1
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
2
|
Wu CP, Hung CY, Hsieh YJ, Murakami M, Huang YH, Su TY, Hung TH, Yu JS, Wu YS, Ambudkar SV. ABCB1 and ABCG2 Overexpression Mediates Resistance to the Phosphatidylinositol 3-Kinase Inhibitor HS-173 in Cancer Cell Lines. Cells 2023; 12:cells12071056. [PMID: 37048130 PMCID: PMC10093605 DOI: 10.3390/cells12071056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Constitutive activation of the phosphoinositide-3-kinase (PI3K)/Akt signaling pathway is crucial for tumor growth and progression. As such, this pathway has been an enticing target for drug discovery. Although HS-173 is a potent PI3K inhibitor that halts cancer cell proliferation via G2/M cell cycle arrest, the resistance mechanisms to HS-173 have not been investigated. In this study, we investigated the susceptibility of HS-173 to efflux mediated by the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most well-known ATP-binding cassette (ABC) transporters associated with the development of cancer multidrug resistance (MDR). We found that the overexpression of ABCB1 or ABCG2 significantly reduced the efficacy of HS-173 in human cancer cells. Our data show that the intracellular accumulation of HS-173 was substantially reduced by ABCB1 and ABCG2, affecting G2/M arrest and apoptosis induced by HS-173. More importantly, the efficacy of HS-173 in multidrug-resistant cancer cells could be recovered by inhibiting the drug-efflux function of ABCB1 and ABCG2. Taken together, our study has demonstrated that HS-173 is a substrate for both ABCB1 and ABCG2, resulting in decreased intracellular concentration of this drug, which may have implications for its clinical use.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Cheng-Yu Hung
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ya-Ju Hsieh
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang-Hui Huang
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
| | - Tsung-Yao Su
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan
- Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Wu CP, Murakami M, Wu YS, Lin CL, Li YQ, Huang YH, Hung TH, Ambudkar SV. The multi-targeted tyrosine kinase inhibitor SKLB610 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biomed Pharmacother 2022; 149:112922. [PMID: 36068781 PMCID: PMC10506422 DOI: 10.1016/j.biopha.2022.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022] Open
Abstract
The overexpression of ATP-binding cassette (ABC) transporter ABCB1 (P-glycoprotein) or ABCG2 (BCRP/MXR/ABCP) in cancer cells is frequently associated with the development of multidrug resistance (MDR) in cancer patients, which remains a major obstacle to effective cancer treatment. By utilizing energy derived from ATP hydrolysis, both transporters have been shown to reduce the chemosensitivity of cancer cells by actively effluxing cytotoxic anticancer drugs out of cancer cells. Knowing that there are presently no approved drugs or other therapeutics for the treatment of multidrug-resistant cancers, in recent years, studies have investigated the repurposing of tyrosine kinase inhibitors (TKIs) to act as agents against MDR mediated by ABCB1 and/or ABCG2. SKLB610 is a multi-targeted TKI with potent activity against vascular endothelial growth factor receptor 2 (VEGFR2), platelet-derived growth factor receptor (PDGFR), and fibroblast growth factor receptor 2 (FGFR2). In this study, we investigate the interaction of SKLB610 with ABCB1 and ABCG2. We discovered that neither ABCB1 nor ABCG2 confers resistance to SKLB610, but SKLB610 selectively sensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic anticancer agents in a concentration-dependent manner. Our data indicate that SKLB610 reverses ABCG2-mediated MDR by attenuating the drug-efflux function of ABCG2 without affecting its total cell expression. These findings are further supported by results of SKLB610-stimulated ABCG2 ATPase activity and in silico docking of SKLB610 in the drug-binding pocket of ABCG2. In summary, we reveal the potential of SKLB610 to overcome resistance to cytotoxic anticancer drugs, which offers an additional treatment option for patients with multidrug-resistant cancers and warrants further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chun-Ling Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yan-Qing Li
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Keelung Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| |
Collapse
|
4
|
Luo M, Yang X, Chen HN, Nice EC, Huang C. Drug resistance in colorectal cancer: An epigenetic overview. Biochim Biophys Acta Rev Cancer 2021; 1876:188623. [PMID: 34481016 DOI: 10.1016/j.bbcan.2021.188623] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths worldwide. Despite significant progress that has been made in therapies against CRC over the past decades, drug resistance is still a major limitation in CRC treatment. Numerous investigations have unequivocally shown that epigenetic regulation plays an important role in CRC drug resistance because of the high rate of epigenetic alterations in multiple genes during cancer development or drug treatment. Furthermore, the reversibility of epigenetic alterations provides novel therapeutic strategies to overcome drug resistance using small molecules, which can target non-coding RNAs or reverse histone modification and DNA methylation. In this review, we discuss epigenetic regulation in CRC drug resistance and the possible role of preventing or reversing CRC drug resistance using epigenetic therapy in CRC treatment.
Collapse
Affiliation(s)
- Maochao Luo
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xingyue Yang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia.
| | - Canhua Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, China; State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
5
|
The Second-Generation PIM Kinase Inhibitor TP-3654 Resensitizes ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2021; 22:ijms22179440. [PMID: 34502348 PMCID: PMC8431370 DOI: 10.3390/ijms22179440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
Human ATP-binding cassette (ABC) subfamily G member 2 (ABCG2) mediates the transport of a wide variety of conventional cytotoxic anticancer drugs and molecular targeted agents. Consequently, the overexpression of ABCG2 in cancer cells is linked to the development of the multidrug resistance (MDR) phenotype. TP-3654 is an experimental second-generation inhibitor of PIM kinase that is currently under investigation in clinical trials to treat advanced solid tumors and myelofibrosis. In this study, we discovered that by attenuating the drug transport function of ABCG2, TP-3654 resensitizes ABCG2-overexpressing multidrug-resistant cancer cells to cytotoxic ABCG2 substrate drugs topotecan, SN-38 and mitoxantrone. Moreover, our results indicate that ABCG2 does not mediate resistance to TP-3654 and may not play a major role in the induction of resistance to TP-3654 in cancer patients. Taken together, our findings reveal that TP-3654 is a selective, potent modulator of ABCG2 drug efflux function that may offer an additional combination therapy option for the treatment of multidrug-resistant cancers.
