1
|
Tang MDQ, Tran NB, Nguyen THT, Nguyen KUH, Trinh NT, Van Vo T, Kobayashi M, Yoshitomi T, Nagasaki Y, Vong LB. Development of oral pH-sensitive redox nanotherapeutics for gastric ulcer therapy. J Control Release 2024; 375:758-766. [PMID: 39326501 DOI: 10.1016/j.jconrel.2024.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Gastric ulcer is a common gastrointestinal disorder worldwide. Although its pathogenesis is unclear, the overproduction of reactive oxygen species (ROS), which results in an oxidative imbalance, has been reported as a central driving mechanism. Within the scope of this investigation, we developed two different self-assembling redox nanoparticles (RNPs) with ROS-scavenging features for the oral treatment of gastric ulcers. One of them, referred to as RNPN, disintegrates in response to acidic pH, whereas the other, denoted as RNPO, remains intact regardless of pH variations. Both types of RNPs showed different free radical scavenging activities in vitro. Protonation of the amino linkages in the side chains of RNPN caused the micelle structure to collapse and the nitroxide radicals encapsulated in the core were exposed to the outside, resulting in a significant increase in antioxidant capacity as the pH decreases. In contrast, RNPO maintained its spherical structure and consistent antioxidant reactivity irrespective of pH changes. The in vivo gastric retention of orally administered RNPN was significantly improved compared to that of RNPO which might be explained by the increased exposure of cationic protonating segments in RNPN on the negatively charged gastric mucosal surface. Owing to its improved gastric retention and enhanced ROS scavenging capacity under acidic pH conditions, RNPN exhibited superior protective effects against oxidative stress induced by aspirin in a gastric ulcer mouse model compared to RNPO. In addition, neither RNPN nor RNPO resulted in severe lethal effects or significant changes in the morphology of zebrafish embryos, indicating their biosafety. Our results suggest that the oral administration of RNPs has a high therapeutic potential for gastric ulcer treatment.
Collapse
Affiliation(s)
- Minh-Dat Quoc Tang
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Nhi Bao Tran
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Khanh-Uyen Hoang Nguyen
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam; Faculty of Biology and Biotechnology, University of Science Ho Chi Minh 700000, Viet Nam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam
| | - Makoto Kobayashi
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Toru Yoshitomi
- Research Center for Macromolecules and Biomaterials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation and Earth System Science (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8654, Japan; High-Value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Viet Nam.
| |
Collapse
|
2
|
Deena Dayal S, Pushpa Rani V, Antony Prabhu D, Rajeshkumar S, David D, Francis J. Formulation and evaluation of Phaseolus lunatus seed coat mediated silver nanoparticles mouthwash: A comprehensive study on biomedical properties and toxicological assessment. Microb Pathog 2024; 197:107033. [PMID: 39433140 DOI: 10.1016/j.micpath.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Silver nanoparticles have promising therapeutic potential in the field of dentistry, as newly emerging oral therapeutics, in the form of mouthwashes based on silver nanoparticles, demonstrate significant potential for enhancing oral management thus the present investigation aims to formulate silver nanoparticles-based mouthwash from an aqueous extract of Phaseolus lunatus seed coat (PLSC) and evaluate its biomedical properties. The green synthesized AgNPs in the mouthwash were characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD). The formulated mouthwash was assessed for its anti-microbial activity using the agar well diffusion technique and time-kill curve assay. Its anti-inflammatory and anti-oxidant activities are assessed through egg albumin assay and hydrogen peroxide assays. The Cytotoxic effect of formulated mouthwash was assessed through a brine shrimp lethality assay and MTT assay over the human osteoblast cell line (MG-63). Furthermore, the study also assessed the toxicity effect of formulated mouthwash through zebrafish embryos. The results suggest that the green synthesized AgNPs were spherical and had an average size of 42 nm and the formulated mouthwash exhibited significant anti-microbial activity, anti-inflammatory, and antioxidant properties, making them a better candidate for oral health therapeutics. The Zebrafish embryo toxicology studies of mouthwash revealed a consistent lack of abnormalities and a good viability and hatchability rate and the cytotoxic effect shows less toxicity over brine shrimp and human osteoblast cells. In conclusion, PLSC-AgNPs mouthwash is a potential oral therapeutic option with minimal toxicity for better oral management.
Collapse
Affiliation(s)
- S Deena Dayal
- Department of Advanced Zoology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600034, Tamil Nadu, India
| | - V Pushpa Rani
- Department of Advanced Zoology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600034, Tamil Nadu, India.
| | - D Antony Prabhu
- Department of Advanced Zoology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600034, Tamil Nadu, India.
| | - Shanmugam Rajeshkumar
- Nanobiomedicine lab, Centre for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India.
