1
|
Acosta M, Encinas-Basurto D, Abrahamson MD, Eedara BB, Hayes D, Fineman JR, Black SM, Mansour HM. Innovative Dual Combination Cospray-Dried Rock Inhibitor/l-Carnitine Inhalable Dry Powder Aerosols. ACS BIO & MED CHEM AU 2024; 4:300-318. [PMID: 39712207 PMCID: PMC11659894 DOI: 10.1021/acsbiomedchemau.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/24/2024]
Abstract
This study introduces novel cospray-dried (Co-SD) formulations of simvastatin, a Nrf2 activator ROCK inhibitor, with l-carnitine as molecular mixtures in various molar ratios for targeted pulmonary inhalation aerosol delivery in pulmonary hypertension, optimized for excipient-free dry powder inhalers (DPIs). The two components were spray-dried at various molar ratios by using different starting feed solution concentrations and process parameters. In addition to comprehensive physicochemical characterization, in vitro aerosol dispersion performance as DPIs using two FDA-approved DPI devices with different shear stress properties, in vitro viability as a function of dose on 2D human pulmonary cellular monolayers and on 3D small airway epithelia human primary cultures at the air-liquid interface (ALI), and in vitro transepithelial electrical resistance (TEER) at the ALI were conducted. Solid-state physicochemical characterization confirmed homogeneous molecular mixtures and the crystalline nature of the Co-SD formulations. In vitro aerosolization dispersion performance demonstrated that all Co-SD dual combination molecular mixtures aerosolized successfully with both human FDA-approved DPI devices, had ∼100% emitted dose, and good fine particle fraction values. The in vitro viability and TEER assays demonstrated that all formulations were safe to the human pulmonary cell as 2D and 3D cultures as a function of dose.
Collapse
Affiliation(s)
- Maria
F. Acosta
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - David Encinas-Basurto
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Universidad
de Sonora, Department of Physics, Nanotechnology Program, Hermosillo, Sonora 83000, México
| | - Michael D. Abrahamson
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
| | - Basanth Babu Eedara
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
| | - Don Hayes
- The
Ohio State University College of Medicine, the Davis Heart and Lung
Research Institute, Columbus, Ohio 43271, United States
- Cincinnati
Children’s Medical Center, Cincinnati, Ohio 45229, United States
| | - Jeffrey R. Fineman
- University
of California San Francisco School of Medicine, Department of Pediatrics, San Francisco, California 94107, United States
| | - Stephen M. Black
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
| | - Heidi M. Mansour
- The
University of Arizona College of Pharmacy, Skaggs Pharmaceutical Sciences
Center, Tucson, Arizona 85721, United States
- Florida
International University, Center for Translational Science, Port St. Lucie, Florida 34987, United States
- Florida
International University, Robert Stempel College of Public Health
and Social Work, Department of Environmental Health Sciences, Miami, Florida 34987, United States
- The
University of Arizona College of Medicine, Department of Medicine,
Division of Translational and Regenerative Medicine, Tucson, Arizona 85724, United States
- Florida
International University, Herbert Wertheim College of Medicine, Department
of Cellular & Molecular Medicine, Miami, Florida 33199, United States
- Florida International
University, College of Engineering and Computing,
Department of Biomedical Engineering, Miami, Florida 33174, United States
| |
Collapse
|
2
|
Amenaghawon AN, Ayere JE, Amune UO, Otuya IC, Abuga EC, Anyalewechi CL, Okoro OV, Okolie JA, Oyefolu PK, Eshiemogie SO, Osahon BE, Omede M, Eshiemogie SA, Igemhokhai S, Okedi MO, Kusuma HS, Muojama OE, Shavandi A, Darmokoesoemo H. A comprehensive review of recent advances in the applications and biosynthesis of oxalic acid from bio-derived substrates. ENVIRONMENTAL RESEARCH 2024; 251:118703. [PMID: 38518912 DOI: 10.1016/j.envres.2024.118703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/12/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
Organic acids are important compounds with numerous applications in different industries. This work presents a comprehensive review of the biological synthesis of oxalic acid, an important organic acid with many industrial applications. Due to its important applications in pharmaceuticals, textiles, metal recovery, and chemical and metallurgical industries, the global demand for oxalic acid has increased. As a result, there is an increasing need to develop more environmentally friendly and economically attractive alternatives to chemical synthesis methods, which has led to an increased focus on microbial fermentation processes. This review discusses the specific strategies for microbial production of oxalic acid, focusing on the benefits of using bio-derived substrates to improve the economics of the process and promote a circular economy in comparison with chemical synthesis. This review provides a comprehensive analysis of the various fermentation methods, fermenting microorganisms, and the biochemistry of oxalic acid production. It also highlights key sustainability challenges and considerations related to oxalic acid biosynthesis, providing important direction for further research. By providing and critically analyzing the most recent information in the literature, this review serves as a comprehensive resource for understanding the biosynthesis of oxalic acid, addressing critical research gaps, and future advances in the field.
Collapse
Affiliation(s)
- Andrew Nosakhare Amenaghawon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria.
| | - Joshua Efosa Ayere
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Ubani Oluwaseun Amune
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | - Ifechukwude Christopher Otuya
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Emmanuel Christopher Abuga
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Chinedu Lewis Anyalewechi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical Engineering, Faculty of Engineering, Federal Polytechnic Oko, Anambra State, Nigeria
| | - Oseweuba Valentine Okoro
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Jude A Okolie
- Engineering Pathways, Gallogly College of Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Peter Kayode Oyefolu
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Steve Oshiokhai Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Blessing Esohe Osahon
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Melissa Omede
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Stanley Aimhanesi Eshiemogie
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Shedrach Igemhokhai
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Petroleum Engineering, University of Benin, Benin City, Edo State, Nigeria
| | - Maxwell Ogaga Okedi
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biomedical Engineering, Florida A&M University-Florida State University, Tallahassee, FL 2310-6046, USA
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional "Veteran" Yogyakarta, Indonesia.
| | - Obiora Ebuka Muojama
- Bioresources Valorization Laboratory, Department of Chemical Engineering, Faculty of Engineering, University of Benin, Benin City, Edo State, Nigeria; Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487-0203, USA
| | - Amin Shavandi
- BioMatter Unit - École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
3
|
Peštálová A, Gajdziok J. Modern trends in the formulation of microparticles for lung delivery using porogens: methods, principles and examples. Pharm Dev Technol 2024; 29:504-516. [PMID: 38712608 DOI: 10.1080/10837450.2024.2350530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Inhalation drug administration is increasingly used for local pharmacotherapy of lung disorders and as an alternative route for systemic drug delivery. Modern inhalation powder systems aim to target drug deposition in the required site of action. Large porous particles (LPP), characterized by an aerodynamic diameter over 5 μm, density below 0.4 g/cm3, and the ability to avoid protective lung mechanisms, come to the forefront of the research. They are mostly prepared by spray techniques such as spray drying or lyophilization using pore-forming substances (porogens). These substances could be gaseous, solid, or liquid, and their selection depends on their polarity, solubility, and mutual compatibility with the carrier material and the drug. According to the pores-forming mechanism, porogens can be divided into groups, such as osmogens, extractable porogens, and porogens developing gases during decomposition. This review characterizes modern trends in the formulation of solid microparticles for lung delivery; describes the mechanisms of action of the most often used porogens, discusses their applicability in various formulation methods, emphasizes spray techniques; and documents discussed topics by examples from experimental studies.
Collapse
Affiliation(s)
- Andrea Peštálová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Jan Gajdziok
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| |
Collapse
|