Collapse
|
6
|
Wu CP, Hung TH, Lusvarghi S, Chu YH, Hsiao SH, Huang YH, Chang YT, Ambudkar SV. The third-generation EGFR inhibitor almonertinib (HS-10296) resensitizes ABCB1-overexpressing multidrug-resistant cancer cells to chemotherapeutic drugs. Biochem Pharmacol 2021; 188:114516. [PMID: 33713643 DOI: 10.1016/j.bcp.2021.114516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) drug transporter ABCB1 (P-glycoprotein, P-gp) or ABCG2 (breast cancer resistance protein, BCRP) in cancer cells often contributes significantly to the development of multidrug resistance (MDR) in cancer patients. Previous reports have demonstrated that some epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) could modulate the activity of ABCB1 and/or ABCG2 in human cancer cells, whereas some EGFR TKIs are transport substrates of these transporters. Almonertinib (HS-10296) is a promising, orally available third-generation EGFR TKI for the treatment of EGFR T790M mutation-positive non-small cell lung cancer (NSCLC) in patients who have progressed on or after other EGFR TKI therapies. Additional clinical trials are currently in progress to study almonertinib as monotherapy and in combination with other agents in patients with NSCLC. In the present work, we found that neither ABCB1 nor ABCG2 confers significant resistance to almonertinib. More importantly, we discovered that almonertinib was able to reverse MDR mediated by ABCB1, but not ABCG2, in multidrug-resistant cancer cells at submicromolar concentrations by inhibiting the drug transport activity of ABCB1 without affecting its expression level. These findings are further supported by in silico docking of almonertinib in the drug-binding pocket of ABCB1. In summary, our study revealed an additional activity of almonertinib to re-sensitize ABCB1-overexpressing multidrug-resistant cancer cells to conventional chemotherapeutic drugs, which may be beneficial for cancer patients and warrant further investigation.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Yi-Hsuan Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yang-Hui Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Yu-Tzu Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Physiology and Pharmacology, and College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
7
|
Overexpression of Human ABCB1 and ABCG2 Reduces the Susceptibility of Cancer Cells to the Histone Deacetylase 6-Specific Inhibitor Citarinostat. Int J Mol Sci 2021; 22:ijms22052592. [PMID: 33807514 PMCID: PMC7961520 DOI: 10.3390/ijms22052592] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Citarinostat (ACY-241) is a promising oral histone deacetylase 6 (HDAC6)-selective inhibitor currently in clinical trials for the treatment of multiple myeloma (MM) and non-small-cell lung cancer (NSCLC). However, the inevitable emergence of resistance to citarinostat may reduce its clinical effectiveness in cancer patients and limit its clinical usefulness in the future. In this study, we investigated the potential role of the multidrug efflux transporters ABCB1 and ABCG2, which are two of the most common mechanisms of acquired resistance to anticancer drugs, on the efficacy of citarinostat in human cancer cells. We discovered that the overexpression of ABCB1 or ABCG2 significantly reduced the sensitivity of human cancer cells to citarinostat. We demonstrated that the intracellular accumulation of citarinostat and its activity against HDAC6 were substantially reduced by the drug transport function of ABCB1 and ABCG2, which could be restored by treatment with an established inhibitor of ABCB1 or ABCG2, respectively. In conclusion, our results revealed a novel mechanism by which ABCB1 and ABCG2 actively transport citarinostat away from targeting HDAC6 in cancer cells. Our results suggest that the co-administration of citarinostat with a non-toxic modulator of ABCB1 and ABCG2 may optimize its therapeutic application in the clinic.
Collapse
|
8
|
Okabe S, Tanaka Y, Gotoh A. Targeting phosphoinositide 3-kinases and histone deacetylases in multiple myeloma. Exp Hematol Oncol 2021; 10:19. [PMID: 33663586 PMCID: PMC7934550 DOI: 10.1186/s40164-021-00213-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/23/2021] [Indexed: 01/13/2023] Open
Abstract
Background Multiple myeloma (MM) is a type of hematological malignancy affecting the functions of plasma cells. The treatment of MM patients has changed dramatically with the use of new agents. However, unfortunately, it is still incurable. Therefore, a new approach for treating MM is still needed to improve patient outcomes. Methods Because the histone deacetylase (HDAC) and phosphoinositide 3-kinase (PI3K) pathway is a key signal in cancer cell biology, we investigated whether dual HDAC and PI3K inhibitors could suppress the myeloma cells. Results Gene expression of HDACs is high in myeloma cells. CUDC-907, a dual inhibitor of PI3K and HDAC, inhibits HDAC activity. Akt activity and expression of BCL-XL, MCL-1, and NF-κB p65 were reduced by CUDC-907 in a dose-dependent manner. The number of apoptotic and caspase 3/7-positive cells also increased in the myeloma cells. Combined treatment of myeloma cells with carfilzomib and CUDC-907 increased cytotoxicity compared to that observed with each drug alone. Conclusions Data from this study suggested that the administration of CUDC-907 might be a powerful strategy against myeloma cells, to enhance the cytotoxic effects of proteasome inhibitors.
