1
|
He C, Shi H, Tan B, Jiang Z, Cao R, Zhu J, Qian K, Wang X, Xu X, Qu C, Song S, Cheng Z. Quinazoline-2,4(1 H,3 H)-dione Scaffold for development of a novel PARP-targeting PET probe for tumor imaging. Eur J Nucl Med Mol Imaging 2024; 51:3840-3853. [PMID: 39012502 DOI: 10.1007/s00259-024-06843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two 18F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem. METHODS A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [68Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties. RESULTS [68Ga]Ga-SMIC-2001 showed a low Log D7.4 (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i. CONCLUSION In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [68Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.
Collapse
Affiliation(s)
- Chunfeng He
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Boyu Tan
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhaoning Jiang
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, Yantai, 264117, China
| | - Rui Cao
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiamin Zhu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Kun Qian
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Xiaoping Xu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chunrong Qu
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Shaoli Song
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Shandong, Yantai, 264117, China.
| |
Collapse
|
2
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Wang Q, Feng J, Jiang Y, Zhou H, Ruan Q, Yin G, Zhang J. Preparation and Evaluation of a Novel 99mTc-Labeled Niraparib Isonitrile Complex as a Potential PARP-1 Imaging Agent. Mol Pharm 2024; 21:3321-3329. [PMID: 38843501 DOI: 10.1021/acs.molpharmaceut.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Poly ADP-ribose polymerase (PARP) plays an important role in the DNA repair process and has become an attractive target for cancer therapy in recent years. Given that niraparib has good clinical efficacy as a PARP inhibitor, this study aimed to develop radiolabeled niraparib derivatives for tumor imaging to detect PARP expression and improve the accuracy of stratified patient therapy. The niraparib isonitrile derivative (CNPN) was designed, synthesized, and radiolabeled to obtain the [99mTc]Tc-CNPN complex with high radiochemical purity (>95%). It was lipophilic and stable in vitro. In HeLa cell experiments, the uptake of [99mTc]Tc-CNPN was effectively inhibited by the ligand CNPN, indicating the binding affinity for PARP. According to the biodistribution studies of HeLa tumor-bearing mice, [99mTc]Tc-CNPN has moderate tumor uptake and can be effectively inhibited, demonstrating its specificity for targeting PARP. The SPECT imaging results showed that [99mTc]Tc-CNPN had tumor uptake at 2 h postinjection. All of the results of this study indicated that [99mTc]Tc-CNPN is a promising tumor imaging agent that targets PARP.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junhong Feng
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Department of Isotopes, China Institute of Atomic Energy, P.O. Box 2108, Beijing 102413, China
| | - Yuhao Jiang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hang Zhou
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing Ruan
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangxing Yin
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
4
|
Lawal IO, Abubakar SO, Ndlovu H, Mokoala KMG, More SS, Sathekge MM. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther 2024; 28:265-289. [PMID: 38555542 DOI: 10.1007/s40291-024-00702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.
Collapse
Affiliation(s)
- Ismaheel O Lawal
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, NE, Atlanta, GA, 30322, USA.
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa.
| | - Sofiullah O Abubakar
- Department of Radiology and Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center, Muscat, Oman
| | - Honest Ndlovu
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Kgomotso M G Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| | - Stuart S More
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Division of Nuclear Medicine, Department of Radiation Medicine, University of Cape Town, Cape Town, 7700, South Africa
| | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, 0001, South Africa
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, 0001, South Africa
| |
Collapse
|
5
|
Madorsky Rowdo FP, Xiao G, Khramtsova GF, Nguyen J, Martini R, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Altorki NK, Cheng E, Ginter PS, Hoda S, Newman L, Elemento O, Olopade OI, Davis MB, Martin ML, Bargonetti J. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment. Cancer Lett 2024; 584:216608. [PMID: 38199587 PMCID: PMC10922546 DOI: 10.1016/j.canlet.2024.216608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.