| | - Deon David
- Department of Advanced Zoology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600034, Tamil Nadu, India
| | - Jofy Francis
- Department of Advanced Zoology and Biotechnology & Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, 600034, Tamil Nadu, India
| |
Collapse
|
3
|
Havelikar U, Ghorpade KB, Kumar A, Patel A, Singh M, Banjare N, Gupta PN. Comprehensive insights into mechanism of nanotoxicity, assessment methods and regulatory challenges of nanomedicines. DISCOVER NANO 2024; 19:165. [PMID: 39365367 PMCID: PMC11452581 DOI: 10.1186/s11671-024-04118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Nanomedicine has the potential to transform healthcare by offering targeted therapies, precise diagnostics, and enhanced drug delivery systems. The National Institutes of Health has coined the term "nanomedicine" to describe the use of nanotechnology in biological system monitoring, control, diagnosis, and treatment. Nanomedicine continues to receive increasing interest for the rationalized delivery of therapeutics and pharmaceutical agents to achieve the required response while reducing its side effects. However, as nanotechnology continues to advance, concerns about its potential toxicological effects have also grown. This review explores the current state of nanomedicine, focusing on the types of nanoparticles used and their associated properties that contribute to nanotoxicity. It examines the mechanisms through which nanoparticles exert toxicity, encompassing various cellular and molecular interactions. Furthermore, it discusses the assessment methods employed to evaluate nanotoxicity, encompassing in-vitro and in-vivo models, as well as emerging techniques. The review also addresses the regulatory issues surrounding nanotoxicology, highlighting the challenges in developing standardized guidelines and ensuring the secure translation of nanomedicine into clinical settings. It also explores into the challenges and ethical issues associated with nanotoxicology, as understanding the safety profile of nanoparticles is essential for their effective translation into therapeutic applications.
Collapse
Affiliation(s)
- Ujwal Havelikar
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Kabirdas B Ghorpade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow, Uttar Pradesh, 226002, India
| | - Akhilesh Patel
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Manisha Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nagma Banjare
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Prem N Gupta
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
4
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
5
|
Toriumi T, Ohmori H, Nagasaki Y. Design of Antioxidant Nanoparticle, which Selectively Locates and Scavenges Reactive Oxygen Species in the Gastrointestinal Tract, Increasing The Running Time of Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301159. [PMID: 37526346 PMCID: PMC10520625 DOI: 10.1002/advs.202301159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Indexed: 08/02/2023]
Abstract
Excess reactive oxygen species (ROS) produced during strong or unfamiliar exercise cause exercise-induced gastrointestinal syndrome (EIGS), leading to poor health and decreased exercise performance. The application of conventional antioxidants can neither ameliorate EIGS nor improve exercise performance because of their rapid elimination and severe side effects on the mitochondria. Hence, a self-assembling nanoparticle-type antioxidant (RNPO ) that is selectively located in the gastrointestinal (GI) tract for an extended time after oral administration is developed. Interestingly, orally administered RNPO significantly enhances the running time until exhaustion in mice with increasing dosage, whereas conventional antioxidants (TEMPOL) tends to reduce the running time with increasing dosage. The running (control) and TEMPOL groups show severe damage in the GI tract and increased plasma lipopolysaccharide (LPS) levels after 80 min of running, resulting in fewer red blood cells (RBCs) and severe damage to the skeletal muscles and liver. However, the RNPO group is protected against GI tract damage and elevation of plasma LPS levels, similar to the nonrunning (sedentary) group, which prevents damage to the whole body, unlike in the control and TEMPOL groups. Based on these results, it is concluded that continuous scavenging of excessive intestinal ROS protects against gut damage and further improves exercise performance.
Collapse
Affiliation(s)
- Takuto Toriumi
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
| | - Hajime Ohmori
- University of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Faculty of Business Information SciencesJobu UniversityToyazukamachi 634‐1IsesakiGunma372‐8588Japan
| | - Yukio Nagasaki
- Department of Materials ScienceFaculty of Pure and Applied SciencesUniversity of Tsukuba1‐1‐1 TennoudaiTsukubaIbaraki305‐8573Japan
- Master's School of Medical SciencesGraduate School of Comprehensive Human SciencesUniversity of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Center for Research in Radiation, Isotope and Earth System Sciences (CRiES)University of TsukubaTennoudai 1‐1‐1TsukubaIbaraki305‐8573Japan
- Department of ChemistryGraduate School of ScienceThe University of TokyoHongo 7‐3‐1Bunkyo‐kuTokyo113‐8654Japan
| |
Collapse
|
6
|
Hirata K, Marushima A, Nagasaki Y, Ishikawa H, Matsumura H, Mujagić A, Hirayama A, Toyomura J, Ohyama A, Takaoka S, Bukawa H, Matsumura A, Ishikawa E, Matsumaru Y. Efficacy of redox nanoparticles for improving survival of transplanted cells in a mouse model of ischemic stroke. Hum Cell 2023; 36:1703-1715. [PMID: 37418231 DOI: 10.1007/s13577-023-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
The success of cell transplantation therapy for ischemic stroke is hindered by the low cell survival rate in poststroke brain, due in part to high free radical production and ensuing oxidative stress. We have developed redox nanoparticles to eliminate reactive oxygen species. In this study, we tested the protective efficacy of these redox nanoparticles in cell culture and a mouse model of ischemic stroke. Induced human dental pulp stem cells were subjected to oxygen-glucose deprivation and reoxygenation to recapitulate ischemia and reperfusion in the penumbra surrounding a cerebral infarct. Cell viability using WST-8 assay, apoptosis using TUNEL, free radicals using MitoSOX, and inflammatory cytokines using ELISA kit were measured in the presence and absence of redox nanoparticles after oxygen-glucose deprivation and reoxygenation. The scavenging activity of redox nanoparticles against reactive oxygen species was detected by electron spin resonance. Moreover, induced cells were transplanted intracerebrally into to the distal middle cerebral artery occlusion model with and without redox nanoparticles, and the survival rate measured. Cell viability was enhanced, while apoptosis, free radical generation, and inflammatory cytokine expression levels were reduced in cultures with redox nanoparticles. Further, reduced redox nanoparticles were detected in the cytoplasm, indicating free radical scavenging. Addition of redox nanoparticles also improved the survival rate of transplanted cells after 6 weeks in vivo. These redox nanoparticles may increase the applicability and success of induced stem cell therapy for ischemic stroke patents by promoting long-term survival.