Collapse
Affiliation(s)
- Seiichi Okabe
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Yuko Tanaka
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
9
|
Rodrigues DA, Pinheiro PSM, Fraga CAM. Multitarget Inhibition of Histone Deacetylase (HDAC) and Phosphatidylinositol-3-kinase (PI3K): Current and Future Prospects. ChemMedChem 2020; 16:448-457. [PMID: 33049098 DOI: 10.1002/cmdc.202000643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The discovery of histone deacetylase (HDAC) inhibitors is a hot topic in the medicinal chemistry community regarding cancer research. This is related primarily to two factors: success in the clinic, e. g., the four FDA-approved HDAC inhibitors, and strong versatility to combine their pharmacophoric features to design new hybrid compounds with multitarget profiles. Thus, the selection of adequate pharmacophores to combine, i. e., combining targets that can result in a synergistic effect, is desirable, as it increases the probability of discovering a new useful therapeutic strategy. In this work, we highlight the design of multitarget HDAC/PI3K inhibitors. Although this approach is still in its early stages, many significant works have described the design and pharmacological evaluation of this new promising class of multitarget inhibitors, where compound CUDC-907, which is already in clinical trials, stands out. Therefore, the question emerges of whether there still space for the design and evaluation of new multitarget HDAC/PI3K inhibitors. When considering the selectivity profile of the described multitarget compounds, the answer appears to be in the affirmative, especially since the first examples of compounds with a certain selectivity profile only recently appeared in 2020.
Collapse
Affiliation(s)
- Daniel A Rodrigues
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Pedro S M Pinheiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | - Carlos A M Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Dual inhibitors of histone deacetylases and other cancer-related targets: A pharmacological perspective. Biochem Pharmacol 2020; 182:114224. [PMID: 32956642 DOI: 10.1016/j.bcp.2020.114224] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
Epigenetic enzymes histone deacetylases (HDACs) are clinically validated anticancer drug targets which have been studied intensively in the past few decades. Although several drugs have been approved in this field, they are still limited to a subset of hematological malignancies (in particular T-cell lymphomas), with therapeutic potential not fully realized and the drug-resistance occurred after a certain period of use. To maximize the therapeutic potential of these classes of anticancer drugs, and to extend their application to solid tumors, numerous combination therapies containing an HDACi and an anticancer agent from other mechanisms are currently ongoing in clinical trials. Recently, dual targeting strategy comprising the HDACs component has emerged as an alternative approach for combination therapies. In this perspective, we intend to gather all HDACs-containing dual inhibitors related to cancer therapy published in literature since 2015, classify them into five categories based on targets' biological functions, and discuss the rationale why dual acting agents should work better than combinatorial therapies using two separate drugs. The article discusses the pharmacological aspects of these dual inhibitors, including in vitro biological activities, pharmacokinetic studies, in vivo efficacy studies, as well as available clinical trials. The review of the current status and advances should provide better analysis for future opportunities and challenges of this field.
Collapse
|
11
|
Wu CP, Hung CY, Lusvarghi S, Huang YH, Tseng PJ, Hung TH, Yu JS, Ambudkar SV. Overexpression of ABCB1 and ABCG2 contributes to reduced efficacy of the PI3K/mTOR inhibitor samotolisib (LY3023414) in cancer cell lines. Biochem Pharmacol 2020; 180:114137. [PMID: 32634436 DOI: 10.1016/j.bcp.2020.114137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
LY3023414 (samotolisib) is a promising new dual inhibitor of phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR). Currently, multiple clinical trials are underway to evaluate the efficacy of LY3023414 in patients with various types of cancer. However, the potential mechanisms underlying acquired resistance to LY3023414 in human cancer cells still remain elusive. In this study, we investigated whether the overexpression of ATP-binding cassette (ABC) drug transporters such as ABCB1 and ABCG2, one of the most common mechanisms for developing multidrug resistance, may potentially reduce the efficacy of LY3023414 in human cancer cells. We demonstrated that the intracellular accumulation of LY3023414 in cancer cells was significantly reduced by the drug efflux function of ABCB1 and ABCG2. Consequently, the cytotoxicity and efficacy of LY3023414 for inhibiting the activation of the PI3K pathway and induction of G0/G1 cell-cycle arrest were substantially reduced in cancer cells overexpressing ABCB1 or ABCG2, which could be restored using tariquidar or Ko143, respectively. Furthermore, stimulatory effect of LY3023414 on the ATPase activity of ABCB1 and ABCG2, as well as in silico molecular docking analysis of LY3023414 binding to the substrate-binding pockets of these transporters provided additional insight into the manner in which LY3023414 interacts with both transporters. In conclusion, we report that LY3023414 is a substrate for ABCB1 and ABCG2 transporters implicating their role in the development of resistance to LY3023414, which can have substantial clinical implications and should be further investigated.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, Taiwan; Department of Physiology and Pharmacology, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan.
| | | | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | | | | | - Tai-Ho Hung
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Taiwan; Molecular Medicine Research Center, Taiwan; Department of Biochemistry and Molecular Biology, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
12
|
Singh H, Kinarivala N, Sharma S. Multi-Targeting Anticancer Agents: Rational Approaches, Synthetic Routes and Structure Activity Relationship. Anticancer Agents Med Chem 2020; 19:842-874. [PMID: 30657048 DOI: 10.2174/1871520619666190118120708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/21/2022]
Abstract
We live in a world with complex diseases such as cancer which cannot be cured with one-compound one-target based therapeutic paradigm. This could be due to the involvement of multiple pathogenic mechanisms. One-compound-various-targets stratagem has become a prevailing research topic in anti-cancer drug discovery. The simultaneous interruption of two or more targets has improved the therapeutic efficacy as compared to the specific targeted based therapy. In this review, six types of dual targeting agents along with some interesting strategies used for their design and synthesis are discussed. Their pharmacology with various types of the molecular interactions within their specific targets has also been described. This assemblage will reveal the recent trends and insights in front of the scientific community working in dual inhibitors and help them in designing the next generation of multi-targeted anti-cancer agents.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab-143005, India.,Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, United States
| |
Collapse
|
13
|
Zhang L, Li Y, Wang Q, Chen Z, Li X, Wu Z, Hu C, Liao D, Zhang W, Chen ZS. The PI3K subunits, P110α and P110β are potential targets for overcoming P-gp and BCRP-mediated MDR in cancer. Mol Cancer 2020; 19:10. [PMID: 31952518 PMCID: PMC6966863 DOI: 10.1186/s12943-019-1112-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 11/29/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND PI3K/AKT is a vital signaling pathway in humans. Recently, several PI3K/AKT inhibitors were reported to have the ability to reverse cancer multidrug resistance (MDR); however, specific targets in the PI3K/AKT pathways and the mechanisms associated with MDR have not been found because many of the inhibitors have multiple targets within a large candidate protein pool. AKT activation is one presumed mechanism by which MDR develops during cancer treatment. METHODS The effects of inhibiting PI3K 110α and 110β by BAY-1082439 treatment and CRISPR/Cas9 knockout were examined to determine the possible functions of BAY-1082439 and the roles of PI3K 110α and 110β in the reversal of MDR that is mediated by the downregulation of P-gp and BCRP. Inhibition of AKT with GSK-2110183 showed that the downregulation of P-gp and BCRP is independent of generalized AKT inactivation. Immunofluorescence, immunoprecipitation, MTT, flow cytometry and JC-1 staining analyses were conducted to study the reversal of MDR that is mediated by P-gp and BCRP in cancer cells. An ATPase assay and a structural analysis were also used to analyze the potential mechanisms by which BAY-1082439 specifically targets PI3K 110α and 110β and nonspecifically influences P-gp and BCRP. RESULTS By inhibiting the activation of the PI3K 110α and 110β catalytic subunits through both the administration of BAY-1082439 and the CRISPR/Cas9 deletion of Pik3ca and Pik3cb, the ATP-binding cassette transporters P-gp/ABCB1 and BCRP/ABCG2 were downregulated, thereby reestablishing the drug sensitivity of human epidermoid carcinoma and non-small cell lung cancer (NSCLC) MDR cells. Inhibition of AKT did not reverse the MDR mediated by P-gp or BCRP. The ABC family proteins and AKT may play MDR-enhancing roles independently. CONCLUSIONS The reversal of the dual functions of ABC-transporter-mediated and AKT-activation-enhanced MDR through the inhibition or knockout of PI3K 110α or 110β promises to improve current strategies based on combined drug treatments to overcome MDR challenges.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation
- Class I Phosphatidylinositol 3-Kinases/antagonists & inhibitors
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Protein Kinase Inhibitors/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yidong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Qianchao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Xiaoyun Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhuoxun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Chaohua Hu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Liao
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- Key Laboratory of Complementary and Alternative Medicine Experimental Animal Models of Guangxi, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
- Institute of Plastic Surgery, Weifang Medical University, Weifang, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
14
|
The Selective Class IIa Histone Deacetylase Inhibitor TMP195 Resensitizes ABCB1- and ABCG2-Overexpressing Multidrug-Resistant Cancer Cells to Cytotoxic Anticancer Drugs. Int J Mol Sci 2019; 21:ijms21010238. [PMID: 31905792 PMCID: PMC6981391 DOI: 10.3390/ijms21010238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/16/2022] Open
Abstract
Multidrug resistance caused by the overexpression of the ATP-binding cassette (ABC) proteins in cancer cells remains one of the most difficult challenges faced by drug developers and clinical scientists. The emergence of multidrug-resistant cancers has driven efforts from researchers to develop innovative strategies to improve therapeutic outcomes. Based on the drug repurposing approach, we discovered an additional action of TMP195, a potent and selective inhibitor of class IIa histone deacetylase. We reveal that in vitro TMP195 treatment significantly enhances drug-induced apoptosis and sensitizes multidrug-resistant cancer cells overexpressing ABCB1 or ABCG2 to anticancer drugs. We demonstrate that TMP195 inhibits the drug transport function, but not the protein expression of ABCB1 and ABCG2. The interaction between TMP195 with these transporters was supported by the TMP195-stimulated ATPase activity of ABCB1 and ABCG2, and by in silico docking analysis of TMP195 binding to the substrate-binding pocket of these transporters. Furthermore, we did not find clear evidence of TMP195 resistance conferred by ABCB1 or ABCG2, suggesting that these transporters are unlikely to play a significant role in the development of resistance to TMP195 in cancer patients.