Collapse
Affiliation(s)
| | - Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY, 10021, USA
| | - Galina F Khramtsova
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Michael O Adinku
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | - Kofi K Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY, USA
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Paula S Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY, USA
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Melissa B Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA; Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA, 30310, USA
| | - M Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY, 10021, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York City, NY, 10021, USA; The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Chan CY, Chen Z, Guibbal F, Dias G, Destro G, O'Neill E, Veal M, Lau D, Mosley M, Wilson TC, Gouverneur V, Cornelissen B. [ 123I]CC1: A PARP-Targeting, Auger Electron-Emitting Radiopharmaceutical for Radionuclide Therapy of Cancer. J Nucl Med 2023; 64:1965-1971. [PMID: 37770109 PMCID: PMC10690119 DOI: 10.2967/jnumed.123.265429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/24/2023] [Indexed: 10/03/2023] Open
Abstract
Poly(adenosine diphosphate ribose) polymerase (PARP) has emerged as an effective therapeutic strategy against cancer that targets the DNA damage repair enzyme. PARP-targeting compounds radiolabeled with an Auger electron-emitting radionuclide can be trapped close to damaged DNA in tumor tissue, where high ionizing potential and short range lead Auger electrons to kill cancer cells through the creation of complex DNA damage, with minimal damage to surrounding normal tissue. Here, we report on [123I]CC1, an 123I-labeled PARP inhibitor for radioligand therapy of cancer. Methods: Copper-mediated 123I iododeboronation of a boronic pinacol ester precursor afforded [123I]CC1. The level and specificity of cell uptake and the therapeutic efficacy of [123I]CC1 were determined in human breast carcinoma, pancreatic adenocarcinoma, and glioblastoma cells. Tumor uptake and tumor growth inhibition of [123I]CC1 were assessed in mice bearing human cancer xenografts (MDA-MB-231, PSN1, and U87MG). Results: In vitro and in vivo studies showed selective uptake of [123I]CC1 in all models. Significantly reduced clonogenicity, a proxy for tumor growth inhibition by ionizing radiation in vivo, was observed in vitro after treatment with as little as 10 Bq [123I]CC1. Biodistribution at 1 h after intravenous administration showed PSN1 tumor xenograft uptake of 0.9 ± 0.06 percentage injected dose per gram of tissue. Intravenous administration of a relatively low amount of [123I]CC1 (3 MBq) was able to significantly inhibit PSN1 xenograft tumor growth but was less effective in xenografts that expressed less PARP. [123I]CC1 did not cause significant toxicity to normal tissues. Conclusion: Taken together, these results show the potential of [123I]CC1 as a radioligand therapy for PARP-expressing cancers.
Collapse
Affiliation(s)
- Chung Ying Chan
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zijun Chen
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Florian Guibbal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gemma Dias
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Gianluca Destro
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Edward O'Neill
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mathew Veal
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Doreen Lau
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Michael Mosley
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Thomas C Wilson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Véronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom; and
| | - Bart Cornelissen
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom;
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Obata H, Ogawa M, Zalutsky MR. DNA Repair Inhibitors: Potential Targets and Partners for Targeted Radionuclide Therapy. Pharmaceutics 2023; 15:1926. [PMID: 37514113 PMCID: PMC10384049 DOI: 10.3390/pharmaceutics15071926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
The present review aims to explore the potential targets/partners for future targeted radionuclide therapy (TRT) strategies, wherein cancer cells often are not killed effectively, despite receiving a high average tumor radiation dose. Here, we shall discuss the key factors in the cancer genome, especially those related to DNA damage response/repair and maintenance systems for escaping cell death in cancer cells. To overcome the current limitations of TRT effectiveness due to radiation/drug-tolerant cells and tumor heterogeneity, and to make TRT more effective, we propose that a promising strategy would be to target the DNA maintenance factors that are crucial for cancer survival. Considering their cancer-specific DNA damage response/repair ability and dysregulated transcription/epigenetic system, key factors such as PARP, ATM/ATR, amplified/overexpressed transcription factors, and DNA methyltransferases have the potential to be molecular targets for Auger electron therapy; moreover, their inhibition by non-radioactive molecules could be a partnering component for enhancing the therapeutic response of TRT.