Collapse
Affiliation(s)
- Koji Hirata
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Aiki Marushima
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan.
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hideaki Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Arnela Mujagić
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Aki Hirayama
- Center for Integrative Medicine, Tsukuba University of Technology, Kasuga 4-12-7, Tsukuba, Ibaraki, Japan
| | - Junko Toyomura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Akihiro Ohyama
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Shohei Takaoka
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| | - Yuji Matsumaru
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Koda Y, Nagasaki Y. Newly Designed Cysteine-Based Self-Assembling Prodrugs for Sepsis Treatment. Pharmaceutics 2023; 15:1775. [PMID: 37376222 DOI: 10.3390/pharmaceutics15061775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are essential signaling molecules that maintain intracellular redox balance; however, the overproduction of ROS often causes dysfunction in redox homeostasis and induces serious diseases. Antioxidants are crucial candidates for reducing overproduced ROS; however, most antioxidants are less effective than anticipated. Therefore, we designed new polymer-based antioxidants based on the natural amino acid, cysteine (Cys). Amphiphilic block copolymers, composed of a hydrophilic poly(ethylene glycol) (PEG) segment and a hydrophobic poly(cysteine) (PCys) segment, were synthesized. In the PCys segment, the free thiol groups in the side chain were protected by thioester moiety. The obtained block copolymers formed self-assembling nanoparticles (NanoCys(Bu)) in water, and the hydrodynamic diameter was 40-160 nm, as determined by dynamic light scattering (DLS) measurements. NanoCys(Bu) was stable from pH 2 to 8 under aqueous conditions, as confirmed by the hydrodynamic diameter of NanoCys(Bu). Finally, NanoCys(Bu) was applied to sepsis treatment to investigate the potential of NanoCys(Bu). NanoCys(Bu) was supplied to BALB/cA mice by free drinking for two days, and lipopolysaccharide (LPS) was intraperitoneally injected into the mice to prepare a sepsis shock model (LPS = 5 mg per kg body weight (BW)). Compared with the Cys and no-treatment groups, NanoCys(Bu) prolonged the half-life by five to six hours. NanoCys(Bu), designed in this study, shows promise as a candidate for enhancing antioxidative efficacy and mitigating the adverse effect of cysteine.
Collapse
Affiliation(s)
- Yuta Koda
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
- School of Medical Sciences, School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
- Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| |
Collapse
|
8
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
9
|
Oh JY, Kim JS, Lee JS, Jeon YJ. Antioxidant activity of olive flounder ( Paralichthya olivaceus) surimi digest in in vitro and in vivo. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2071-2079. [PMID: 35531393 PMCID: PMC9046524 DOI: 10.1007/s13197-021-05221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 05/03/2023]
Abstract
Surimi is refined myofibrillar proteins of fish, which are materials of processed seafood products. However, the health-related outcomes associated with surimi consumption need further investigation. Given the high valued impact of surimi in the functional food industry, the study aims to evaluate its digest with regard to antioxidant potential to understand health benefits raised by surimi consumption. Paralichthys olivaceus surimi digest (POSD) showed a significant DPPH and alkyl radical scavenging activity and protective effects against 2,20-azobis (2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidative stressed Vero cells with a significant increasing cell viability and decreasing apoptosis. It also dramatically suppressed the production of reactive oxygen species and lipid peroxidation as well as prevented cell death and down-regulated pro-apoptotic genes at the mRNA levels in AAPH-stimulated zebrafish. This study reports the protective effects against oxidative stressed cells and zebrafish by a strong antioxidant activity of POSD. Therefore, surimi consumption could be a potential benefit in the prevention of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jae-Young Oh
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan, 46083 Republic of Korea
| | - Jin-Soo Kim
- Department of Seafood and Aquaculture Science/Institute of Marine Industry, Gyeongsang National University, Tongyeong, 53064 Korea
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong, 53064 Korea
| | - Jung-Suck Lee
- Research Center for Industrial Development of Seafood, Gyeongsang National University, Tongyeong, 53064 Korea
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243 Republic of Korea
| |
Collapse
|
10
|
Huang Y, Wang Z, Peng Y, Xu R, Yan J, Xiong C, Ma J, Zhong K, Lu H. Carboxin can induce cardiotoxicity in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113318. [PMID: 35182799 DOI: 10.1016/j.ecoenv.2022.113318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Carboxin is a heterocyclic systemic fungicide, mainly used to prevent and control grain smut and wheat rust. Although its mammalian toxicity has been reported, its toxicity to acute exposure to aquatic animals is unknown. In our study, we used zebrafish as aquatic organisms to study Carboxin toxicity. Carboxin can cause developmental toxicity and cardiotoxicity in zebrafish embryos. Histopathological staining of cardiac sections reveals structural changes in zebrafish hearts, and fluorescence quantitative PCR results shows the heart developmental genes mRNA expression levels were disrupted significantly. Besides, carboxin can also cause oxidative stress and reactive oxygen species (ROS) accumulation in zebrafish embryos. The accumulation of ROS causes mitochondrial damage, which is where ATP energy is produced. So ATPase activities and gene expression level were measured and significantly decreased after exposure to carboxin. From the confocal images, the number of blood cells in the heart were decreased significantly after carboxin exposure. Besides, Carboxin exposure can inhibit myocardial cell proliferation. These are all causes to the heart failure, eventually leading to embryos death.
