1
|
Bahrpeyma S, Jakubiak P, Alvarez-Sánchez R, Caruso A, Leuthardt M, Senn C, del Amo EM, Urtti A. Comprehensive Pharmacokinetic Evaluation of High Melanin Binder Levofloxacin in Rabbits Shows Potential of Topical Eye Drops for Posterior Segment Treatment. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 39382881 PMCID: PMC11469166 DOI: 10.1167/iovs.65.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose The purpose of this work was to understand the impact of melanin binding on ocular pharmacokinetics after administration of a high-binder model drug via different administration routes. Methods We applied levofloxacin to pigmented and albino rabbits as eye drops (single and multiple), as well as by intravitreal and intravenous injections. Ocular tissues and plasma were analyzed for levofloxacin concentrations with liquid chromatography-mass spectrometry (LC-MS/MS), and pharmacokinetic parameters were calculated. Results The data show enrichment of levofloxacin and weeks-long retention in pigmented tissues. Upon intravitreal injection, the area under the curve (AUC) values in pigmented tissues were about 9 to 15 times higher than the respective values in the albino rabbits, but this difference expanded to 255- to 951-fold following topical eye drop administration. Multiple dosing of eye drops led to substantial accumulation of levofloxacin in the pigmented tissues: AUC values were 3 to 12 times higher than after intravitreal injection. The AUCs were much lower after single topical or intravenous drug administrations. High drug levels (0.1-35 µM) were always observed in the neural retinas of pigmented eyes; the highest exposure was seen after intravitreal administration followed by multiple doses of topical drops. Single topical instillation and intravenous injections to the albino rabbits resulted in vitreal bioavailability values of 0.009% and 0.003%, respectively. Conclusions Melanin binding can be used to achieve targeted drug delivery and extended retention in pigmented ocular tissues. The results from topical multiple dosing experiments suggest that eye drop treatment may yield drug exposures and responses comparable to intravitreal delivery, even in the retinal pigment epithelium and choroid.
Collapse
Affiliation(s)
- Sina Bahrpeyma
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paulina Jakubiak
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Rubén Alvarez-Sánchez
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Antonello Caruso
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Monika Leuthardt
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Claudia Senn
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche, Basel, Switzerland
| | - Eva M. del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhou Y, Xu M, Shen W, Xu Y, Shao A, Xu P, Yao K, Han H, Ye J. Recent Advances in Nanomedicine for Ocular Fundus Neovascularization Disease Management. Adv Healthc Mater 2024; 13:e2304626. [PMID: 38406994 PMCID: PMC11468720 DOI: 10.1002/adhm.202304626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Indexed: 02/27/2024]
Abstract
As an indispensable part of the human sensory system, visual acuity may be impaired and even develop into irreversible blindness due to various ocular pathologies. Among ocular diseases, fundus neovascularization diseases (FNDs) are prominent etiologies of visual impairment worldwide. Intravitreal injection of anti-vascular endothelial growth factor drugs remains the primary therapy but is hurdled by common complications and incomplete potency. To renovate the current therapeutic modalities, nanomedicine emerged as the times required, which is endowed with advanced capabilities, able to fulfill the effective ocular fundus drug delivery and achieve precise drug release control, thus further improving the therapeutic effect. This review provides a comprehensive summary of advances in nanomedicine for FND management from state-of-the-art studies. First, the current therapeutic modalities for FNDs are thoroughly introduced, focusing on the key challenges of ocular fundus drug delivery. Second, nanocarriers are comprehensively reviewed for ocular posterior drug delivery based on the nanostructures: polymer-based nanocarriers, lipid-based nanocarriers, and inorganic nanoparticles. Thirdly, the characteristics of the fundus microenvironment, their pathological changes during FNDs, and corresponding strategies for constructing smart nanocarriers are elaborated. Furthermore, the challenges and prospects of nanomedicine for FND management are thoroughly discussed.
Collapse
Affiliation(s)
- Yifan Zhou
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Mingyu Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Wenyue Shen
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Yufeng Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - An Shao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Peifang Xu
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| | - Juan Ye
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, 88 Jiefang Road, Hangzhou, 310009, P. R. China
| |
Collapse
|
3
|
Paschalis EI, Zhou C, Sharma J, Dohlman TH, Kim S, Lei F, Chodosh J, Vavvas D, Urtti A, Papaliodis G, Dohlman CH. The prophylactic value of TNF-α inhibitors against retinal cell apoptosis and optic nerve axon loss after corneal surgery or trauma. Acta Ophthalmol 2024; 102:e381-e394. [PMID: 37803488 PMCID: PMC10997738 DOI: 10.1111/aos.15786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND PURPOSE Late secondary glaucoma is an often-severe complication after acute events like anterior segment surgery, trauma and infection. TNF-α is a major mediator that is rapidly upregulated, diffusing also to the retina and causes apoptosis of the ganglion cells and degeneration of their optic nerve axons (mediating steps to glaucomatous damage). Anti-TNF-α antibodies are in animals very effective in protecting the retinal cells and the optic nerve-and might therefore be useful prophylactically against secondary glaucoma in future such patients. Here we evaluate (1) toxicity and (2) efficacy of two TNF-α inhibitors (adalimumab and infliximab), in rabbits by subconjunctival administration. METHODS For drug toxicity, animals with normal, unburned corneas were injected with adalimumab (0.4, 4, or 40 mg), or infliximab (1, 10, or 100 mg). For drug efficacy, other animals were subjected to alkali burn before such injection, or steroids (for control). The rabbits were evaluated clinically with slit lamp and photography, electroretinography, optical coherence tomography, and intraocular pressure manometry. A sub-set of eyes were stained ex vivo after 3 days for retinal cell apoptosis (TUNEL). In other experiments the optic nerves were evaluated by paraphenylenediamine staining after 50 or 90 days. Loss of retinal cells and optic nerve degeneration were quantified. RESULTS Subconjunctival administration of 0.4 mg or 4.0 mg adalimumab were well tolerated, whereas 40.0 mg was toxic to the retina. 1, 10, or 100 mg infliximab were also well tolerated. Analysis of the optic nerve axons after 50 days confirmed the safety of 4.0 mg adalimumab and of 100 mg infliximab. For efficacy, 4.0 mg adalimumab subconjunctivally in 0.08 mL provided practically full protection against retinal cell apoptosis 3 days following alkali burn, and infliximab 100 mg only slightly less. At 90 days following burn injury, control optic nerves showed about 50% axon loss as compared to 8% in the adalimumab treatment group. CONCLUSIONS Subconjunctival injection of 4.0 mg adalimumab in rabbits shows no eye toxicity and provides excellent neuroprotection, both short (3 days) and long-term (90 days). Our total. accumulated data from several of our studies, combined with the present paper, suggest that corneal injuries, including surgery, might benefit from routine administration of anti-TNF-α biologics to reduce inflammation and future secondary glaucoma.