Collapse
Affiliation(s)
- Honoka Obata
- Department of Advanced Nuclear Medicine Sciences, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Department of Molecular Imaging and Theranostics, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Mikako Ogawa
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Michael R Zalutsky
- Departments of Radiology and Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
8
|
Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, Aluicio-Sarduy E, Barnhart TE, Jeffery JJ, Patankar MS, Engle JW, Bednarz BP, Ellison PA. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol 2023; 122-123:108368. [PMID: 37490805 PMCID: PMC10529069 DOI: 10.1016/j.nucmedbio.2023.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Advanced ovarian cancer currently has few therapeutic options. Poly(ADP-ribose) polymerase (PARP) inhibitors bind to nuclear PARP and trap the protein-inhibitor complex to DNA. This work investigates a theranostic PARP inhibitor for targeted radiopharmaceutical therapy of ovarian cancer in vitro and PET imaging of healthy mice in vivo. METHODS [77Br]RD1 was synthesized and assessed for pharmacokinetics and cytotoxicity in human and murine ovarian cancer cell lines. [76Br]RD1 biodistribution and organ uptake in healthy mice were quantified through longitudinal PET/CT imaging and ex vivo radioactivity measurements. Organ-level dosimetry following [76/77Br]RD1 administration was calculated using RAPID, an in-house platform for absorbed dose in mice, and OLINDA for equivalent and effective dose in human. RESULTS The maximum specific binding (Bmax), equilibrium dissociation constant (Kd), and nonspecific binding slope (NS) were calculated for each cell line. These values were used to calculate the cell specific activity uptake for cell viability studies. The half maximal effective concentration (EC50) was measured as 0.17 (95 % CI: 0.13-0.24) nM and 0.46 (0.13-0.24) nM for PARP(+) and PARP(-) expressing cell lines, respectively. The EC50 was 0.27 (0.21-0.36) nM and 0.30 (0.22-0.41) nM for BRCA1(-) and BRCA1(+) expressing cell lines, respectively. When measuring the EC50 as a function of cellular activity uptake and nuclear dose, the EC50 ranges from 0.020 to 0.039 Bq/cell and 3.3-9.2 Gy, respectively. Excretion through the hepatobiliary and renal pathways were observed in mice, with liver uptake of 2.3 ± 0.4 %ID/g after 48 h, contributing to estimated absorbed dose values in mice of 19.3 ± 0.3 mGy/MBq and 290 ± 10 mGy/MBq for [77Br]RD1 and [76Br]RD1, respectively. CONCLUSION [77Br]RD1 cytotoxicity was dependent on PARP expression and independent of BRCA1 status. The in vitro results suggest that [77Br]RD1 cytotoxicity is driven by the targeted Meitner-Auger electron (MAe) radiotherapeutic effect of the agent. Further studies investigating the theranostic potential, organ dose, and tumor uptake of [76/77Br]RD1 are warranted.
Collapse
Affiliation(s)
- S L V Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J C Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - O Kwon
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T R Johnson
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - M Makvandi
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - H Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - E Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - T E Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J J Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| | - M S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J W Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - B P Bednarz
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - P A Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
9
|
Madorsky Rowdo FP, Xiao G, Khramtsova GF, Nguyen J, Olopade OI, Martini R, Stonaker B, Boateng R, Oppong JK, Adjei EK, Awuah B, Kyei I, Aitpillah FS, Adinku MO, Ankomah K, Osei-Bonsu EB, Gyan KK, Altorki NK, Cheng E, Ginter PS, Hoda S, Newman L, Elemento O, Davis MB, Martin ML, Bargonetti J. Patient-derived tumor organoids with p53 mutations, and not wild-type p53, are sensitive to synergistic combination PARP inhibitor treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.544406. [PMID: 38076873 PMCID: PMC10705575 DOI: 10.1101/2023.06.22.544406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPi) are used for patients with BRCA1/2 mutations, but patients with other mutations may benefit from PARPi treatment. Another mutation that is present in more cancers than BRCA1/2 is mutation to the TP53 gene. In 2D breast cancer cell lines, mutant p53 (mtp53) proteins tightly associate with replicating DNA and Poly (ADP-ribose) polymerase (PARP) protein. Combination drug treatment with the alkylating agent temozolomide and the PARPi talazoparib kills mtp53 expressing 2D grown breast cancer cell lines. We evaluated the sensitivity to the combination of temozolomide plus PARPi talazoparib treatment to breast and lung cancer patient-derived tumor organoids (PDTOs). The combination of the two drugs was synergistic for a cytotoxic response in PDTOs with mtp53 but not for PDTOs with wtp53. The combination of talazoparib and temozolomide induced more DNA double-strand breaks in mtp53 expressing organoids than in wild-type p53 expressing organoids as shown by increased γ-H2AX protein expression. Moreover, breast cancer tissue microarrays (TMAs) showed a positive correlation between stable p53 and high PARP1 expression in sub-groups of breast cancers, which may indicate sub-classes of breast cancers sensitive to PARPi therapy. These results suggest that mtp53 could be a biomarker to predict response to the combination of PARPi talazoparib-temozolomide treatment.