Collapse
Affiliation(s)
- Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Ziqin Wang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuyang Peng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Rong Xu
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi, China
| | - Jiajie Yan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Cong Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Keyuan Zhong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China.
| |
Collapse
|
11
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
12
|
Abstract
Significance: Ischemia-reperfusion (IR) injury is a major component of severe damage in vascular occlusion during stroke, myocardial infarction, surgery, and organ transplantation, and is exacerbated by the excessive generation of reactive oxygen species (ROS), which occurs particularly during reperfusion. With the aging of the population, IR injury is becoming a serious problem in various organs, such as the kidney, brain, and heart, as well as in the mesenteric capillaries. Recent Advances: To prevent reperfusion injuries, natural and synthetic low-molecular-weight (LMW) antioxidants have been well studied. Critical Issues: However, these LMW antioxidants have various problems, including adverse effects due to excessive cellular uptake and their rapid clearance by the kidney, and cannot fully exert their potent antioxidant capacity in vivo. Future Directions: To overcome these problems, we designed and developed redox polymers with antioxidants covalently conjugated with them. These polymers self-assemble into nanoparticles in aqueous media, referred to as redox nanoparticles (RNPs). RNPs suppress their uptake into normal cells, accumulate at inflammation sites, and effectively scavenge ROS in damaged tissues. We had developed two types of RNPs: RNPN, which disintegrates in response to acidic pH; and RNPO, which does not collapse, regardless of the environmental pH. Utilizing the pH-sensitive and -insensitive characteristics of RNPN and RNPO, respectively, RNPs were found to exhibit remarkable therapeutic effects on various oxidative stress disorders, including IR injuries. Thus, RNPs are promising nanomedicines for use as next-generation antioxidants. This review summarizes the therapeutic impacts of RNPs in the treatment of kidney, cerebral, myocardial, and intestinal IR injuries. Antioxid. Redox Signal. 36, 70-80.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan.,Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
13
|
Guan Y, Yao W, Yi K, Zheng C, Lv S, Tao Y, Hei Z, Li M. Nanotheranostics for the Management of Hepatic Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007727. [PMID: 33852769 DOI: 10.1002/smll.202007727] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Hepatic ischemia-reperfusion injury (IRI), in which an insufficient oxygen supply followed by reperfusion leads to an inflammatory network and oxidative stress in disease tissue to cause cell death, always occurs after liver transplantations and sections. Although pharmacological treatments favorably prevent or protect the liver against experimental IRI, there have been few successes in clinical applications for patient benefits because of the incomprehension of complicated IRI-induced signaling events as well as short blood circulation time, poor solubility, and severe side reactions of most antioxidants and anti-inflammatory drugs. Nanomaterials can achieve targeted delivery and controllable release of contrast agents and therapeutic drugs in desired hepatic IRI regions for enhanced imaging sensitivity and improved therapeutic effects, emerging as novel alternative approaches for hepatic IRI diagnosis and therapy. In this review, the application of nanotechnology is summarized in the management of hepatic IRI, including nanomaterial-assisted hepatic IRI diagnosis, nanoparticulate systems-mediated remission of reactive oxygen species-induced tissue injury, and nanoparticle-based targeted drug delivery systems for the alleviation of IRI-related inflammation. The current challenges and future perspectives of these nanoenabled strategies for hepatic IRI treatment are also discussed.
Collapse
Affiliation(s)
- Yu Guan
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Weifeng Yao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Ziqing Hei
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| |
Collapse
|
14
|
Kim A, Yonemoto C, Feliciano CP, Shashni B, Nagasaki Y. Antioxidant Nanomedicine Significantly Enhances the Survival Benefit of Radiation Cancer Therapy by Mitigating Oxidative Stress-Induced Side Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008210. [PMID: 33860635 DOI: 10.1002/smll.202008210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress-induced off-target effects limit the therapeutic window of radiation therapy. Although many antioxidants have been evaluated as radioprotective agents, none of them are in widespread clinical use, owing to the side effects of the antioxidants themselves and the lack of apparent benefit. Aiming for a truly effective radioprotective agent in radiation cancer therapy, the performance of a self-assembling antioxidant nanoparticle (herein denoted as redox nanoparticle; RNP) is evaluated in the local irradiation of a subcutaneous tumor-bearing mouse model. Since RNP is covered with a biocompatible shell layer and possesses a core-shell type structure of several tens of nanometers in size, its lifetime in the systemic circulation is prolonged. Moreover, since 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), one of the most potent antioxidants, is covalently encapsulated in the core of RNP, it exerts intense antioxidant activity and induces fewer adverse effects by avoiding leakage of the TEMPO molecules. Preadministration of RNP to the mouse model effectively mitigates side effects in normal tissues and significantly extends the survival benefit of radiation cancer therapy. Moreover, RNP pretreatment noticeably increases the apoptosis/necrosis ratio of radiation-induced cell death, a highly desirable property to reduce the chronic side effects of ionizing irradiation.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chiaki Yonemoto
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chitho P Feliciano
- Radiation Research Center (RRC), Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
- Health Physics Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
15
|
Toriumi T, Kim A, Komine S, Miura I, Nagayama S, Ohmori H, Nagasaki Y. An Antioxidant Nanoparticle Enhances Exercise Performance in Rat High-intensity Running Models. Adv Healthc Mater 2021; 10:e2100067. [PMID: 33660940 DOI: 10.1002/adhm.202100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/02/2021] [Indexed: 11/10/2022]
Abstract
Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.