Collapse
Affiliation(s)
- Eleftherios I. Paschalis
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Chengxin Zhou
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jyoti Sharma
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H. Dohlman
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah Kim
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Fengyang Lei
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - James Chodosh
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
- Disruptive Technology Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Demetrios Vavvas
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Angiogenesis Laboratory, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, University of Helsinki, Finland and School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - George Papaliodis
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Claes H. Dohlman
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
- Schepens Eye Research Institute, Boston Keratoprosthesis Laboratory/Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Słota D, Jampilek J, Sobczak-Kupiec A. Targeted Clindamycin Delivery Systems: Promising Options for Preventing and Treating Bacterial Infections Using Biomaterials. Int J Mol Sci 2024; 25:4386. [PMID: 38673971 PMCID: PMC11050486 DOI: 10.3390/ijms25084386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Targeted therapy represents a real opportunity to improve the health and lives of patients. Developments in this field are confirmed by the fact that the global market for drug carriers was worth nearly $40 million in 2022. For this reason, materials engineering and the development of new drug carrier compositions for targeted therapy has become a key area of research in pharmaceutical drug delivery in recent years. Ceramics, polymers, and metals, as well as composites, are of great interest, as when they are appropriately processed or combined with each other, it is possible to obtain biomaterials for hard tissues, soft tissues, and skin applications. After appropriate modification, these materials can release the drug directly at the site requiring a therapeutic effect. This brief literature review characterizes routes of drug delivery into the body and discusses biomaterials from different groups, options for their modification with clindamycin, an antibiotic used for infections caused by aerobic and anaerobic Gram-positive bacteria, and different methods for the final processing of carriers. Examples of coating materials for skin wound healing, acne therapy, and bone tissue fillers are given. Furthermore, the reasons why the use of antibiotic therapy is crucial for a smooth and successful recovery and the risks of bacterial infections are explained. It was demonstrated that there is no single proven delivery scheme, and that the drug can be successfully released from different carriers depending on the destination.
Collapse
Affiliation(s)
- Dagmara Słota
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Department of Materials Science, Faculty of Materials Engineering and Physics, KrakowUniversity of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland;
| |
Collapse
|
5
|
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla K, Kidron H, Terasaki T, Urtti A. Selective drug delivery to the retinal cells: Biological barriers and avenues. J Control Release 2023; 361:1-19. [PMID: 37481214 DOI: 10.1016/j.jconrel.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
| |
Collapse
|
6
|
Młynek M, Trzciński JW, Ciach T. Recent Advances in the Polish Research on Polysaccharide-Based Nanoparticles in the Context of Various Administration Routes. Biomedicines 2023; 11:biomedicines11051307. [PMID: 37238978 DOI: 10.3390/biomedicines11051307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Polysaccharides are the most abundant polymers in nature. They exhibit robust biocompatibility, reliable non-toxicity, and biodegradable character; thus, they are employed in multiple biomedical applications. The presence of chemically accessible functional groups on the backbone of biopolymers (amine, carboxyl, hydroxyl, etc.) makes them suitable materials for chemical modification or drug immobilisation. Among different drug delivery systems (DDSs), nanoparticles have been of great interest in scientific research in the last decades. In the following review, we want to address the issue of rational design of nanoparticle (NP)-based drug delivery systems in reference to the specificity of the medication administration route and resulting requirements. In the following sections, readers can find a comprehensive analysis of the articles published by authors with Polish affiliations in the last few years (2016-2023). The article emphasises NP administration routes and synthetic approaches, followed by in vitro and in vivo attempts toward pharmacokinetic (PK) studies. The 'Future Prospects' section was constructed to address the critical observations and gaps found in the screened studies, as well as to indicate good practices for polysaccharide-based nanoparticle preclinical evaluation.
Collapse
Affiliation(s)
- Mateusz Młynek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | - Jakub Waldemar Trzciński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
| | - Tomasz Ciach
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
7
|
Hammadi S, Tzoumas N, Ferrara M, Meschede IP, Lo K, Harris C, Lako M, Steel DH. Bruch's Membrane: A Key Consideration with Complement-Based Therapies for Age-Related Macular Degeneration. J Clin Med 2023; 12:2870. [PMID: 37109207 PMCID: PMC10145879 DOI: 10.3390/jcm12082870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The complement system is crucial for immune surveillance, providing the body's first line of defence against pathogens. However, an imbalance in its regulators can lead to inappropriate overactivation, resulting in diseases such as age-related macular degeneration (AMD), a leading cause of irreversible blindness globally affecting around 200 million people. Complement activation in AMD is believed to begin in the choriocapillaris, but it also plays a critical role in the subretinal and retinal pigment epithelium (RPE) spaces. Bruch's membrane (BrM) acts as a barrier between the retina/RPE and choroid, hindering complement protein diffusion. This impediment increases with age and AMD, leading to compartmentalisation of complement activation. In this review, we comprehensively examine the structure and function of BrM, including its age-related changes visible through in vivo imaging, and the consequences of complement dysfunction on AMD pathogenesis. We also explore the potential and limitations of various delivery routes (systemic, intravitreal, subretinal, and suprachoroidal) for safe and effective delivery of conventional and gene therapy-based complement inhibitors to treat AMD. Further research is needed to understand the diffusion of complement proteins across BrM and optimise therapeutic delivery to the retina.