Collapse
Affiliation(s)
| | - Gu Xiao
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY10021
| | - Galina F Khramtsova
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - John Nguyen
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health and Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Rachel Martini
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Brian Stonaker
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | | | | | | | | | - Ishmael Kyei
- Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | | | | | | | - Kofi K. Gyan
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Nasser K. Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY
| | - Esther Cheng
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Paula S. Ginter
- Department of Pathology, NYU Langone Hospital-Long Island, Mineola, NY
| | - Syed Hoda
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY
| | - Lisa Newman
- Department of Surgery, Weill Cornell Medicine, New York, NY10021
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Melissa B. Davis
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive, Atlanta, GA 30310
| | - M. Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, New York, NY10021
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College, Belfer Building, City University of New York, New York, NY10021
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York City, NY 10021
- The Graduate Center Biology and Biochemistry Programs of City University of New York, New York, NY 10016
| |
Collapse
|
10
|
Mixdorf JC, Hoffman SLV, Aluicio-Sarduy E, Barnhart TE, Engle JW, Ellison PA. Copper-Mediated Radiobromination of (Hetero)Aryl Boronic Pinacol Esters. J Org Chem 2023; 88:2089-2094. [PMID: 36745853 PMCID: PMC9957949 DOI: 10.1021/acs.joc.2c02420] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-mediated radiobromination of (hetero)aryl boronic pinacol esters is described. Cyclotron-produced [76/77Br]bromide was isolated using an anion exchange cartridge, wherein the pre-equilibration and elution solutions played a critical role in downstream deboro-bromination. The bromination tolerates a broad range of functional groups, labeling molecules with ranging electronic and steric effects. Bologically active radiopharmaceuticals were synthesized, including two radiobrominated inhibitors of poly ADP ribose polymerase, a clinically relevant chemotherapeutic target for ovarian, breast, and prostate cancers.
Collapse
Affiliation(s)
- Jason C. Mixdorf
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Sabrina L. V. Hoffman
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Todd E. Barnhart
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| | - Paul A. Ellison
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue Madison, WI 53705
| |
Collapse
|
11
|
Sreekumar S, Zhou D, Mpoy C, Schenk E, Scott J, Arbeit JM, Xu J, Rogers BE. Preclinical Efficacy of a PARP-1 Targeted Auger-Emitting Radionuclide in Prostate Cancer. Int J Mol Sci 2023; 24:3083. [PMID: 36834491 PMCID: PMC9967758 DOI: 10.3390/ijms24043083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
There is an unmet need for better therapeutic strategies for advanced prostate cancer. Poly (ADP-ribose) polymerase-1 (PARP-1) is a chromatin-binding DNA repair enzyme overexpressed in prostate cancer. This study evaluates whether PARP-1, on account of its proximity to the cell's DNA, would be a good target for delivering high-linear energy transfer Auger radiation to induce lethal DNA damage in prostate cancer cells. We analyzed the correlation between PARP-1 expression and Gleason score in a prostate cancer tissue microarray. A radio-brominated Auger emitting inhibitor ([77Br]Br-WC-DZ) targeting PARP-1 was synthesized. The ability of [77Br]Br-WC-DZ to induce cytotoxicity and DNA damage was assessed in vitro. The antitumor efficacy of [77Br]Br-WC-DZ was investigated in prostate cancer xenograft models. PARP-1 expression was found to be positively correlated with the Gleason score, thus making it an attractive target for Auger therapy in advanced diseases. The Auger emitter, [77Br]Br-WC-DZ, induced DNA damage, G2-M cell cycle phase arrest, and cytotoxicity in PC-3 and IGR-CaP1 prostate cancer cells. A single dose of [77Br]Br-WC-DZ inhibited the growth of prostate cancer xenografts and improved the survival of tumor-bearing mice. Our studies establish the fact that PARP-1 targeting Auger emitters could have therapeutic implications in advanced prostate cancer and provides a strong rationale for future clinical investigation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dong Zhou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Elsa Schenk
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jalen Scott
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeffrey M. Arbeit
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E. Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Lundine D, Annor GK, Chavez V, Maimos S, Syed Z, Jiang S, Ellison V, Bargonetti J. The C-terminus of Gain-of-Function Mutant p53 R273H Is Required for Association with PARP1 and Poly-ADP-Ribose. Mol Cancer Res 2022; 20:1799-1810. [PMID: 36074101 PMCID: PMC9716242 DOI: 10.1158/1541-7786.mcr-22-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 01/15/2023]