Collapse
|
15
|
Singh H, Singh JV, Bhagat K, Gulati HK, Sanduja M, Kumar N, Kinarivala N, Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg Med Chem 2019; 27:3477-3510. [PMID: 31255497 PMCID: PMC7970831 DOI: 10.1016/j.bmc.2019.06.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/01/2023]
Abstract
Hybrid molecules, furnished by combining two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery that has attracted substantial traction in the past few years. Naturally occurring scaffolds such as coumarins display a wide spectrum of pharmacological activities including anticancer, antibiotic, antidiabetic and others, by acting on multiple targets. In this view, various coumarin-based hybrids possessing diverse medicinal attributes were synthesized in the last five years by conjugating coumarin moiety with other therapeutic pharmacophores. The current review summarizes the recent development (2014 and onwards) of these pharmacologically active coumarin hybrids and demonstrates rationale behind their design, structure-activity relationships (SAR) and mechanistic studies performed on these hybrid molecules. This review will be beneficial for medicinal chemist and chemical biologist, and in general to the drug discovery community and will facilitate the synthesis and development of novel, potent coumarin hybrid molecules serving as lead molecules for the treatment of complex disorders.
Collapse
Affiliation(s)
- Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121105, Haryana, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India; Program in Chemical Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
16
|
Singh A, Singh JV, Rana A, Bhagat K, Gulati HK, Kumar R, Salwan R, Bhagat K, Kaur G, Singh N, Kumar R, Singh H, Sharma S, Bedi PMS. Monocarbonyl Curcumin-Based Molecular Hybrids as Potent Antibacterial Agents. ACS OMEGA 2019; 4:11673-11684. [PMID: 31460274 PMCID: PMC6682034 DOI: 10.1021/acsomega.9b01109] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/14/2019] [Indexed: 05/22/2023]
Abstract
Keeping in view various pharmacological attributes of curcumin, coumarin, and isatin derivatives, triazole-tethered monocarbonyl curcumin-coumarin and curcumin-isatin molecular hybrids have been synthesized and evaluated for their antibacterial potential against Gram-positive (Enterococcus faecalis and Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa and Escherichia coli) human pathogenic bacterial strains. Among all hybrid molecules, A-4 and B-38 showed the most potent antibacterial activity with inhibition zones of 29 and 31 mm along with MIC values of 12.50 and 6.25 μg/mL, respectively. Structure-activity relationship that emerged from biological data revealed that the two-carbon alkyl chain between triazole and coumarin/isatin moiety is well tolerable for the activity. Bromo substitution at the fifth position of isatin, para-cholo substitution in the case of curcumin-isatin, and para-methoxy in the case of curcumin-coumarin hybrids on ring A of curcumin are most suitable groups for the antibacterial activity. Various types of binding interactions of A-4 and B-38 within the active site of dihydrofolate reductase (DHFR) of S. aureus are also streamlined by molecular modeling studies, suggesting their capability in completely blocking DHFR.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Abhineet Rana
- EMC Group
of Hospital, Green Avenue, Amritsar, Punjab 143001, India
| | - Kavita Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harmandeep Kaur Gulati
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Raman Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Rajan Salwan
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Kajal Bhagat
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Navjot Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Randeep Kumar
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Harbinder Singh
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (H.S.)
| | - Sahil Sharma
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (S.S.)
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical
Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
- E-mail: (P.M.S.B.)
| |
Collapse
|
17
|
Duan H, Zhou K, Zhang Y, Yue P, Wang T, Li Y, Qiu D, Hua Y, Wang C. HDAC1 was involved in placental breast cancer resistance protein regulation in vitro: A preliminary study. J Cell Mol Med 2019. [PMID: 31119861 DOI: 10.1111/jcmm.14414.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yi Zhang
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Peng Yue
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,West China Medical School of Sichuan University, Chengdu, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dajian Qiu
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Duan H, Zhou K, Zhang Y, Yue P, Wang T, Li Y, Qiu D, Hua Y, Wang C. HDAC1 was involved in placental breast cancer resistance protein regulation in vitro: A preliminary study. J Cell Mol Med 2019; 23:5818-5821. [PMID: 31119861 PMCID: PMC6653152 DOI: 10.1111/jcmm.14414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hongyu Duan
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Yi Zhang
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Peng Yue
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,West China Medical School of Sichuan University, Chengdu, China
| | - Tao Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dajian Qiu
- The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yimin Hua
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu, Sichuan, China
| | - Chuan Wang
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Cardiac development and early intervention unit, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Luan Y, Li J, Bernatchez JA, Li R. Kinase and Histone Deacetylase Hybrid Inhibitors for Cancer Therapy. J Med Chem 2018; 62:3171-3183. [PMID: 30418766 DOI: 10.1021/acs.jmedchem.8b00189] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Histone deacetylases (HDACs), encompassing at least 18 members, are promising targets for anticancer drug discovery and development. To date, five histone deacetylase inhibitors (HDACis) have been approved for cancer treatment, and numerous others are undergoing clinical trials. It has been well validated that an agent that can simultaneously and effectively inhibit two or more targets may offer greater therapeutic benefits over single-acting agents in preventing resistance to treatment and in potentiating synergistic effects. A prime example of a bifunctional agent is the hybrid HDAC inhibitor. In this perspective, the authors review the majority of reported kinase/HDAC hybrid inhibitors.