Collapse
Affiliation(s)
- Sarah Hammadi
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Nikolaos Tzoumas
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| | | | - Ingrid Porpino Meschede
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Katharina Lo
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
| | - Claire Harris
- Gyroscope Therapeutics Limited, a Novartis Company, Rolling Stock Yard, 6th Floor, 188 York Way, London N7 9AS, UK
- Clinical and Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Majlinda Lako
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - David H. Steel
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Sunderland Eye Infirmary, Queen Alexandra Rd., Sunderland SR2 9H, UK
| |
Collapse
|
8
|
Teal CJ, Ho MT, Huo L, Harada H, Bahlmann LC, Léveillard T, Monnier PP, Ramachandran A, Shoichet MS. Affinity-controlled release of rod-derived cone viability factor enhances cone photoreceptor survival. Acta Biomater 2023; 161:37-49. [PMID: 36898472 DOI: 10.1016/j.actbio.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Retinitis pigmentosa (RP) is a group of genetic diseases that results in rod photoreceptor cell degeneration, which subsequently leads to cone photoreceptor cell death, impaired vision and eventual blindness. Rod-derived cone viability factor (RdCVF) is a protein which has two isoforms: a short form (RdCVF) and a long form (RdCVFL) which act on cone photoreceptors in the retina. RdCVFL protects photoreceptors by reducing hyperoxia in the retina; however, sustained delivery of RdCVFL remains challenging. We developed an affinity-controlled release strategy for RdCVFL. An injectable physical blend of hyaluronan and methylcellulose (HAMC) was covalently modified with a peptide binding partner of the Src homology 3 (SH3) domain. This domain was expressed as a fusion protein with RdCVFL, thereby enabling its controlled release from HAMC-binding peptide. Sustained release of RdCVFL was demonstrated for the first time as RdCVFL-SH3 from HAMC-binding peptide for 7 d in vitro. To assess bioactivity, chick retinal dissociates were harvested and treated with the affinity-released recombinant protein from the HAMC-binding peptide vehicle. After 6 d in culture, cone cell viability was greater when cultured with released RdCVFL-SH3 relative to controls. We utilized computational fluid dynamics to model release of RdCVFL-SH3 from our delivery vehicle in the vitreous of the human eye. We demonstrate that our delivery vehicle can prolong the bioavailability of RdCVFL-SH3 in the retina, potentially enhancing its therapeutic effects. Our affinity-based system constitutes a versatile delivery platform for ultimate intraocular injection in the treatment of retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Retinitis pigmentosa (RP) is the leading cause of inherited blindness in the world. Rod-derived cone viability factor (RdCVF), a novel protein paracrine factor, is effective in preclinical models of RP. To extend its therapeutic effects, we developed an affinity-controlled release strategy for the long form of RdCVF, RdCVFL. We expressed RdCVFL as a fusion protein with an Src homology 3 domain (SH3). We then utilized a hydrogel composed of hyaluronan and methylcellulose (HAMC) and modified it with SH3 binding peptides to investigate its release in vitro. Furthermore, we designed a mathematical model of the human eye to investigate delivery of the protein from the delivery vehicle. This work paves the way for future investigation of controlled release RdCVF.
Collapse
Affiliation(s)
- Carter J Teal
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Margaret T Ho
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Lia Huo
- Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada
| | - Laura C Bahlmann
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada
| | - Thierry Léveillard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012 Paris, France
| | - Philippe P Monnier
- Donald K. Johnson Research Institute, Krembil Research Institute, Krembil Discovery Tower, Toronto, Ontario, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arun Ramachandran
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada
| | - Molly S Shoichet
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, M5S 3G9 Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, 160 College Street, M5S3E1 Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, 1 King's College Circle, M5S 1A8 Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5 Toronto, Ontario, Canada; Department of Chemistry, University of Toronto, 80 Saint George Street, M5S 3H6 Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Hellinen L, Hongisto H, Ramsay E, Kaarniranta K, Vellonen KS, Skottman H, Ruponen M. Comparison of barrier properties of outer blood-retinal barrier models - Human stem cell-based models as a novel tool for ocular drug discovery. Eur J Pharm Biopharm 2023; 184:181-188. [PMID: 36740104 DOI: 10.1016/j.ejpb.2023.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
The retinal pigment epithelial (RPE) cell monolayer forms the outer blood-retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of RPE secondary cell lines (ARPE19, and ARPE19mel) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers. ARPE19, ARPE19mel, and hfRPE cells displayed a narrow Papp value range, with relatively high permeation rates (5.2-26 × 10-6 cm/s). In contrast, hESC-RPE cells efficiently restricted the drug flux, and displayed even lower Papp values than those reported for bovine RPE-choroid, with the range of 0.4-32 cm-6/s. Therefore, ARPE19, ARPE19mel, and hfRPE cells failed to form a tight barrier, whereas hESC-RPE cells restricted the drug flux to a similar extent as bovine RPE-choroid. Therefore, hESC-RPE cells are valuable tools in ocular drug discovery.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Heidi Hongisto
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 Kuopio, Finland.
| | - Kati-Sisko Vellonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, Tampere, Finland.
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
10
|
Kuepfer L, Fuellen G, Stahnke T. Quantitative systems pharmacology of the eye: Tools and data for ocular QSP. CPT Pharmacometrics Syst Pharmacol 2023; 12:288-299. [PMID: 36708082 PMCID: PMC10014063 DOI: 10.1002/psp4.12918] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/29/2023] Open
Abstract
Good eyesight belongs to the most-valued attributes of health, and diseases of the eye are a significant healthcare burden. Case numbers are expected to further increase in the next decades due to an aging society. The development of drugs in ophthalmology, however, is difficult due to limited accessibility of the eye, in terms of drug administration and in terms of sampling of tissues for drug pharmacokinetics (PKs) and pharmacodynamics (PDs). Ocular quantitative systems pharmacology models provide the opportunity to describe the distribution of drugs in the eye as well as the resulting drug-response in specific segments of the eye. In particular, ocular physiologically-based PK (PBPK) models are necessary to describe drug concentration levels in different regions of the eye. Further, ocular effect models using molecular data from specific cellular systems are needed to develop dose-response correlations. We here describe the current status of PK/PBPK as well as PD models for the eyes and discuss cellular systems, data repositories, as well as animal models in ophthalmology. The application of the various concepts is highlighted for the development of new treatments for postoperative fibrosis after glaucoma surgery.
Collapse
Affiliation(s)
- Lars Kuepfer
- Institute for Systems Medicine with Focus on Organ Interaction, University Hospital RWTH Aachen, Aachen, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Rostock University Medical Center, Rostock, Germany
| | - Thomas Stahnke
- Institute for ImplantTechnology and Biomaterials e.V., Rostock, Germany.,Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Bahrpeyma S, Reinisalo M, Hellinen L, Auriola S, Del Amo EM, Urtti A. Mechanisms of cellular retention of melanin bound drugs: Experiments and computational modeling. J Control Release 2022; 348:760-770. [PMID: 35738465 DOI: 10.1016/j.jconrel.2022.05.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
Melanin binding of drugs is known to increase drug concentrations and retention in pigmented eye tissues. Even though the correlation between melanin binding in vitro and exposure to pigmented eye in vivo has been shown, there is a discrepancy between rapid drug release from melanin particles in vitro and the long in vivo retention in the pigmented tissues. We investigated mechanisms and kinetics of pigment-related drug retention experimentally using isolated melanin particles from porcine retinal pigment epithelium and choroid, isolated porcine eye melanosomes, and re-pigmented ARPE-19 cells in a dynamic flow system. The experimental studies were supplemented with kinetic simulations. Affinity and capacity of levofloxacin, terazosin, papaverine, and timolol binding to melanin revealed Kd values of ≈ 50-150 μM and Bmax ≈ 40-112 nmol.mg-1. The drugs were released from melanin in <1 h (timolol) or in 6-12 h (other drugs). The drugs were released slower from the melanosomes than from melanin; the experimental differences ranged from 1.2-fold (papaverine) to 7.4-fold (timolol). Kinetic simulations supported the role of the melanosomal membrane in slowing down the release of melanin binders. In release studies from the pigmented ARPE-19 cells, drugs were released from the cellular melanin to the extracellular space in ≈ 1 day (timolol) and ≈ 11 days (levofloxacin), i.e., much slower than the release from melanin or melanosomes. Simulations of drug release from pigmented cells in the flow system matched the experimental data and enabled further sensitivity analyses. The simulations demonstrated a significant prolongation of drug retention in the cells as a function of decreasing drug permeability in the melanosomal membranes and increasing melanin content in the cells. Overall, we report the impact of cellular factors in prolonging drug retention and release from melanin-containing cells. These data and simulations will facilitate the design of melanin binding drugs with prolonged ocular actions.