Collapse
Affiliation(s)
- Takuto Toriumi
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
| | - Ahram Kim
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
| | - Shoichi Komine
- Faculty of Health and Sport Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
- Faculty of Medicine University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Department of Acupuncture and Moxibustion Faculty of Human Care Teikyo Heisei University Higashi Ikebukuro 2‐51‐4, Toshima‐ku Tokyo 170‐8445 Japan
| | - Ikuru Miura
- Doctoral Program in Sports Medicine Graduate School of Comprehensive Human Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8577 Japan
| | - Suminori Nagayama
- Master's Program in Sports Medicine Graduate School of Comprehensive Human Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
| | - Hajime Ohmori
- Faculty of Health and Sport Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8574 Japan
| | - Yukio Nagasaki
- Department of Materials Science Graduate School of Pure and Applied Science University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Master's Program in Medical Sciences University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8573 Japan
- Center for Research in Isotopes and Environmental Dynamics University of Tsukuba Tennodai 1‐1‐1 Tsukuba Ibaraki 305‐8577 Japan
| |
Collapse
|
16
|
Shashni B, Nagasaki Y. Newly Developed Self-Assembling Antioxidants as Potential Therapeutics for the Cancers. J Pers Med 2021; 11:jpm11020092. [PMID: 33540693 PMCID: PMC7912983 DOI: 10.3390/jpm11020092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Elevated reactive oxygen species (ROS) have been implicated as significant for cancer survival by functioning as oncogene activators and secondary messengers. Hence, the attenuation of ROS-signaling pathways in cancer by antioxidants seems a suitable therapeutic regime for targeting cancers. Low molecular weight (LMW) antioxidants such as 2,2,6,6-tetramethylpyperidine-1-oxyl (TEMPO), although they are catalytically effective in vitro, exerts off-target effects in vivo due to their size, thus, limiting their clinical use. Here, we discuss the superior impacts of our TEMPO radical-conjugated self-assembling antioxidant nanoparticle (RNP) compared to the LMW counterpart in terms of pharmacokinetics, therapeutic effect, and adverse effects in various cancer models.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan;
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan;
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Correspondence: ; Fax: +81-(0)29-853-5750
| |
Collapse
|
17
|
Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021; 269:120645. [PMID: 33453633 DOI: 10.1016/j.biomaterials.2020.120645] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/18/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022]
Abstract
In cancer, angiogenesis is a critical phenomenon of nascent blood vessel development to facilitate the oxygen and nutrient supply prerequisite for tumor progression. Therefore, targeting tumors at the angiogenesis step may be significant to prevent their advanced progression and metastasis. Although angiogenesis inhibitors can limit the further growth of tumors, complete eradication of tumors may not be possible by monotherapy alone. Therefore, a therapeutic regimen targeting both tumor growth and its vasculature is essential. Because reactive oxygen species (ROS) are fundamental to both angiogenesis and tumor growth, the use of antioxidants may be an effective dual approach to inhibit tumors. We previously confirmed that our original antioxidant nitroxide radical-containing nanoparticles (RNPs) such as pH-sensitive RNPN, and pH-insensitive RNPO, effectively attenuates the tumorigenic and metastasis potentials of triple-negative breast cancer. In this study, we further investigated the efficacy of RNPs to limit the tumor progression by inhibiting the ROS-regulated cancer angiogenesis in a triple-negative breast cancer model. Here, we confirmed that RNPs significantly inhibited in vitro angiogenesis, attributed to the downregulation of the ROS-regulated angiogenesis inducer, vascular endothelial growth factor (VEGF) in the breast cancer cell line (MDA-MB231) and human umbilical vein endothelial cells (HUVEC), which was consistent with decreased cellular ROS. TEMPOL, a low-molecular-weight (LMW) control antioxidant, exhibited anti-angiogenic effects accompanied by cytotoxicity to the endothelial cells. In an in vivo xenograft model for breast cancer, RNPs exerted significant anti-tumor effect due to the decreased expression of tumor VEGF, which prevented accumulation of the endothelial cells. It should be noted that such efficacy of RNPs was obtained with negligible off-target effects. On the other hand, TEMPOL, because of its size, exerted anti-angiogenesis effect accompanied with injuries to the kidneys, which corroborated with previous reports. Our findings imply that RNPs are more potential antioxidants than their LMW counterparts, such as TEMPOL, for the management of breast cancers.