Collapse
Affiliation(s)
- Yepeng Luan
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong Province , China
| | | | | | - Rongshi Li
- Department of Medicinal Chemistry, School of Pharmacy , Qingdao University , Qingdao 266071 , Shandong Province , China.,UNMC Center for Drug Discovery, Department of Pharmaceutical Sciences, College of Pharmacy, Fred and Pamela Buffett Cancer Center, and Center for Staphylococcal Research , University of Nebraska Medical Center , Omaha , Nebraska 68198 , United States
| |
Collapse
|
20
|
Human ATP-binding cassette transporters ABCB1 and ABCG2 confer resistance to histone deacetylase 6 inhibitor ricolinostat (ACY-1215) in cancer cell lines. Biochem Pharmacol 2018; 155:316-325. [PMID: 30028995 DOI: 10.1016/j.bcp.2018.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/14/2018] [Indexed: 12/17/2022]
Abstract
Ricolinostat is the first orally available, selective inhibitor of histone deacetylase 6 (HDAC6), currently under evaluation in clinical trials in patients with various malignancies. It is likely that the inevitable emergence of resistance to ricolinostat is likely to reduce its clinical effectiveness in cancer patients. In this study, we investigated the potential impact of multidrug resistance-linked ATP-binding cassette (ABC) transporters ABCB1 and ABCG2 on the efficacy of ricolinostat, which may present a major hurdle to its development as an anticancer drug in the future. We demonstrated that the overexpression of ABCB1 or ABCG2 reduces the intracellular accumulation of ricolinostat, resulting in reduced efficacy of ricolinostat to inhibit the activity of HDAC6 in cancer cells. Moreover, the efficacy of ricolinostat can be fully restored by inhibiting the drug efflux function of ABCB1 and ABCG2 in drug-resistant cancer cells. In conclusion, our results provide some insights into the basis for the development of resistance to ricolinostat and suggest that co-administration of ricolinostat with a modulator of ABCB1 or ABCG2 could overcome ricolinostat resistance in human cancer cells, which may be relevant to its use in the clinic.
Collapse
|
21
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
22
|
Muthiah D, Callaghan R. Dual effects of the PI3K inhibitor ZSTK474 on multidrug efflux pumps in resistant cancer cells. Eur J Pharmacol 2017; 815:127-137. [PMID: 28912036 DOI: 10.1016/j.ejphar.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/13/2022]
Abstract
ZSTK474 is a potent phosphoinositide 3-kinase (PI3K) inhibitor that reduces cell proliferation via G1-arrest. However, there is little information on the susceptibility of this anticancer drug to resistance conferred by the multidrug pumps P-glycoprotein (ABCB1) and ABCG2. We have demonstrated that ZSTK474 generated cytotoxicity in cells over-expressing either pump with potency similar to that in drug sensitive cells. In addition, the co-administration of ZSTK474 with the cytotoxic anti-cancer drugs vinblastine and mitoxantrone caused a potentiated cytotoxic effect in both drug sensitive and efflux pump expressing cells. These observations suggest that ZSTK474 is unaffected by the presence of multidrug efflux pumps and may circumvent their activities. Indeed, ZSTK474 increased the cellular accumulation of calcein-AM and mitoxantrone in cells expressing ABCB1 and ABCG2, respectively. ZSTK474 treatment also resulted in reduced expression of both efflux pumps in multidrug resistant cancer cells. Measurement of ABCB1 or ABCG2 mRNA levels demonstrated that the reduction was not due to altered transcription. Similarly, inhibitor studies showed that the proteasomal degradation pathway for ABCB1 and the lysosomal route for ABCG2 degradation were unaffected by ZSTK474. Thus the mechanism underlying reduced ABCB1 and ABCG2 levels caused by ZSTK474 was due to a reduction in overall protein synthesis; a process influenced by the PI3K pathway. In summary, ZSTK474 is not susceptible to efflux by the resistance mediators ABCB1 and ABCG2. Moreover, it inhibits the drug transport function of the pumps and leads to a reduction in their cellular expression levels. Our observations demonstrate that ZSTK474 is a powerful anticancer drug.
Collapse
Affiliation(s)
- Divya Muthiah
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia
| | - Richard Callaghan
- Division of Biomedical Science & Biochemistry, Research School of Biology and Medical School, The Australian National University, Building 134, Linnaeus Way, Canberra, ACT 2601, Australia.
| |
Collapse
|
23
|
To KKW, Fu LW. CUDC-907, a dual HDAC and PI3K inhibitor, reverses platinum drug resistance. Invest New Drugs 2017; 36:10-19. [PMID: 28819699 DOI: 10.1007/s10637-017-0501-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Platinum (Pt)-based anticancer drugs are the mainstay of treatment for solid cancers. However, resistance to Pt drugs develops rapidly, which can be caused by overexpression of multidrug resistance transporters and activation of DNA repair. CUDC-907 is a potent molecular targeted anticancer agent, rationally designed to simultaneously inhibit histone deacetylase (HDAC) and phosphatidylinositol 3-kinase (PI3K). We investigated the potentiation effect of CUDC-907 on Pt drugs in resistant cancer cells. ABCC2 stably-transfected HEK293 cells and two pairs of parental and Pt-resistant cancer cell lines were used to test for the circumvention of resistance by CUDC-907. Chemosensitivity was assessed by the sulphorhodamine B assay. Drug combinations were evaluated by the median effect analysis. ABCC2 transport activity was examined by flow cytometric assay. Cellular Pt drug accumulation and DNA platination were detected by inductively coupled plasma optical emission spectroscopy. ABCC2, ERCC1 and p21 expression were evaluated by quantitative real-time PCR. Cell cycle analysis and apoptosis assay were performed by standard flow cytometric method. The combination of CUDC-907 with cisplatin were found to exhibit synergistic cytotoxic effect in cisplatin-resistant cancer cells. In Pt-resistant cancer cells, CUDC-907 apparently circumvented the resistance through inhibition of ABCC2 and DNA repair but induction of cell cycle arrest. In the presence of CUDC-907, cellular accumulation of Pt drugs and formation of DNA-Pt adducts were found to be increased whereas expression levels of ABCC2 and ERCC1 was inhibited in Pt-resistant cells. The data advocates further development of CUDC-907 as a resistance reversal agent for use in combination cancer chemotherapy.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Room 801N, Area 39, Lo Kwee-Seong Integrated Biomedical Sciences Building, Shatin, New Territories, Hong Kong, SAR, China.
