsgate Road, Sandwich CT13 9ND, U.K
| |
Collapse
|
8
|
Porat D, Dukhno O, Partook-Maccabi M, Vainer E, Cvijić S, Dahan A. Selective COX-2 inhibitors after bariatric surgery: Celecoxib, etoricoxib and etodolac post-bariatric solubility/dissolution and pharmacokinetics. Int J Pharm 2023; 645:123347. [PMID: 37633536 DOI: 10.1016/j.ijpharm.2023.123347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Anatomical/physiological gastrointestinal changes after bariatric surgery may influence the fate of orally administered drugs.Since non-selective NSAIDs are not well-tolerated post-surgery, selective cyclooxygenase-2 (COX-2) inhibitors may be important for these patients. In this work we investigated celecoxib, etoricoxib and etodolac, for impaired post-bariatric solubility/dissolution and absorption. Solubility was studied in-vitro, and ex-vivoin aspirated gastric contents from patients pre- vs. post-surgery. Dissolution was studied in conditions simulating pre- vs. post-surgery stomach. Finally, the experimental solubility data were used in physiologically-based biopharmaceutics model (PBBM) (GastroPlus®) to simulate pre- vs. post-surgery celecoxib/etoricoxib/etodolac pharmacokinetic (PK) profiles.For etoricoxib and etodolac (but not celecoxib), pH-dependent solubility was demonstrated: etoricoxib solubility decreased ∼1000-fold, and etodolac solubility increased 120-fold, as pH increased from 1 to 7, which was also confirmed ex-vivo. Hampered etoricoxib dissolution and improved etodolac dissolution post-surgery was revealed. Tablet crushing, clinically recommended after surgery, failed to improve post-bariatric dissolution. PBBM simulations revealed significantly impaired etoricoxib absorption post-surgery across all conditions; for instance, 79% lower Cmax and 53% decreased AUC was simulated post-gastric bypass procedure, after single 120 mg dose. Celecoxib and etodolac maintained unaffected absorption after bariatric surgery.This mechanistically-based analysis suggests to prefer the acidic drug etodolac or the neutral celecoxib as selective COX-2 inhibitors, over the basic drug etoricoxib, after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Mazal Partook-Maccabi
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
9
|
Krajcar D, Jereb R, Legen I, Opara J, Grabnar I. Predictive Potential of Acido-Basic Properties, Solubility and Food on Bioequivalence Study Outcome: Analysis of 128 Studies. Drugs R D 2023; 23:211-220. [PMID: 37300755 PMCID: PMC10439087 DOI: 10.1007/s40268-023-00426-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Risk assessment related to bioequivalence study outcome is critical for effective planning from the early stage of drug product development. The objective of this research was to evaluate the associations between solubility and acido-basic parameters of an active pharmaceutical ingredient (API), study conditions and bioequivalence outcome. METHODS We retrospectively analyzed 128 bioequivalence studies of immediate-release products with 26 different APIs. Bioequivalence study conditions and acido-basic/solubility characteristics of APIs were collected and their predictive potential on the study outcome was assessed using a set of univariate statistical analyses. RESULTS There was no difference in bioequivalence rate between fasting and fed conditions. The highest proportion of non-bioequivalent studies was for weak acids (10/19 cases, 53%) and neutral APIs (23/95 cases, 24%). Lower non-bioequivalence occurrence was observed for weak bases (1/15 cases, 7%) and amphoteric APIs (0/16 cases, 0%). The median dose numbers at pH 1.2 and pH 3 were higher and the most basic acid dissociation constant (pKa) was lower in the non-bioequivalent group of studies. Additionally, APIs with low calculated effective permeability (cPeff) or low calculated lipophilicity (clogP) had lower non-bioequivalence occurrence. Results of the subgroup analysis of studies under fasting conditions were similar as for the whole dataset. CONCLUSION Our results indicate that acido-basic properties of API should be considered in bioequivalence risk assessment and reveal which physico-chemical parameters are most relevant for the development of bioequivalence risk assessment tools for immediate-release products.
Collapse
Affiliation(s)
- Dejan Krajcar
- Lek Pharmaceuticals d.d., A Sandoz Company, Verovskova 57, 1526, Ljubljana, Slovenia.
