1
|
Rabiee N, Ghadiri AM, Alinezhad V, Sedaghat A, Ahmadi S, Fatahi Y, Makvandi P, Saeb MR, Bagherzadeh M, Asadnia M, Varma RS, Lima EC. Synthesis of green benzamide-decorated UiO-66-NH 2 for biomedical applications. CHEMOSPHERE 2022; 299:134359. [PMID: 35318020 DOI: 10.1016/j.chemosphere.2022.134359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) biocompatible systems can host enzymes/bacteria/viruses. Herein we synthesized a series of fatty acid amide hydrolase (FAAH)-decorated UiO-66-NH2 based on Citrus tangerine leaf extract for drug delivery and biosensor applications. Five chemically manipulated FAAH-like benzamides were localized on the UiO-66-NH2 surface with physical interactions. Comprehensive cellular and molecular analyses were conducted on HEK-293, HeLa, HepG2, PC12, MCF-7, and HT-29 cell lines (cytotoxicity assessment after 24 and 48 h). MTT results proved above 95 and 50% relative cell viability in the absence and presence of the drug, respectively. A complete targeted drug-releasing capability of nanocarriers was demonstrated after capping with leaf extract from Citrus tangerine, with a stimuli-responsive effect in acidic media. Targeted delivery was complete to the nucleus and cytoplasm of HT-29 cell, but merely to the cytoplasm of HeLa cell lines. Nanocarrier could be targeted for drug delivery to the cytoplasm of the HeLa cell line and to both the nucleus and cytoplasm of HT-29 cell lines. MOF-based nanocarriers proved authentic in vivo towards kidney and liver tissues with targeted cancerous cells efficiently. Besides, FAAH-like molecules revealed optical biosensor potential with high selectivity (even ˂5 nM LOD) towards ssDNA, sgRNA, and Anti-cas9 proteins.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran; School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | | | - Vida Alinezhad
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Anna Sedaghat
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Ahmadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 14155-6451, Iran
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12 80-233, Gdańsk, Poland
| | | | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Rajender S Varma
- Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Av. Bento Goncalves 9500, Postal Box, 15003, ZIP, 91501-970, Brazil.
| |
Collapse
|
2
|
Halas G, Schultz ASH, Rothney J, Wener P, Holmqvist M, Cohen B, Kosowan L, Enns JE, Katz A. A Scoping Review of Foci, Trends, and Gaps in Reviews of Tobacco Control Research. Nicotine Tob Res 2020; 22:599-612. [PMID: 30715468 DOI: 10.1093/ntr/nty269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The burden of disease associated with tobacco use has prompted a substantial increase in tobacco-related research, but the breadth of this literature has not been comprehensively examined. This review examines the nature of the research addressing the action areas in World Health Organization's Framework Convention on Tobacco Control (FCTC), the populations targeted and how equity-related concepts are integrated. METHOD A scoping review of published reviews addressing tobacco control within the primary prevention domain. We searched PubMed, Scopus, Cumulative Index to Nursing and Allied Health Literature, Cochrane Library, Educational Resources Information Centre, and PsycInfo from 2004 to 2018. RESULTS The scoping review of reviews offered a "birds-eye-view" of the tobacco control literature. Within the 681 reviews meeting inclusion criteria, there was a strong focus on smoking cessation targeting individuals; less attention has been given to product regulation, packaging, and labeling or sales to minors. Equity-related concepts were addressed in 167/681 (24.5%); few were focused on addressing inequity through structural and systemic root causes. CONCLUSION This analysis of foci, trends, and gaps in the research pursuant to the FCTC illustrated the particular action areas and populations most frequently addressed in tobacco control research. Further research is needed to address: (1) underlying social influences, (2) particular action areas and with specific populations, and (3) sustained tobacco use through the influence of novel marketing and product innovations by tobacco industry. IMPLICATIONS This scoping review of the breadth of tobacco control research reviews enables a better understanding of which action areas and target populations have been addressed in the research. Our findings alongside recommendations from other reviews suggest prioritizing further research to support policymaking and considering the role of the tobacco industry in circumventing tobacco control efforts. The large amount of research targeting individual cessation would suggest there is a need to move beyond a focus on individual choice and decontextualized behaviors. Also, given the majority of reviews that simply recognize or describe disparity, further research that integrates equity and targets various forms of social exclusion and discrimination is needed and may benefit from working in collaboration with communities where programs can be tailored to need and context.