Abstract
The TP53 gene is mutated in 80% of triple-negative breast cancers. Cells that harbor the hot-spot p53 gene mutation R273H produce an oncogenic mutant p53 (mtp53) that enhances cell proliferative and metastatic properties. The enhanced activities of mtp53 are collectively referred to as gain-of-function (GOF), and may include transcription-independent chromatin-based activities shared with wild-type p53 (wtp53) such as association with replicating DNA and DNA replication associated proteins like PARP1. However, how mtp53 upregulates cell proliferation is not well understood. wtp53 interacts with PARP1 using a portion of its C-terminus. The wtp53 oligomerization and far C-terminal domain (CTD) located within the C-terminus constitute putative GOF-associated domains, because mtp53 R273H expressing breast cancer cells lacking both domains manifest slow proliferation phenotypes. We addressed if the C-terminal region of mtp53 R273H is important for chromatin interaction and breast cancer cell proliferation using CRISPR-Cas9 mutated MDA-MB-468 cells endogenously expressing mtp53 R273H C-terminal deleted isoforms (R273HΔ381-388 and R273HΔ347-393). The mtp53 R273HΔ347-393 lacks the CTD and a portion of the oligomerization domain. We observed that cells harboring mtp53 R273HΔ347-393 (compared with mtp53 R273H full-length) manifest a significant reduction in chromatin, PARP1, poly-ADP-ribose (PAR), and replicating DNA binding. These cells also exhibited impaired response to hydroxyurea replicative stress, decreased sensitivity to the PARP-trapping drug combination temozolomide-talazoparib, and increased phosphorylated 53BP1 foci, suggesting reduced Okazaki fragment processing. IMPLICATIONS The C-terminal region of mtp53 confers GOF activity that mediates mtp53-PARP1 and PAR interactions assisting DNA replication, thus implicating new biomarkers for PARP inhibitor therapy.
Collapse
Affiliation(s)
- Devon Lundine
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - George K. Annor
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Valery Chavez
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
| | - Styliana Maimos
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Zafar Syed
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Shuhong Jiang
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Viola Ellison
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
| | - Jill Bargonetti
- The Department of Biological Sciences, Hunter College, Belfer Building, City University of New York, New York
- The Graduate Center Biology and Biochemistry Programs, City University of New York, New York
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
13
|
Canar J, Manandhar-Sasaki P, Bargonetti J. Mutant C. elegans p53 Together with Gain-of-Function GLP-1/Notch Decreases UVC-Damage-Induced Germline Cell Death but Increases PARP Inhibitor-Induced Germline Cell Death. Cancers (Basel) 2022; 14:4929. [PMID: 36230851 PMCID: PMC9563635 DOI: 10.3390/cancers14194929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The TP53 gene is mutated in over 50% of human cancers, and the C. elegansp53-1(cep-1) gene encodes the ortholog CEP-1. CEP-1 is activated by ultraviolet type C (UVC)-induced DNA damage and activates genes that induce germline apoptosis. UVC treatment of gain-of-function glp-1(ar202gf)/Notch tumorous animals reduces germline stem cell numbers (and overall tumor size), while UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) increases DNA damage adducts and stem cell tumor volume. We compared UVC-induced mitotic stem cell death and animal lifespans for the two different C. elegans tumorous strains. C. elegans stem cell compartment death has never been observed, and we used engulfed small stem cells, notable by green fluorescent puncta, to count cell death events. We found UVC treatment of glp-1(ar202gf) animals increased stem cell death and increased lifespan. However, UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) animals decreased stem cell death, increased tumor volume, and decreased animal lifespan. There are pharmacological agents that induce p53-independent cell death of human cells in culture; and two notable protocols are the PARP-trapping agents of temozolomide plus talazoparib and the nucleoside analogue 8-amino-adenosine. It is important to determine ways to rapidly test for pharmacological agents able to induce p53-independent cell death. We tested feeding cep-1/p53(gk138);glp-1/Notch(ar202gf) nematodes with either 8-amino-adenosine or temozolomide plus talazoparib and found both were able to decrease tumor volume. This is the first comparison for p53-independent responses in cep-1/p53(gk138);glp-1/Notch(ar202gf) animals and showed UVC DNA damage increased tumor volume and decreased lifespan while PARP inhibition decreased tumor volume.