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| |
Collapse
|
24
|
Wu CP, Hsiao SH, Murakami M, Lu YJ, Li YQ, Huang YH, Hung TH, Ambudkar SV, Wu YS. Alpha-Mangostin Reverses Multidrug Resistance by Attenuating the Function of the Multidrug Resistance-Linked ABCG2 Transporter. Mol Pharm 2017. [PMID: 28641010 DOI: 10.1021/acs.molpharmaceut.7b00334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ATP-binding cassette (ABC) drug transporter ABCG2 can actively efflux a wide variety of chemotherapeutic agents out of cancer cells and subsequently reduce the intracellular accumulation of these drugs. Therefore, the overexpression of ABCG2 often contributes to the development of multidrug resistance (MDR) in cancer cells, which is one of the major obstacles to successful cancer chemotherapy. Moreover, ABCG2 is highly expressed in various tissues including the intestine and blood-brain barrier (BBB), limiting the absorption and bioavailability of many therapeutic agents. For decades, the task of developing a highly effective synthetic inhibitor of ABCG2 has been hindered mostly by the intrinsic toxicity, the lack of specificity, and complex pharmacokinetics. Alternatively, considering the wide range of diversity and relatively nontoxic nature of natural products, developing potential modulators of ABCG2 from natural sources is particularly valuable. α-Mangostin is a natural xanthone derived from the pericarps of mangosteen (Garcinia mangostana L.) with various pharmacological purposes, including suppressing angiogenesis and inducing cancer cell growth arrest. In this study, we demonstrated that at nontoxic concentrations, α-mangostin effectively and selectively inhibits ABCG2-mediated drug transport and reverses MDR in ABCG2-overexpressing MDR cancer cells. Direct interactions between α-mangostin and the ABCG2 drug-binding site(s) were confirmed by stimulation of ATPase activity and by inhibition of photolabeling of the substrate-binding site(s) of ABCG2 with [125I]iodoarylazidoprazosin. In summary, our findings show that α-mangostin has great potential to be further developed into a promising modulator of ABCG2 for reversing MDR and for its use in combination therapy for patients with MDR tumors.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | | | - Yang-Hui Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 333, Taiwan
| | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20850, United States
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University , Taichung 407, Taiwan
| |
Collapse
|
25
|
Wu CP, Murakami M, Hsiao SH, Chou AW, Li YQ, Huang YH, Hung TH, Ambudkar SV. Overexpression of ATP-Binding Cassette Subfamily G Member 2 Confers Resistance to Phosphatidylinositol 3-Kinase Inhibitor PF-4989216 in Cancer Cells. Mol Pharm 2017; 14:2368-2377. [PMID: 28597653 DOI: 10.1021/acs.molpharmaceut.7b00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Deregulated activation of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is frequently found in human cancers, which plays a key role in promoting cancer proliferation and resistance to anticancer therapies. Therefore, developing inhibitors targeting key components of the PI3K/Akt/mTOR signaling pathway has great clinical significance. PF-4989216 is a novel, orally available small-molecule drug that was developed to selectively inhibit the PI3K/Akt/mTOR signaling pathway and subsequent cancer cell proliferation. PF-4989216 exhibited potent and selective inhibition against PI3K kinase activity in preclinical small-cell lung cancer (SCLC) models, and was especially effective against the proliferation of SCLCs harboring PIK3CA mutation. Unfortunately, in addition to innate resistance mechanisms, drug extrusion by the efflux pumps may also contribute to the development of acquired resistance to PI3K inhibitors in cancer cells. The overexpression of ATP-binding cassette (ABC) drug transporters ABCB1 and ABCG2 is one of the most common mechanisms for reducing intracellular drug concentration and developing multidrug resistance, which remains a substantial challenge to the effective treatment of cancer. In this study, we report the discovery of ABCG2 overexpression as a mechanism of resistance to PI3K inhibitor PF-4989216 in human cancer cells. We demonstrated that the inhibition of Akt and downstream S6RP phosphorylation by PF-4989216 were significantly reduced in ABCG2-overexpressing human cancer cells. Moreover, overexpression of ABCG2 in various cancer cell lines confers significant resistance to PF-4989216, which can be reversed by an inhibitor or competitive substrate of ABCG2, indicating that ABCG2-mediated transport alone can sufficiently reduce the intracellular concentration of PF-4989216.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | - Megumi Murakami
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| | | | | | - Yan-Qing Li
- Department of Neurosurgery, Chang Gung Memorial Hospital , Tao-Yuan 105, Taiwan
| | | | - Tai-Ho Hung
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital , Taipei 105, Taiwan
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, CCR, NCI, NIH , Bethesda, Maryland 20892, United States
| |
Collapse
|
26
|