Collapse
|
18
|
Nguyen THT, Trinh NT, Tran HN, Tran HT, Le PQ, Ngo DN, Tran-Van H, Van Vo T, Vong LB, Nagasaki Y. Improving silymarin oral bioavailability using silica-installed redox nanoparticle to suppress inflammatory bowel disease. J Control Release 2020; 331:515-524. [PMID: 33616078 DOI: 10.1016/j.jconrel.2020.10.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/30/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022]
Abstract
Chronic inflammatory diseases such as inflammatory bowel diseases (IBD), which are strongly related to the overproduction of reactive oxygen species (ROS), have become more threatening to health. Silymarin is an active compound with the effect of expressing anti-inflammatory activity; however, it exhibits poor bioavailability due to the rapid metabolism and secretion, low permeability across the intestinal epithelial cells, and poor water solubility. In this study, we developed silica-containing redox nanoparticles (siRNP) with 50-60 nm in diameter to improve the bioavailability of silymarin by improving its uptake into the bloodstream and delivery to the targeted tissues of the colon. Silymarin-loaded siRNP (SM@siRNP) significantly increased the antioxidant capacity and anti-inflammatory efficacy in vitro by scavenging 2,2-diphenyl-1-picrylhydrazyl free radical and suppressing nitric oxide and pro-inflammatory cytokines as compared to the other treatments such as free silymarin, siRNP, and silymarin-loaded si-nRNP (the control nanoparticle without ROS scavenging property). Orally administered SM@siRNP significantly improved the bioavailability of silymarin and its retention in the colonic mucosa. The anti-inflammatory effects of SM@siRNP were also investigated in dextran sodium sulfate (DSS)-induced colitis in mice and it was observed that SM@siRNP treatment significantly improved the damage in the colonic mucosa of DSS colitis mice as compared to the other treatments. The results in this study indicate that SM@siRNP is a promising nanomedicine for enhancing the anti-inflammatory activity of silymarin and has a high potential for the treatment of IBD.
Collapse
Affiliation(s)
- Thu-Ha Thi Nguyen
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Nhu-Thuy Trinh
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Han Ngoc Tran
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Hao Thi Tran
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Phong Quoc Le
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Dai-Nghiep Ngo
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Hieu Tran-Van
- Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam; Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh 703000, Vietnam
| | - Toi Van Vo
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam
| | - Long Binh Vong
- School of Biomedical Engineering, International University, Ho Chi Minh 700000, Vietnam; Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh 700000, Vietnam.
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
19
|
Mei T, Shashni B, Maeda H, Nagasaki Y. Fibrinolytic tissue plasminogen activator installed redox-active nanoparticles (t-PA@iRNP) for cancer therapy. Biomaterials 2020; 259:120290. [PMID: 32829147 DOI: 10.1016/j.biomaterials.2020.120290] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/28/2020] [Accepted: 08/01/2020] [Indexed: 12/21/2022]
Abstract
Favorable blood flow within solid tumors has become the principal strategy for drug delivery. The use of thrombolytic drugs, such as tissue plasminogen activator (t-PA), in combination with other drugs or drug carriers may increase their therapeutic effect by increasing drug delivery near the solid tumor through fibrin degradation and blood flow restoration. We, therefore, designed t-PA-installed redox-active nanoparticles (t-PA@iRNP) to improve the perfusion of antioxidant nanoparticles in tumors, via fibrin degradation to decompress tumor vessels. Additionally, antioxidant iRNP was developed for tumor inhibition by reduction of critically elevated levels of reactive oxygen species (ROS) in tumors. The t-PA@iRNP, when administered to a colon cancer model, degraded the deposited fibrin and improved the iRNP and immune cells penetration in tumor tissues via the restored blood flow, thus more effectively inhibited tumor growth. The anti-tumor effect of iRNP was attributed to ROS-reduction mediated downregulation of crucial a transcriptional factor, NF-κB. Conclusively, this study provides a new strategy to enhance the delivery of nanotherapeutics into solid tumors.
Collapse
Affiliation(s)
- Ting Mei
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Present Address: School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Hiroshi Maeda
- BioDynamics Research Foundation, 1-24-6 Kuwamizu, Chuo-ku, Kumamoto, 862-0954, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Master's School in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan; Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
20
|
Peng SY, Zou MZ, Zhang CX, Ma JB, Zeng X, Xiao W. Fabrication of rapid-biodegradable nano-vectors for endosomal-triggered drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment – Synergistic effect of thrombolysis and antioxidant –. Biomaterials 2019; 215:119209. [DOI: 10.1016/j.biomaterials.2019.05.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
|
22
|
Giusti A, Nguyen XB, Kislyuk S, Mignot M, Ranieri C, Nicolaï J, Oorts M, Wu X, Annaert P, De Croze N, Léonard M, Ny A, Cabooter D, de Witte P. Safety Assessment of Compounds after In Vitro Metabolic Conversion Using Zebrafish Eleuthero Embryos. Int J Mol Sci 2019; 20:ijms20071712. [PMID: 30959884 PMCID: PMC6479637 DOI: 10.3390/ijms20071712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022] Open
Abstract
Zebrafish-based platforms have recently emerged as a useful tool for toxicity testing as they combine the advantages of in vitro and in vivo methodologies. Nevertheless, the capacity to metabolically convert xenobiotics by zebrafish eleuthero embryos is supposedly low. To circumvent this concern, a comprehensive methodology was developed wherein test compounds (i.e., parathion, malathion and chloramphenicol) were first exposed in vitro to rat liver microsomes (RLM) for 1 h at 37 °C. After adding methanol, the mixture was ultrasonicated, placed for 2 h at −20 °C, centrifuged and the supernatant evaporated. The pellet was resuspended in water for the quantification of the metabolic conversion and the detection of the presence of metabolites using ultra high performance liquid chromatography-Ultraviolet-Mass (UHPLC-UV-MS). Next, three days post fertilization (dpf) zebrafish eleuthero embryos were exposed to the metabolic mix diluted in Danieau’s medium for 48 h at 28 °C, followed by a stereomicroscopic examination of the adverse effects induced, if any. The novelty of our method relies in the possibility to quantify the rate of the in vitro metabolism of the parent compound and to co-incubate three dpf larvae and the diluted metabolic mix for 48 h without inducing major toxic effects. The results for parathion show an improved predictivity of the toxic potential of the compound.