Collapse
Affiliation(s)
- Sina Bahrpeyma
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, 00014, University of Helsinki, Finland.
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Eva M Del Amo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland; Faculty of Pharmacy, University of Helsinki, 00014, University of Helsinki, Finland; Institute of Chemistry, St. Petersburg State University, Petergoff, Russian Federation.
| |
Collapse
|
12
|
Bohley M, Dillinger AE, Tamm ER, Goepferich A. Targeted drug delivery to the retinal pigment epithelium: Untapped therapeutic potential for retinal diseases. Drug Discov Today 2022; 27:2497-2509. [PMID: 35654389 DOI: 10.1016/j.drudis.2022.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/19/2022]
Abstract
The retinal pigment epithelium (RPE) plays a crucial part in sight-threatening diseases. In this review, we shed light on the pivotal implication of the RPE in age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity; and explain why a paradigm shift toward targeted RPE therapy is needed to efficiently fight these retinal diseases. We provide guidance for the development of RPE-specific nanotherapeutics by giving a comprehensive overview of the possibilities and challenges of drug delivery to the RPE and highlight successful nanotherapeutic approaches targeting the RPE.
Collapse
Affiliation(s)
- Marilena Bohley
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany.
| | - Andrea E Dillinger
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Ernst R Tamm
- Department of Human Anatomy and Embryology, University of Regensburg, 93053 Regensburg, Germany
| | - Achim Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
13
|
Balhara A, Ladumor MK, Nankar RP, Syed SD, Giri S, Prasad B, Singh S. Exploration of the Plausible Mechanism of Ethambutol Induced Ocular Toxicity by Using Proteomics Informed Physiologically Based Pharmacokinetic (PBPK) Modeling. Pharm Res 2022; 39:677-689. [PMID: 35301670 DOI: 10.1007/s11095-022-03227-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Ethambutol (EMB) is a first-line anti-tubercular drug that is known to cause optic neuropathy. The exact mechanism of its eye toxicity is unknown; however, proposition is metal chelating effect of both EMB and its metabolite 2,2'-(ethylenediamino)-dibutyric acid (EDBA). The latter is formed by sequential metabolism of EMB by alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases (ALDHs). The purpose of this study was to predict the levels of drug and EDBA in the eye using physiologically based pharmacokinetic (PBPK) modeling. METHODS The PBPK model of EMB was developed using GastroPlus. The intrinsic hepatic clearance of ALDH, calculated by the model, was scaled down using proteomics data to estimate the rate of formation of EDBA in the eye. Additionally, the comparative permeability of EMB and EDBA was assessed by employing in silico and in vitro approaches. The rate of formation of EDBA in the eye and permeability data were then incorporated in a compartmental model to predict the ocular levels of EMB and EDBA. RESULTS The simulation results of compartmental model highlighted that there was an on-site formation of EDBA upon metabolism of EMB. Furthermore, in silico and in vitro studies revealed that EDBA possessed much lower permeability than EMB. These observations meant that once EDBA was formed in the eye, it was not permeated out and hence achieved higher ocular concentration. CONCLUSION The on-site formation of EDBA in the eye, its higher local concentration due to lower ocular clearance and its pre-known characteristic to chelate metal species better explains the ocular toxicity shown by EMB.
Collapse
Affiliation(s)
- Ankit Balhara
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, 160062, Punjab, India
| | - Mayur K Ladumor
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, 160062, Punjab, India.,Department of Pharmaceutics, University of Washington, Seattle, WA, 99202, USA
| | - Rakesh P Nankar
- Aurigene Discovery Technologies Ltd., Electronics City Phase II, Bengaluru, 560100, Karnataka, India
| | - Samiulla Dodheri Syed
- Aurigene Discovery Technologies Ltd., Electronics City Phase II, Bengaluru, 560100, Karnataka, India
| | - Sanjeev Giri
- Aurigene Discovery Technologies Ltd., Electronics City Phase II, Bengaluru, 560100, Karnataka, India
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, 99202, USA
| | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S Nagar, 160062, Punjab, India.
| |
Collapse
|
14
|
Booler HS, Lejeune T, Sorden S, Gruebbel MM, Schafer KA, Short B, Farman C, Ramos MF, Bennet B, Yekkala K, Atzpodien EA, Turner OC, Brassard J, Foley G. Scientific and Regulatory Policy Committee Points to Consider: Fixation, Trimming, and Sectioning of Nonrodent Eyes and Ocular Tissues for Examination in Ocular and General Toxicity Studies. Toxicol Pathol 2021; 50:235-251. [PMID: 34693851 DOI: 10.1177/01926233211047562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A Working Group of the Society of Toxicologic Pathology's Scientific and Regulatory Policy Committee conducted a technical and scientific review of current practices relating to the fixation, trimming, and sectioning of the nonrodent eye to identify key points and species-specific anatomical landmarks to consider when preparing and evaluating eyes of rabbits, dogs, minipigs, and nonhuman primates from ocular and general toxicity studies. The topics addressed in this Points to Consider article include determination of situations when more comprehensive evaluation of the globe and/or associated extraocular tissues should be implemented (expanded ocular sampling), and what constitutes expanded ocular sampling. In addition, this manuscript highlights the practical aspects of fixing, trimming, and sectioning the eye to ensure adequate histopathological evaluation of all major ocular structures, including the cone-dense areas (visual streak/macula/fovea) of the retina for rabbits, dogs, minipigs, and nonhuman primates, which is a current regulatory expectation for ocular toxicity studies.[Box: see text].