Mazzio EA, Soliman KFA. HTP Nutraceutical Screening for Histone Deacetylase Inhibitors and Effects of HDACis on Tumor-suppressing miRNAs by Trichostatin A and Grapeseed (Vitis vinifera) in HeLa cells. Cancer Genomics Proteomics 2017; 14:17-33. [PMID: 28031235 DOI: 10.21873/cgp.20016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Aggressive tumor malignancies are a consequence of delayed diagnosis, epigenetic/phenotype changes and chemo-radiation resistance. Histone deacetylases (HDACs) are a major epigenetic regulator of transcriptional repression, which are highly overexpressed in advanced malignancy. While original chemotherapy drugs were modeled after phytochemicals elucidated by botanical screenings, HDAC inhibitors (HDACi) such as apicidin, trichostatin A (TSA) and butyrate were discovered as products of fungus and microbes, in particular, gut microbiota. Therefore, a persistent question remains as to the inherent existence of HDACis in raw undigested dietary plant material. In this study, we conduct a high-throughput (HTP) screening of ~1,600 non-fermented commonly used nutraceuticals (spices, herbs, teas, vegetables, fruits, seeds, rinds etc.) at (<600 μg/ml) and food-based polyphenolics (<240 μg/ml) for evidence of HDAC activity inhibition in nuclear HeLa cell lysates. MATERIALS AND METHODS Human HDAC kinetic validation was performed using a standard fluorometric activity assay, followed by an enzymatic-linked immuno-captured ELISA. Both methods were verified using HDACi panel drugs: TSA, apicidin, suberohydroxamic acid, M344, CL-994, valproic acid and sodium phenylbutyrate. The HTP screening was then conducted, followed by a study comparing biological effects of HDACis in HeLa cells, including analysis of whole-transcriptome non-coding RNAs using Affymetrix miRNA 4.1-panel arrays. RESULTS The HTP screening results confirmed 44/1600 as potential HDACis to which 31 were further eliminated as false-positives. Methodological challenges/concerns are addressed regarding plant product false-positives that arise from the signal reduction of commercial lysine development reagents. Only 13 HDACis were found having an IC50 under <200 μg/ml: Grapeseed extract (Vitis vinifera), Great burnet root (Sanguisorba Officinalis), Babul (Acacia arabica), Chinese gallnut (Melaphis chinensis), Konaberry extract (Coffea arabica), Uva Ursi (Arctostaphylos uva ursi), Green tea (Camellia sinensis), Meadowsweet (Filipendula ulmaria), Sassafras (Sassafras officinale), Turkey rhubarb (Rheum palmatum), epigallocatechin gallate (EGCG), gossypol and gallic acid. Next, we investigate the biological consequence of HDACi panel drugs in HeLa cells, where the data suggest predominant effects are anti-mitotic rather than cytotoxic. Lastly, differential effects of TSA vs. GSE at sub-lethal concentrations tested on HeLa cells show 6,631 miRNAs expressed in resting cells, 35 significantly up-regulated (TSA) and 81 up-regulated (GSE), with several miRNAs overlapping in the upward direction by both GSE and TSA (e.g. hsa-miR-23b-5p, hsa-miR-27b-5p, hsa-miR-1180-3p, hsa-miR-6880-5p and hsa-mir-943). Using DIANA miRNA online tools, it was determined that GSE and TSA simultaneously cause overexpression of similar miRNAs predicted to destroy the following influential oncogenes: NFkB, NRAS, KRAS, HRAS, MYC, TGFBR1, E2F1, E2F2, BCL21, CDKN1A, CDK6, HIF1a, and VEGFA. CONCLUSION The data from this study show that plant- based HDACis are relatively rare, and can elicit a similar pattern to TSA in up-regulating miRNAs involved with tumor suppression of HeLa cervical carcinoma.
Collapse
Affiliation(s)
- Elizabeth A Mazzio
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
27
|
Wu Y, Dai W, Chen X, Geng A, Chen Y, Lu T, Zhu Y. Design, synthesis and biological evaluation of 2,3-dihydroimidazo[1,2-c]quinazoline derivatives as novel phosphatidylinositol 3-kinase and histone deacetylase dual inhibitors. RSC Adv 2017. [DOI: 10.1039/c7ra08835c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel design approach by combination of PI3K and HDAC inhibitory activity in one molecule to produce dual inhibitors.
Collapse
Affiliation(s)
- Yichao Wu
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Weichen Dai
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Xin Chen
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Aixin Geng
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Tao Lu
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Yong Zhu
- Department of Organic Chemistry
- School of Science
- China Pharmaceutical University
- Nanjing 211198
- China
| |
Collapse
|
28
|
Wu D, Wang C, Yang J, Wang H, Han H, Zhang A, Yang Y, Li Q. Improving the Intracellular Drug Concentration in Lung Cancer Treatment through the Codelivery of Doxorubicin and miR-519c Mediated by Porous PLGA Microparticle. Mol Pharm 2016; 13:3925-3933. [PMID: 27684197 DOI: 10.1021/acs.molpharmaceut.6b00702] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous PLGA microparticle for the coencapsulation of doxorubicin and miR-519c was successfully constructed through the water-oil-water emulsion solvent evaporation method, using ammonium bicarbonate as a porogen. It has been characterized with high porous surface, adaptive aerodynamic diameter (<10 μm), favorable drug loading, and sustained release profile. The release supernatant exhibited a higher inhibition of cell proliferation than those from porous PLGA microparticles harboring a single component (doxorubicin or miR-519c), attributing to the enhanced induction of cell apoptosis and cell cycle arrest at S phase. Finally, the improved intracellular concentration of doxorubicin was elucidated by flow cytometry and liquid chromatography with tandem mass spectrometry, owing to the knockdown of drug transporter ABCG2 by miR-519c. Overall, the porous PLGA microparticle combining chemotherapy and gene therapy could facilitate the antitumor efficacy and reduce the side effects, and thus, it is potential to be used as a sustained release system for lung cancer treatment via pulmonary administration.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Chenhui Wang
- Innovative Drug Research Centre, School of Pharmacy, Chongqing University , Chongqing 401331, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Hao Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Aijun Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, China
| |
Collapse
|