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Rebeka Jereb
- Lek Pharmaceuticals d.d., A Sandoz Company, Verovskova 57, 1526, Ljubljana, Slovenia
| | - Igor Legen
- Lek Pharmaceuticals d.d., A Sandoz Company, Verovskova 57, 1526, Ljubljana, Slovenia
| | - Jerneja Opara
- Lek Pharmaceuticals d.d., A Sandoz Company, Verovskova 57, 1526, Ljubljana, Slovenia
| | - Iztok Grabnar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| |
Collapse
|
10
|
Kuminek G, Salehi N, Waltz NM, Sperry DC, Greenwood DE, Hate SS, Amidon GE. Use of Gastrointestinal Simulator, Mass Transport Analysis, and Absorption Simulation to Investigate the Impact of pH Modifiers in Mitigating Weakly Basic Drugs' Performance Issues Related to Gastric pH: Palbociclib Case Study. Mol Pharm 2023; 20:147-158. [PMID: 36367432 DOI: 10.1021/acs.molpharmaceut.2c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
It is well known that reduced gastric acidity, for example with concomitant administration of acid reducing agents, can result in variable pharmacokinetics and decreased absorption of weakly basic drugs. It is important to identify the risk of reduced and variable absorption early in development, so that product design options to address the risk can be considered. This article describes the utilization of in vitro and in silico tools to predict the effect of gastric pH, as well as the impact of adding pH modifiers, in mitigating the effect of acid reducing agents on weak base drugs' dissolution and absorption. Palbociclib, a weakly basic drug, was evaluated in low and high gastric pH conditions in a multicompartmental dissolution apparatus referred to as a gastrointestinal simulator (GIS). The GIS permits the testing of pharmaceutical products in a way that better assesses dissolution under physiologically relevant conditions of pH, buffer concentration, formulation additives, and physiological variations including GI pH, buffer concentrations, secretions, stomach emptying rate, residence time in the GI, and aqueous luminal volume. To predict drug dissolution in the GIS, a hierarchical mass transport model was used and validated using in vitro experimental data. Dissolution results were then compared to observed human clinical plasma data with and without proton pump inhibitors using a GastroPlus absorption model to predict palbociclib plasma profiles and pharmacokinetic parameters. The results showed that the in silico model successfully predicted palbociclib dissolution in the GIS under low and high gastric pH conditions with and without pH modifiers. Furthermore, the GIS data coupled with the in silico tools anticipated (1) the reduced palbociclib exposure due to proton pump inhibitor coadministration and (2) the mitigating effect of a pH-modifying agent. This study provides tools to help in the development of orally administered formulations to overcome the effect of elevated gastric pH, especially when formulating with pH modifiers.
Collapse
Affiliation(s)
- Gislaine Kuminek
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States.,Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Niloufar Salehi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States.,Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan48109, United States
| | - Nicholas M Waltz
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States.,College of Pharmacy, Ohio State University, Columbus, Ohio43210, United States
| | - David C Sperry
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Dale E Greenwood
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Siddhi S Hate
- Synthetic Molecule Design & Development, Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana46285, United States
| | - Gregory E Amidon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan48109, United States
| |
Collapse
|
11
|
Zhang Z, Chen S, Wen M, He H, Zhang Y, Yin T, Gou J, Tang X. Alleviating the Influence of Circadian Rhythms and Drug Properties to the Release of Paliperidone Gel Matrix Tablets with Compression Coating Technology and Microenvironment Shaping. AAPS PharmSciTech 2022; 23:228. [PMID: 35974217 DOI: 10.1208/s12249-022-02388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The influence of circadian rhythms is an important content in oral dosage form study which is shown as different pH conditions and gastrointestinal dynamics in the gastrointestinal tract. The purpose of this study was to alleviate the influence of circadian rhythms and drug properties to the release of gel matrix tablets in vitro and in vivo. In this study, the compression coating technology and microenvironment shaping were utilized to achieve the alleviation of the influence of circadian rhythms and drug properties. The compression coating technology was used to alleviate the influence of gastrointestinal dynamics, and microenvironment shaping was used to alleviate the interference of different pH condition variations. The self-made compression coating tablet could maintain a consistent release rate in different pH conditions and different dynamic environments in vitro for 24 h. In vivo, the pharmacokinetic parameters Cmax and Tmax were 3701.675 ng/mL and 24 h, respectively, and the release effect in vivo was similar to the paliperidone osmotic pump tablet with the ability to alleviate the influence of circadian rhythms. The correlation coefficient R2 was 0.9914 for the self-made paliperidone compression coating tablet in vitro-in vivo correlation. The interference caused by circadian rhythms was alleviated so that the compression coating technology with microenvironment shaping could replace the osmotic pump technology with easier preparation process and cheaper costs in vitro and in vivo and achieve the effect of alleviating the interference of circadian rhythms.