Collapse
Affiliation(s)
- Helen S Booler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | | | | | - Margarita M Gruebbel
- Experimental Pathology Laboratories, Inc. (EPL, Inc.), Research Triangle Park, NC, USA
| | | | - Brian Short
- Brian Short Consulting, LLC, Laguna Beach, CA, USA
| | | | | | | | - Krishna Yekkala
- Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Elke-Astrid Atzpodien
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Switzerland
| | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hanover, NJ, USA
| | | | | |
Collapse
|
15
|
New In Vitro-In Silico Approach for the Prediction of In Vivo Performance of Drug Combinations. Molecules 2021; 26:molecules26144257. [PMID: 34299532 PMCID: PMC8304213 DOI: 10.3390/molecules26144257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.
Collapse
|
16
|
Shivva V, Boswell CA, Rafidi H, Kelley RF, Kamath AV, Crowell SR. Antibody Format and Serum Disposition Govern Ocular Pharmacokinetics of Intravenously Administered Protein Therapeutics. Front Pharmacol 2021; 12:601569. [PMID: 34025395 PMCID: PMC8138871 DOI: 10.3389/fphar.2021.601569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/15/2021] [Indexed: 11/28/2022] Open
Abstract
Protein therapeutics have witnessed tremendous use and application in recent years in treatment of various diseases. Predicting efficacy and safety during drug discovery and translational development is a key factor for successful clinical development of these therapies. In general, drug related toxicities are predominantly driven by pharmacokinetic (PK) exposure at off-target sites. This work explores the ocular PK of intravenously administered protein therapeutics to understand impact of antibody format on off-site exposure. Species matched non-binding rabbit antibody proteins (rabFab and rabIgG) were intravenously administered to male New Zealand White rabbits at a single 1 mg bolus dose and exposure was measured up to 3 weeks. As anticipated based on absence of FcRn recycling, rabFab has relatively fast systemic PK (CL–943 mL/day and t1/2–1.93 days) compared to rabIgG (CL–18.5 mL/day and t1/2–8.93 days). Similarly, rabFab has lower absolute ocular exposure in ocular compartments (e.g., vitreous and aqueous humor) compared to rabIgG, despite higher relative exposures (measured as percent tissue partition in ocular tissues relative to serum, based on Cmax and AUC). In general, percent tissue partition based on AUC (in aqueous and vitreous humor) relative to serum exposure were 10.4 and 8.62 for rabFab respectively and 1.11 and 0.64 for rabIgG respectively. This work emphasizes size and format based ocular exposure of intravenously administered protein therapeutics. Findings from this work enable prediction of format based ocular exposure for systemically administered antibody based therapeutics and aid in selection of molecule format for clinical candidate to minimize ocular exposure.
Collapse
Affiliation(s)
- Vittal Shivva
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - C Andrew Boswell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Hanine Rafidi
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Robert F Kelley
- Pharmaceutical Development, Genentech, South San Francisco, CA, United States
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| | - Susan R Crowell
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech, South San Francisco, CA, United States
| |
Collapse
|
17
|
Williamson B, Pilla Reddy V. Blood retinal barrier and ocular pharmacokinetics: Considerations for the development of oncology drugs. Biopharm Drug Dispos 2021; 42:128-136. [PMID: 33759216 DOI: 10.1002/bdd.2276] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are an example of targeted drug therapy to treat cancer while minimizing damage to healthy tissue. In contrast to traditional oncology drugs, the toxicity profile of targeted therapies is less well understood and can include severe ocular adverse events, which are among the most common toxicity reported by these therapeutics. Inhibition of Mer receptor tyrosine kinase (MERTK) promotes innate tumor immunity by decreasing M2-macrophage polarization and efferocytosis. This mechanism offers the opportunity for targeted immunotherapy to treat cancer; however, the ocular expression of MERTK increases the difficulty for developing a targeted drug due to toxicity concerns. In this article we review the pharmacokinetic (PK) parameters and in vitro absorption, distribution, metabolism, and excretion (ADME) assays available to evaluate ocular disposition and assess the relationship between clinical PK and reported ocular events for TKIs to allow backtranslation to preclinical models. Understanding the ocular disposition in the context of PK and safety remains an evolving area and is likely to be a key aspect of developing safe and efficacious oncology drugs, devoid of ocular toxicity.
Collapse
Affiliation(s)
- Beth Williamson
- Drug Metabolism and Pharmacokinetics, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Venkatesh Pilla Reddy
- Modelling and Simulation, Early Oncology, Oncology R&D, AstraZeneca, Cambridge, UK.,Clinical Pharmacology and Quantitative Pharmacology, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
18
|
Ocular Drug Delivery to the Retina: Current Innovations and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13010108. [PMID: 33467779 PMCID: PMC7830424 DOI: 10.3390/pharmaceutics13010108] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment options for retinal diseases, such as neovascular age-related macular degeneration, diabetic retinopathy, and retinal vascular disorders, have markedly expanded following the development of anti-vascular endothelial growth factor intravitreal injection methods. However, because intravitreal treatment requires monthly or bimonthly repeat injections to achieve optimal efficacy, recent investigations have focused on extended drug delivery systems to lengthen the treatment intervals in the long term. Dose escalation and increasing molecular weight of drugs, intravitreal implants and nanoparticles, hydrogels, combined systems, and port delivery systems are presently under preclinical and clinical investigations. In addition, less invasive techniques rather than intravitreal administration routes, such as topical, subconjunctival, suprachoroidal, subretinal, and trans-scleral, have been evaluated to reduce the treatment burden. Despite the latest advancements in the field of ophthalmic pharmacology, enhancing drug efficacy with high ocular bioavailability while avoiding systemic and local adverse effects is quite challenging. Consequently, despite the performance of numerous in vitro studies, only a few techniques have translated to clinical trials. This review discusses the recent developments in ocular drug delivery to the retina, the pharmacokinetics of intravitreal drugs, efforts to extend drug efficacy in the intraocular space, minimally invasive techniques for drug delivery to the retina, and future perspectives in this field.