Collapse
Affiliation(s)
- Arianna Giusti
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Xuan-Bac Nguyen
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Stanislav Kislyuk
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Mélanie Mignot
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Cecilia Ranieri
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Johan Nicolaï
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Marlies Oorts
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Xiao Wu
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Pieter Annaert
- Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 921, 3000 Leuven, Belgium.
| | - Noémie De Croze
- L'Oréal Research & Innovation, 93600 Aulnay-sous-Bois, France.
| | - Marc Léonard
- L'Oréal Research & Innovation, 93600 Aulnay-sous-Bois, France.
| | - Annelii Ny
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| | - Deirdre Cabooter
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 923, 3000 Leuven, Belgium.
| | - Peter de Witte
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, University of Leuven, O & N II Herestraat 49-box 824, 3000 Leuven, Belgium.
| |
Collapse
|
23
|
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C, Delaittre G. Ultraschnelle Synthese multivalenter radikalischer Nanopartikel durch ringöffnende Metathesepolymerisations‐induzierte Selbstorganisation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dao Le
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe Deutschland
| | - Marco Dilger
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Vincent Pertici
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille Frankreich
| | - Silvia Diabaté
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Didier Gigmes
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille Frankreich
| | - Carsten Weiss
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Guillaume Delaittre
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe Deutschland
| |
Collapse
|
24
|
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C, Delaittre G. Ultra‐Fast Synthesis of Multivalent Radical Nanoparticles by Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2019; 58:4725-4731. [DOI: 10.1002/anie.201813434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Dao Le
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Vincent Pertici
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille France
| | - Silvia Diabaté
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Didier Gigmes
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille France
| | - Carsten Weiss
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| |
Collapse
|
25
|
Feliciano CP, Nagasaki Y. Antioxidant Nanomedicine Protects against Ionizing Radiation-Induced Life-Shortening in C57BL/6J Mice. ACS Biomater Sci Eng 2019; 5:5631-5636. [DOI: 10.1021/acsbiomaterials.8b01259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Chitho P. Feliciano
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Radiation Research Center (RRC), Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City 1101, Philippines
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
- Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
26
|
Sadowska-Bartosz I, Bartosz G. Redox nanoparticles: synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. J Nanobiotechnology 2018; 16:87. [PMID: 30390681 PMCID: PMC6215349 DOI: 10.1186/s12951-018-0412-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 12/31/2022] Open
Abstract
Oxidative stress (OS) and nitrative stress (NS) accompany many diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Antioxidants have been proposed to counteract OS/NS in these diseases. Nevertheless, the effects of antioxidants are limited and new, more efficient antioxidants are searched for. Redox-active nanoparticles (RNPs), containing antioxidants create a new therapeutical perspective. This review examines the recent literature describing synthesis and potential applications of cerium oxide RNPs, boron cluster-containing and silica containing RNPs, Gd3N@C80 encapsulated RNPs, and concentrates on nitroxide-containing RNPs. Nitroxides are promising antioxidants, preventing inter alia glycation and nitration, but their application poses several problems. It can be expected that application of RNPs containing covalently bound nitroxides, showing low toxicity and able to penetrate the blood-brain barrier will be more efficient in the treatment of neurodegenerative disease, in particular AD and PD basing on their effects in cellular and animal models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Department of Analytical Biochemistry, Faculty of Biology and Agriculture, University of Rzeszow, Zelwerowicza Street 4, 35-601, Rzeszow, Poland.
| | - Grzegorz Bartosz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236, Lodz, Poland
| |
Collapse
|
27
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. NANO RESEARCH 2018; 11:4955-4984. [PMID: 30450165 PMCID: PMC6233906 DOI: 10.1007/s12274-018-2092-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are essential for normal physiological processes and play important roles in cell signaling, immunity, and tissue homeostasis. However, excess radical species are implicated in the development and augmented pathogenesis of various diseases. Several antioxidants may restore the chemical balance, but their use is limited by disappointing results of clinical trials. Nanoparticles are an attractive therapeutic alternative because they can change the biodistribution profile of antioxidants, and possess intrinsic ability to scavenge RONS. Herein, we review the types of RONS, how they are implicated in several diseases, and the types of nanoparticles with inherent antioxidant capability, their mechanisms of action, and their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
28
|
Shikinaka K, Nakamura M, Navarro RR, Otsuka Y. Plant-Based Antioxidant Nanoparticles without Biological Toxicity. ChemistryOpen 2018; 7:709-712. [PMID: 30250777 PMCID: PMC6144725 DOI: 10.1002/open.201800157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/22/2018] [Indexed: 12/31/2022] Open
Abstract
Here, we present a function to derive non‐deteriorated nanoparticulated lignin as an antioxidant without biological toxicity that is supplied through the simultaneous enzymatic saccharification and comminution of plants. The lignin exhibits an oxygen radical absorption capacity, even in its macromolecular nature. The non‐deteriorated lignin nanoparticles never inhibit the biological activity of living things, despite their antioxidant nature. The oxygen radical absorption capacity of lignin is dependent on its botanical origin and monomeric structure. A stable organic radical in lignin is responsible for the antioxidant nature of non‐deteriorated lignin. The organic radical of non‐deteriorated lignin, which yields a distinct signal on electron spin resonance spectra, serves as a spin trap reagent that detects the emergence of short lifespan radicals as the change of radical concentration of the lignin. The presented discovery of non‐deteriorated lignin will induce not only the industrial utilization of plant biomass polymers in pharmaceuticals and reagents, but also advance our scientific understanding of the antioxidant function of native lignin.