Collapse
Affiliation(s)
- Zherui Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Shumin Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Man Wen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
12
|
Porat D, Dukhno O, Vainer E, Cvijić S, Dahan A. Antiallergic Treatment of Bariatric Patients: Potentially Hampered Solubility/Dissolution and Bioavailability of Loratadine, but Not Desloratadine, Post-Bariatric Surgery. Mol Pharm 2022; 19:2922-2936. [PMID: 35759355 DOI: 10.1021/acs.molpharmaceut.2c00292] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Gastrointestinal anatomical/physiological changes after bariatric surgery influence variables affecting the fate of drugs after ingestion, and medication management of these patients requires a thorough and complex mechanistic analysis. The aim of this research was to study whether loratadine/desloratadine antiallergic treatment of bariatric patients is at risk of being ineffective due to impaired solubility/dissolution. The pH-dependent solubility of loratadine/desloratadine was studied in vitro, as well as ex vivo, in gastric content aspirated from patients before versus after bariatric surgery. Then, a biorelevant dissolution method was developed to simulate the gastric conditions after sleeve gastrectomy (SG) or one-anastomosis gastric bypass (OAGB), accounting for key variables (intragastric volume, pH, and contractility), and the dissolution of loratadine/desloratadine was studied pre- versus post-surgery. Dissolution was also studied after tablet crushing or syrup ingestion, as these actions are recommended after bariatric surgery. Finally, these experimental data were implemented in a newly developed physiologically based pharmacokinetic (PBPK) model to simulate loratadine/desloratadine PK profiles pre- versus post-surgery. For both drugs, pH-dependent solubility was demonstrated, with decreased solubility at higher pH; over the pH range 1-7, loratadine solubility decreased ∼2000-fold, and desloratadine decreased ∼120-fold. Ex vivo solubility in aspirated human gastric fluid pre- versus post-surgery was in good agreement with these in vitro results and revealed that while desloratadine solubility still allows complete dissolution post-surgery, loratadine solubility post-surgery is much lower than the threshold required for the complete dissolution of the drug dose. Indeed, severely hampered loratadine dissolution was revealed, dropping from 100% pre-surgery to only 3 and 1% post-SG and post-OAGB, respectively. Tablet crushing did not increase loratadine dissolution in any post-bariatric condition, nor did loratadine syrup in post-OAGB (pH 7) media, while in post-laparoscopic SG conditions (pH 5), the syrup provided partial improvement of up to 40% dissolution. Desloratadine exhibited quick and complete dissolution across all pre-/post-surgery conditions. PBPK simulations revealed pronounced impaired absorption of loratadine post-surgery, with 84-88% decreased Cmax, 28-36% decreased Fa, and 24-31% decreased overall bioavailability, depending on the type of bariatric procedure. Desloratadine absorption remained unchanged post-surgery. We propose that desloratadine should be preferred over loratadine in bariatric patients, and as loratadine is an over-the-counter medication, antiallergic therapy after bariatric surgery requires special attention by patients and clinicians alike. This mechanistic approach that reveals potential post-surgery complexity, and at the same time provides adequate substitutions, may contribute to better pharmacotherapy and overall patient care after bariatric surgery.
Collapse
Affiliation(s)
- Daniel Porat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Oleg Dukhno
- Department of Surgery B, Soroka University Medical Center, Beer-Sheva 8410101, Israel
| | - Ella Vainer
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sandra Cvijić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
13
|
Applications, Challenges, and Outlook for PBPK Modeling and Simulation: A Regulatory, Industrial and Academic Perspective. Pharm Res 2022; 39:1701-1731. [PMID: 35552967 DOI: 10.1007/s11095-022-03274-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
Several regulatory guidances on the use of physiologically based pharmacokinetic (PBPK) analyses and physiologically based biopharmaceutics model(s) (PBBM(s)) have been issued. Workshops are routinely held, demonstrating substantial interest in applying these modeling approaches to address scientific questions in drug development. PBPK models and PBBMs have remarkably contributed to model-informed drug development (MIDD) such as anticipating clinical PK outcomes affected by extrinsic and intrinsic factors in general and specific populations. In this review, we proposed practical considerations for a "base" PBPK model construction and development, summarized current status, challenges including model validation and gaps in system models, and future perspectives in PBPK evaluation to assess a) drug metabolizing enzyme(s)- or drug transporter(s)- mediated drug-drug interactions b) dosing regimen prediction, sampling timepoint selection and dose validation in pediatric patients from newborns to adolescents, c) drug exposure in patients with renal and/or and hepatic organ impairment, d) maternal-fetal drug disposition during pregnancy, and e) pH-mediated drug-drug interactions in patients treated with proton pump inhibitors/acid-reducing agents (PPIs/ARAs) intended for gastric protection. Since PBPK can simulate outcomes in clinical studies with enrollment challenges or ethical issues, the impact of PBPK models on waivers and how to strengthen study waiver is discussed.
Collapse
|
14
|
Is equilibrium slurry pH a good surrogate for solid surface pH during drug dissolution? Eur J Pharm Sci 2021; 168:106037. [PMID: 34637897 DOI: 10.1016/j.ejps.2021.106037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/29/2021] [Accepted: 10/07/2021] [Indexed: 12/27/2022]
Abstract
The purpose of the present study was to investigate the suitability of equilibrium slurry pH (pHeq) as a surrogate of solid surface pH during drug dissolution (pH0). A comprehensive calculation scheme for pHeq and pH0 was formalized based on the principle of charge neutrality (equilibrium charge neutrality for pHeq and charge flux neutrality for pH0). The formalized scheme was then used to investigate the validity of pH0 ≈ pHeq approximation. The approximation of pH0 ≈ pHeq was suggested to be accurate for small molecules (ca. MW = 150) in high concentration buffer media (ca. buffer capacity = 30 mM/ΔpH). In addition, it is valid provided no precipitation of its free form for salts (vice versa for free forms) in both the slurry pH measurement and at the dissolving drug surface. The formalized calculation scheme is simple and applicable to free and salt form drugs in unbuffered and buffered media including bicarbonate buffer. The computational expense is very small so that it is applicable to various computer simulations such as biopharmaceutics modeling and simulation.
Collapse
|