Collapse
|
19
|
Cancela MB, Zugbi S, Winter U, Martinez AL, Sampor C, Sgroi M, Francis JH, Garippa R, Abramson DH, Chantada G, Schaiquevich P. A decision process for drug discovery in retinoblastoma. Invest New Drugs 2020; 39:426-441. [PMID: 33200242 DOI: 10.1007/s10637-020-01030-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 11/28/2022]
Abstract
Intraocular retinoblastoma treatment has changed radically over the last decade, leading to a notable improvement in ocular survival. However, eyes that relapse remain difficult to treat, as few alternative active drugs are available. More challenging is the scenario of central nervous system (CNS) metastasis, in which almost no advancements have been made. Both clinical scenarios represent an urgent need for new drugs. Using an integrated multidisciplinary approach, we developed a decision process for prioritizing drug selection for local (intravitreal [IVi], intrathecal/intraventricular [IT/IVt]), systemic, or intra-arterial chemotherapy (IAC) treatment by means of high-throughput pharmacological screening of primary cells from two patients with intraocular tumor and CNS metastasis and a thorough database search to identify clinical and biopharmaceutical data. This process identified 169 compounds to be cytotoxic; only 8 are FDA-approved, lack serious toxicities and available for IVi administration. Four of these agents could also be delivered by IT/IVt. Twelve FDA-approved drugs were identified for systemic delivery as they are able to cross the blood-brain barrier and lack serious adverse events; four drugs are of oral usage and six compounds that lack vesicant or neurotoxicity could be delivered by IAC. We also identified promising compounds in preliminary phases of drug development including inhibitors of survivin, antiapoptotic Bcl-2 family proteins, methyltransferase, and kinesin proteins. This systematic approach may be applied more broadly to prioritize drugs to be repurposed or to identify novel hits for use in retinoblastoma treatment.
Collapse
Affiliation(s)
- María Belen Cancela
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Santiago Zugbi
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Ursula Winter
- Pathology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Ana Laura Martinez
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina
| | - Jasmine H Francis
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Ralph Garippa
- Gene Editing And Screening Core facility, Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - David H Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Institute and Cancer Center, New York, NY, 10065, USA
| | - Guillermo Chantada
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina.,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina
| | - Paula Schaiquevich
- Precision Medicine, Hospital de Pediatría JP Garrahan, 1245, Buenos Aires, Argentina. .,National Scientific and Technical Research Council, CONICET, 1425, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Bhattacharya M, Sadeghi A, Sarkhel S, Hagström M, Bahrpeyma S, Toropainen E, Auriola S, Urtti A. Release of functional dexamethasone by intracellular enzymes: A modular peptide-based strategy for ocular drug delivery. J Control Release 2020; 327:584-594. [DOI: 10.1016/j.jconrel.2020.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
|
21
|
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020; 12:E269. [PMID: 32188045 PMCID: PMC7151081 DOI: 10.3390/pharmaceutics12030269] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Conde-Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Molecular Imaging Group. University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| |
Collapse
|
22
|
Liu X, Liang X, LeCouter J, Ubhayakar S, Chen J, Cheng J, Lee T, Lubach J, Nonomiya J, Shahidi-Latham S, Quiason C, Solon E, Wright M, Hop CECA, Heffron TP. Characterization of Antineovascularization Activity and Ocular Pharmacokinetics of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Inhibitor GNE-947. Drug Metab Dispos 2020; 48:408-419. [PMID: 32132091 DOI: 10.1124/dmd.119.089763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/19/2020] [Indexed: 11/22/2022] Open
Abstract
The objectives of the present study were to characterize GNE-947 for its phosphoinositide 3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitory activities, in vitro anti-cell migration activity in human umbilical vein endothelial cells (HUVECs), in vivo antineovascularization activity in laser-induced rat choroidal neovascular (CNV) eyes, pharmacokinetics in rabbit plasma and eyes, and ocular distribution using matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) and autoradioluminography. Its PI3K and mTOR K i were 0.0005 and 0.045 µM, respectively, and its HUVEC IC50 was 0.093 µM. GNE-947 prevented neovascularization in the rat CNV model at 50 or 100 µg per eye with repeat dosing. After a single intravenous injection at 2.5 and 500 μg/kg in rabbits, its plasma terminal half-lives (t 1/2) were 9.11 and 9.59 hours, respectively. After a single intravitreal injection of a solution at 2.5 μg per eye in rabbits, its apparent t 1/2 values were 14.4, 16.3, and 23.2 hours in the plasma, vitreous humor, and aqueous humor, respectively. After a single intravitreal injection of a suspension at 33.5, 100, 200 μg per eye in rabbits, the t 1/2 were 29, 74, and 219 days in the plasma and 46, 143, and 191 days in the eyes, respectively. MALDI-IMS and autoradioluminography images show that GNE-947 did not homogenously distribute in the vitreous humor and aggregated at the injection sites after injection of the suspension, which was responsible for the long t 1/2 of the suspension because of the slow dissolution process. This hypothesis was supported by pharmacokinetic modeling analyses. In conclusion, the PI3K/mTOR inhibitor GNE-947 prevented neovascularization in a rat CNV model, with t 1/2 up to approximately 6 months after a single intravitreal injection of the suspension in rabbit eyes. SIGNIFICANCE STATEMENT: GNE-947 is a potent phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor and exhibits anti-choroidal neovascular activity in rat eyes. The duration of GNE-947 in the rabbit eyes after intravitreal injection in a solution is short, with a half-life (t 1/2) of less than a day. However, the duration after intravitreal dose of a suspension is long, with t 1/2 up to 6 months due to low solubility and slow dissolution. These results indicate that intravitreal injection of a suspension for low-solubility drugs can be used to achieve long-term drug exposure.
Collapse
Affiliation(s)
- Xingrong Liu
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Xiaorong Liang
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jenninfer LeCouter
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Savita Ubhayakar
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jacob Chen
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jay Cheng
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Tom Lee
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Joe Lubach
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Jim Nonomiya
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Sheerin Shahidi-Latham
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Cristine Quiason
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Eric Solon
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Matthew Wright
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Cornelis E C A Hop
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| | - Timothy P Heffron
- Genentech, Inc., South San Francisco, California (X.Liu., X.Lia., J.L., S.U., J.Chen, J.Cheng, T.L., J.L., J.N., S.S.-L., C.Q., E.S., M.W., C.E.C.A.H., T.P.H.) and QPS, Delaware Technology Park, Newark, Delaware (E.S.)