Collapse
Affiliation(s)
- Gayle Halas
- Department of Family Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Annette S H Schultz
- College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Janet Rothney
- Neil John Maclean Health Sciences Library, University of Manitoba, Winnipeg, MB, Canada
| | - Pamela Wener
- Department of Occupational Therapy, College of Rehabilitation Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Maxine Holmqvist
- Department of Clinical Health Psychology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Benita Cohen
- College of Nursing, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Leanne Kosowan
- Department of Family Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jennifer E Enns
- Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alan Katz
- Department of Family Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Community Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Nawaz W, Xu S, Li Y, Huang B, Wu X, Wu Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater 2020; 109:21-36. [PMID: 32294554 DOI: 10.1016/j.actbio.2020.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/29/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
Chimeric antigen receptor (CAR) therapy has achieved remarkable clinical efficacy against hematological cancers and has been approved by FDA for treatment of B-cell tumors. However, the complex manufacturing process and limited success in solid tumors hamper its widespread applications, thus prompting the development of new strategies for overcoming the abovementioned hurdles. In the last decade, nanotechnology has provided sustainable strategies for improving cancer immunotherapy through vaccine development and delivery of immunomodulatory drugs. Nanotechnology can boost CAR-T therapy and may overcome the existing challenges by emerging as a carrier for CAR-T therapy or in combination with CAR-T, it may inhibit solid tumors more effectively than conventional approaches. The revealing of cellular mechanisms, barriers and potential strategies that could be used to manipulate and/or modify cells would enable unprecedented advances in nanotechnology for biologics delivery. This review outlines the journey and barriers of nanoparticles (NPs) across the cell. Subsequently, the approaches to tackle the barriers and strategies to modulate NPs as a carrier for CAR-T therapy are discussed. Finally, the role of NPs in CAR-T therapy and the potential challenges are summarized. This review aims to provide the readers with a detailed overview of NP-based CAR-T therapy research and distil this information into an accessible form conducive to design desired CAR-T therapy using NP approach. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor (CAR) T-cell therapy is the most vibrant field in immuno-oncology today, with enormous benefits to patients with B-cell malignancies. However, a rapid and straightforward procedure for CAR-T generation is an exigent need to broaden its therapeutic avenue. Nanotechnology has emerged as a novel alternative approach for CAR-T generation. To the best of our knowledge, this is the first in-depth review that briefly highlights the various aspects of nanotechnology in CAR-T therapy, including the strategies to brand NPs as an effective carrier for CAR cargo, its potential advantages, challenges, and future roadmap. It provides readers with a detailed overview of NP-based CAR-T therapy research, and researchers would be able to distill this information into an accessible form conducive to design the desired CAR therapy using the nanotechnology approach.
Collapse
|
4
|
Zhou Z, Liu Y, Wu L, Li L, Huang Y. Enhanced nuclear delivery of anti-cancer drugs using micelles containing releasable membrane fusion peptide and nuclear-targeting retinoic acid. J Mater Chem B 2017; 5:7175-7185. [PMID: 32263908 DOI: 10.1039/c7tb01177f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biodegradable cross-linked N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer micelles can improve the accumulation of drug cargo in tumors by prolonging their circulation time. However, drug delivery can still be ineffective because of intracellular degradation in lysosomes and poor delivery to the nucleus. In this work, we prepared a novel micelle by grafting the hydrophobic HA2 membrane fusion peptide onto hydrophilic HPMA copolymers via a linker that would be cleaved in lysosomes, allowing the HA2 peptide to be released and disrupt lysosome membranes. In addition, we conjugated the drug cargo (H1 peptide) to nucleus-targeting all-trans retinoic acid, and then encapsulated the conjugates into micelles. The drug-loaded micelles efficiently escaped lysosomes and targeted the nucleus in MCF-7 breast cancer cells in culture. They also strongly inhibited tumor growth in mice bearing MCF-7 tumor xenografts, without causing appreciable systemic toxicity. Removing the retinoic acid or preventing the cleavage of HA2 resulted in extremely inefficient lysosomal escape and nuclear delivery, translating into low anti-cancer efficacy in vitro and in vivo. These results suggest that micelle modifications to evade lysosomes and target the nucleus can improve the efficacy of anti-cancer drugs. Our results further suggest that the ability to escape lysosomes improves the nuclear distribution of drug cargos more than the addition of the nuclear-targeting retinoic acid.
Collapse
Affiliation(s)
- Zhou Zhou
- West China School of Pharmacy, Sichuan University. No. 17, Block 3, Southern Renmin Road, Chengdu 610041, P. R. China.
| | | | | | | | | |
Collapse
|