Collapse
Affiliation(s)
- Jorge Canar
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Prima Manandhar-Sasaki
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College at Hunter College, City University of New York, New York, NY 10065, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- The Graduate Center, Departments of Biology and Biochemistry, City University of New York, New York, NY 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
14
|
Wang Q, Zhang J. Current status and progress in using radiolabelled PARP-1 inhibitors for imaging PARP-1 expression in tumours. Eur J Med Chem 2022; 242:114690. [PMID: 36041258 DOI: 10.1016/j.ejmech.2022.114690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a key enzyme in the DNA repair process, and the overexpression of PARP-1 in several tumours makes this enzyme a promising molecular target. Recently, several PARP-1 inhibitors, such as olaparib, rucaparib, niraparib and talazoparib, have been clinically approved as anticancer drugs. Several of these inhibitors have been radiolabelled for noninvasive imaging of PARP-1 expression in several types of tumours. In this review, the background and progress for using various radiolabelled PARP-1 inhibitors for cancer diagnosis are discussed and future development directions are proposed.
Collapse
Affiliation(s)
- Qianna Wang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China
| | - Junbo Zhang
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
15
|
Nguyen NT, Pacelli A, Nader M, Kossatz S. DNA Repair Enzyme Poly(ADP-Ribose) Polymerase 1/2 (PARP1/2)-Targeted Nuclear Imaging and Radiotherapy. Cancers (Basel) 2022; 14:cancers14051129. [PMID: 35267438 PMCID: PMC8909184 DOI: 10.3390/cancers14051129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary In parallel to the successful clinical implementation of PARP1/2 inhibitors as anti-cancer drugs, which interfere with the DNA repair machinery, these small molecule agents have also gained attention as vehicles for molecular imaging and radiotherapy. In this review article, we summarize the development and preclinical evaluation of radioactively-labelled PARP inhibitors for positron emission tomography (PET) for many applications, such as selecting patients for PARP inhibitor treatment, response prediction or monitoring, and diagnosis of tumors. We report on early clinical studies that show safety and feasibility of PARP-imaging in humans. In addition, we summarize the latest developments in the field of PARP-targeted radiotherapy, where PARP inhibitors are studied as vehicles to deposit highly cytotoxic radioisotopes in close proximity to the DNA of tumor cells. Lastly, we look at synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation. Abstract Since it was discovered that many tumor types are vulnerable to inhibition of the DNA repair machinery, research towards efficient and selective inhibitors has accelerated. Amongst other enzymes, poly(ADP-ribose)-polymerase 1 (PARP1) was identified as a key player in this process, which resulted in the development of selective PARP inhibitors (PARPi) as anti-cancer drugs. Most small molecule PARPi’s exhibit high affinity for both PARP1 and PARP2. PARPi are under clinical investigation for mono- and combination therapy in several cancer types and five PARPi are now clinically approved. In parallel, radiolabeled PARPi have emerged for non-invasive imaging of PARP1 expression. PARP imaging agents have been suggested as companion diagnostics, patient selection, and treatment monitoring tools to improve the outcome of PARPi therapy, but also as stand-alone diagnostics. We give a comprehensive overview over the preclinical development of PARP imaging agents, which are mostly based on the PARPi olaparib, rucaparib, and recently also talazoparib. We also report on the current status of clinical translation, which involves a growing number of early phase trials. Additionally, this work provides an insight into promising approaches of PARP-targeted radiotherapy based on Auger and α-emitting isotopes. Furthermore, the review covers synthetic strategies for PARP-targeted imaging and therapy agents that are compatible with large scale production and clinical translation.
Collapse
Affiliation(s)
- Nghia T. Nguyen
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
| | - Anna Pacelli
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Michael Nader
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg–Essen, 45147 Essen, Germany; (A.P.); (M.N.)
| | - Susanne Kossatz
- Department of Nuclear Medicine, University Hospital Klinikum Rechts der Isar and Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University Munich, 81675 Munich, Germany;
- Correspondence:
| |
Collapse
|