| |
Collapse
|
23
|
Hellinen L, Sato K, Reinisalo M, Kidron H, Rilla K, Tachikawa M, Uchida Y, Terasaki T, Urtti A. Quantitative Protein Expression in the Human Retinal Pigment Epithelium: Comparison Between Apical and Basolateral Plasma Membranes With Emphasis on Transporters. Invest Ophthalmol Vis Sci 2020; 60:5022-5034. [PMID: 31791063 DOI: 10.1167/iovs.19-27328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinal pigment epithelium (RPE) limits the xenobiotic entry from the systemic blood stream to the eye. RPE surface transporters can be important in ocular drug distribution, but it has been unclear whether they are expressed on the apical, basal, or both cellular surfaces. In this paper, we provide quantitative comparison of apical and basolateral RPE surface proteomes. Methods We separated the apical and basolateral membranes of differentiated human fetal RPE (hfRPE) cells by combining apical membrane peeling and sucrose density gradient centrifugation. The membrane fractions were analyzed with quantitative targeted absolute proteomics (QTAP) and sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH-MS) to reveal the membrane protein localization on the RPE cell surfaces. We quantitated 15 transporters in unfractionated RPE cells and scaled their expression to tissue level. Results Several proteins involved in visual cycle, cell adhesion, and ion and nutrient transport were expressed on the hfRPE plasma membranes. Most drug transporters showed similar abundance on both RPE surfaces, whereas large neutral amino acids transporter 1 (LAT1), p-glycoprotein (P-gp), and monocarboxylate transporter 1 (MCT1) showed modest apical enrichment. Many solute carriers (SLC) that are potential prodrug targets were present on both cellular surfaces, whereas putative sodium-coupled neutral amino acid transporter 7 (SNAT7) and riboflavin transporter (RFT3) were enriched on the basolateral and sodium- and chloride-dependent neutral and basic amino acid transporter (ATB0+) on the apical membrane. Conclusions Comprehensive quantitative information of the RPE surface proteomes was reported for the first time. The scientific community can use the data to further increase understanding of the RPE functions. In addition, we provide insights for transporter protein localization in the human RPE and the significance for ocular pharmacokinetics.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kazuki Sato
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of Clinical Medicine, Department of Ophthalmology, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Rilla
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.,Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.,Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
24
|
Drug Flux Across RPE Cell Models: The Hunt for An Appropriate Outer Blood-Retinal Barrier Model for Use in Early Drug Discovery. Pharmaceutics 2020; 12:pharmaceutics12020176. [PMID: 32093035 PMCID: PMC7076505 DOI: 10.3390/pharmaceutics12020176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
The retinal pigment epithelial (RPE) cell monolayer forms the outer blood–retinal barrier and has a crucial role in ocular pharmacokinetics. Although several RPE cell models are available, there have been no systematic comparisons of their barrier properties with respect to drug permeability. We compared the barrier properties of several RPE secondary cell lines (ARPE19, ARPE19mel, and LEPI) and both primary (hfRPE) and stem-cell derived RPE (hESC-RPE) cells by investigating the permeability of nine drugs (aztreonam, ciprofloxacin, dexamethasone, fluconazole, ganciclovir, ketorolac, methotrexate, voriconazole, and quinidine) across cell monolayers. ARPE19, ARPE19mel, and hfRPE cells displayed a narrow Papp value range, with relatively high permeation rates (5.2–26 × 10−6 cm/s. In contrast, hESC-RPE and LEPI cells efficiently restricted the drug flux, and displayed even lower Papp values than those reported for bovine RPE-choroid, with the range of 0.4–32 cm−6/s (hESC-RPE cells) and 0.4–29 × 10−6 cm/s, (LEPI cells). Therefore, ARPE19, ARPE19mel, and hfRPE cells failed to form a tight barrier, whereas hESC-RPE and LEPI cells restricted the drug flux to a similar extent as bovine RPE-choroid. Therefore, LEPI and hESC-RPE cells are valuable tools in ocular drug discovery.
Collapse
|
25
|
Jakubiak P, Cantrill C, Urtti A, Alvarez-Sánchez R. Establishment of an In Vitro-In Vivo Correlation for Melanin Binding and the Extension of the Ocular Half-Life of Small-Molecule Drugs. Mol Pharm 2019; 16:4890-4901. [PMID: 31670965 DOI: 10.1021/acs.molpharmaceut.9b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A large variety of drugs bind effectively to melanin, and this binding influences their ocular pharmacokinetic and distribution profiles. We aimed to establish a correlation between in vitro melanin binding and in vivo ocular pharmacokinetics (PK). The extent of melanin binding in vitro was determined for a set of model drugs; binding kinetics and binding isotherms were generated and fitted to a mechanistic model to derive the drug-melanin binding parameters (Bmax, KD, kon, and koff). In addition, in vitro ADME properties such as cellular permeability, P-glycoprotein-mediated efflux, plasma protein binding, and octanol partition coefficients were determined. Moreover, cellular uptake was measured in the nonpigmented ARPE-19 cells and in lightly pigmented human epidermal melanocytes. Finally, in vivo ocular PK studies were performed in albino and pigmented rats using intravenous injections. Substantial drug enrichment accompanied by a very long residence time was observed in pigmented ocular tissues, which could be linked to the melanin binding determined in vitro and to the intracellular drug uptake into the pigmented cells. The resulting ocular PK profile is shown to be a consequence of the interplay of melanin binding with concurrent processes such as systemic clearance, plasma protein binding, cellular permeation, P-glycoprotein efflux, pH partitioning, and tissue binding. Understanding this interplay at a mechanistic level could help in the rational design and development of new small-molecule drug candidates with the desired PK/pharmacodynamic profile to target the back of the eye.
Collapse
Affiliation(s)
- Paulina Jakubiak
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland.,School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland
| | - Carina Cantrill
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, 70211 Kuopio, Finland.,Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Rubén Alvarez-Sánchez
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland
| |
Collapse
|
26
|
Ramsay E, Hagström M, Vellonen KS, Boman S, Toropainen E, del Amo EM, Kidron H, Urtti A, Ruponen M. Role of retinal pigment epithelium permeability in drug transfer between posterior eye segment and systemic blood circulation. Eur J Pharm Biopharm 2019; 143:18-23. [DOI: 10.1016/j.ejpb.2019.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022]
|
27
|
Rimpelä AK, Reunanen S, Hagström M, Kidron H, Urtti A. Binding of Small Molecule Drugs to Porcine Vitreous Humor. Mol Pharm 2018; 15:2174-2179. [PMID: 29648838 DOI: 10.1021/acs.molpharmaceut.8b00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pharmacokinetics in the posterior eye segment has therapeutic implications due to the importance of retinal diseases in ophthalmology. In principle, drug binding to the components of the vitreous, such as proteins, collagen, or glycosaminoglycans, could prolong ocular drug retention and modify levels of pharmacologically active free drug in the posterior eye segment. Since drug binding in the vitreous has been investigated only sparsely, we studied vitreal drug binding of 35 clinical small molecule drugs. Isolated homogenized porcine vitreous and the drugs were placed in a two-compartment dialysis system that was used to separate the bound and unbound drug. Free drug concentrations and binding percentages were quantitated using LC-MS/MS. Drug binding levels varied between 21 and 74% in the fresh vitreous and 0 and 64% in the frozen vitreous. The vitreal binding percentages did not correlate with those in plasma. Our data-based pharmacokinetic simulations suggest that vitreal binding of small molecule drugs has only a modest influence on the AUC of free drug or drug half-life in the vitreous. Therefore, it is likely that vitreal binding is not a major reason for interindividual variability in ocular drug responses or drug-drug interactions.
Collapse
Affiliation(s)
- Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Saku Reunanen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Marja Hagström
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , P.O. Box 56, FI-00014 Helsinki , Finland.,School of Pharmacy , University of Eastern Finland , P.O. Box 1627, FI-70211 Kuopio , Finland
| |
Collapse
|
28
|
Bertens CJ, Gijs M, van den Biggelaar FJ, Nuijts RM. Topical drug delivery devices: A review. Exp Eye Res 2018; 168:149-160. [DOI: 10.1016/j.exer.2018.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
|
29
|
Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev 2018; 126:44-57. [PMID: 28939376 DOI: 10.1016/j.addr.2017.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/18/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Many ocular disorders leading to blindness could benefit from efficient delivery of therapeutics to the retina. However, despite extensive research into drug delivery vehicles and administration techniques, efficacy remains limited because of the many static and dynamic barriers present in the eye. Comprehension of the various barriers and especially how to overcome them can improve our ability to estimate the potential of existent drug delivery vectors and support the design of new ones. To this end, this review gives an overview of the most important ocular barriers for each administration route to the back of the eye. For each barrier, its biological composition and its role as an obstacle towards macromolecules, nanoparticles and viral vectors will be discussed; special attention will be paid to the influence of size, charge and lipophilicity of drug(s) (carrier) on their ability to overcome each barrier. Finally, the most significant available in vitro and ex vivo methods and models to test the potential of a therapeutic to cross each barrier are listed.
Collapse
|
30
|
Vellonen KS, Hellinen L, Mannermaa E, Ruponen M, Urtti A, Kidron H. Expression, activity and pharmacokinetic impact of ocular transporters. Adv Drug Deliv Rev 2018; 126:3-22. [PMID: 29248478 DOI: 10.1016/j.addr.2017.12.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/24/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
The eye is protected by several tissues that limit the permeability and entry of potentially harmful substances, but also hamper the delivery of drugs in the treatment of ocular diseases. Active transport across the ocular barriers may affect drug distribution, but the impact of drug transporters on ocular drug delivery is not well known. We have collected and critically reviewed the literature for ocular expression and activity of known drug transporters. The review concentrates on drug transporters that have been functionally characterized in ocular tissues or primary cells and on transporters for which there is available expression data at the protein level. Species differences are highlighted, since these may explain observed inconsistencies in the influence of specific transporters on drug disposition. There is variable evidence about the pharmacokinetic role of transporters in ocular tissues. The strongest evidence for the role of active transport is available for the blood-retinal barrier. We explored the role of active transport in the cornea and blood retinal barrier with pharmacokinetic simulations. The simulations show that the active transport is important only in the case of specific parameter combinations.
Collapse
|
31
|
Melanin binding study of clinical drugs with cassette dosing and rapid equilibrium dialysis inserts. Eur J Pharm Sci 2017; 109:162-168. [DOI: 10.1016/j.ejps.2017.07.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022]
|
32
|
Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2017; 6:735-754. [PMID: 27798766 DOI: 10.1007/s13346-016-0339-2] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The eye is a distinctive organ with protective anatomy and physiology. Several pharmacokinetics compartment models of ocular drug delivery have been developed for describing the absorption, distribution, and elimination of ocular drugs in the eye. Determining pharmacokinetics parameters in ocular tissues is a major challenge because of the complex anatomy and dynamic physiological barrier of the eye. In this review, pharmacokinetics of these compartments exploring different drugs, delivery systems, and routes of administration is discussed including factors affecting intraocular bioavailability. Factors such as precorneal fluid drainage, drug binding to tear proteins, systemic drug absorption, corneal factors, melanin binding, and drug metabolism render ocular delivery challenging and are elaborated in this manuscript. Several compartment models are discussed; these are developed in ocular drug delivery to study the pharmacokinetics parameters. There are several transporters present in both anterior and posterior segments of the eye which play a significant role in ocular pharmacokinetics and are summarized briefly. Moreover, several ocular pharmacokinetics animal models and relevant studies are reviewed and discussed in addition to the pharmacokinetics of various ocular formulations.
Collapse
Affiliation(s)
- Vibhuti Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Abhirup Mandal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Vivek Agrahari
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.,Bayer HealthCare LLC, Shawnee, KS, 66216, USA
| | - Hoang M Trinh
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Mary Joseph
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Animikh Ray
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Hicheme Hadji
- Faculty of Pharmacy, University of Algiers, Algiers, Algeria
| | - Ranjana Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Dhananjay Pal
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA
| | - Ashim K Mitra
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
33
|
Abstract
Existing methods of administering ocular drugs are limited in either their safety or efficiency. Nanomedicine therapies have the potential to address this deficiency by creating vehicles that can control drug biodistribution. Dendrimers are synthetic polymeric nanoparticles with a unique highly organized branching structure. In recent years, promising results using dendrimer vehicles to deliver ocular drugs through different routes of administration have been reported. In this review, we briefly summarize these results with emphasis on the dendrimer modifications used to target different ocular structures.
Collapse
Affiliation(s)
- Michael G. Lancina
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Hu Yang
- Department of Chemical & Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States
| |
Collapse
|
34
|
Pelkonen L, Sato K, Reinisalo M, Kidron H, Tachikawa M, Watanabe M, Uchida Y, Urtti A, Terasaki T. LC–MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line. Mol Pharm 2017; 14:605-613. [DOI: 10.1021/acs.molpharmaceut.6b00782] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laura Pelkonen
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Kazuki Sato
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Mika Reinisalo
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heidi Kidron
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Masanori Tachikawa
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Michitoshi Watanabe
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| | - Arto Urtti
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
- Centre
for Drug Research, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Tetsuya Terasaki
- Division
of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical
Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen KS, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res 2016; 57:134-185. [PMID: 28028001 DOI: 10.1016/j.preteyeres.2016.12.001] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022]
Abstract
Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.
Collapse
Affiliation(s)
- Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Anna-Kaisa Rimpelä
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Emma Heikkinen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Otto K Kari
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Eva Ramsay
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tatu Lajunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mechthild Schmitt
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Laura Pelkonen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Dominique Richardson
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tiina Turunen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jaakko Itkonen
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Elisa Toropainen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Marco Casteleijn
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Heidi Kidron
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|