Collapse
Affiliation(s)
- Kazuhiro Shikinaka
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology, Nigatake 4-2-1, Miyagino-ku Sendai 983-8551 Japan
| | - Masaya Nakamura
- Forestry and Forest Products Research Institute Matsunosato, 1 Tsukuba 305-8687 Japan
| | - Ronald R Navarro
- Forestry and Forest Products Research Institute Matsunosato, 1 Tsukuba 305-8687 Japan
| | - Yuichiro Otsuka
- Forestry and Forest Products Research Institute Matsunosato, 1 Tsukuba 305-8687 Japan
| |
Collapse
|
29
|
Nagasaki Y. [Design of New Cancer Nanotherapeutics Which Controls Active Gaseous Molecules in Vivo]. YAKUGAKU ZASSHI 2018; 138:911-918. [PMID: 29962468 DOI: 10.1248/yakushi.17-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) are known to play a variety of roles in many important events in vivo. However, the overproduction of ROS causes serious adverse effects to living beings. Numerous drugs have been developed and applied to reduce overproduced ROS, but these have failed to be clinically approved. Since most of these antioxidants are low molecular weight (LMW) compounds, they not only eliminate ROS related to diseases, but also destroy the essential redox reactions necessary for basic energy production in living bodies. In the mitochondria of normal cells, ATP production by electron transport chain is carried out, and a large amount of ROS is thus generated; however, LMW antioxidants also nonspecifically enter normal cells and affect essential oxidation. To improve selective antioxidant properties without damage to these normal redox reactions, we designed new polymer antioxidants. These polymers have self-assembling properties and form nanoparticles (RNPs) in which nitroxide radicals covalently attach as a side chain of the hydrophobic segment in the amphiphilic block copolymers, which are then compartmentalized into the solid core of the nanoparticles. Unlike LMW antioxidants, RNPs have extremely poor in vivo toxicity, as they are less likely to be taken up by healthy cells. Since one of RNPs, RNPN has pH-sensitive disintegration properties, it disintegrates at pH lower than 7.0 such as solid tumors and inflammation. It can therefore be used in pH responsive bioimaging and therapy. We have used RNPs experimentally in the treatment of several diseases and confirmed their effectiveness.
Collapse
Affiliation(s)
- Yukio Nagasaki
- Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
30
|
Motone K, Takagi T, Aburaya S, Aoki W, Miura N, Minakuchi H, Takeyama H, Nagasaki Y, Shinzato C, Ueda M. Protection of Coral Larvae from Thermally Induced Oxidative Stress by Redox Nanoparticles. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:542-548. [PMID: 29705864 DOI: 10.1007/s10126-018-9825-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Coral reefs are one of the most biologically diverse and economically important ecosystems on earth. However, the destruction of coral reefs has been reported worldwide owing to rising seawater temperature associated with global warming. In this study, we investigated the potential of a redox nanoparticle (RNPO) to scavenge reactive oxygen species (ROS), which are overproduced under heat stress and play a crucial role in causing coral mortality. When reef-building coral (Acropora tenuis) larvae, without algal symbionts, were exposed to thermal stress at 33 °C, RNPO treatment significantly increased the survival rate. Proteome analysis of coral larvae was performed using nano-liquid chromatography-tandem mass spectrometry for the first time. The results revealed that several proteins related to ROS-induced oxidative stress were specifically identified in A. tenuis larvae without RNPO treatment, whereas these proteins were absent in RNPO-treated larvae, which suggested that RNPO effectively scavenged ROS from A. tenuis larvae. Results from this study indicate that RNPO treatment can reduce ROS in aposymbiotic coral larvae and would be a promising approach for protecting corals from thermal stress.
Collapse
Affiliation(s)
- Keisuke Motone
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Kyoto, 606-8502, Japan
| | - Toshiyuki Takagi
- Japan Society for the Promotion of Science, Kyoto, 606-8502, Japan
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
| | - Shunsuke Aburaya
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
- Japan Society for the Promotion of Science, Kyoto, 606-8502, Japan
| | - Wataru Aoki
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Natsuko Miura
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | - Haruko Takeyama
- Faculty of Science and Engineering, Waseda University, Tokyo, 162-0056, Japan
| | - Yukio Nagasaki
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, 277-8564, Japan
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
31
|
Vong LB, Bui TQ, Tomita T, Sakamoto H, Hiramatsu Y, Nagasaki Y. Novel angiogenesis therapeutics by redox injectable hydrogel - Regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials 2018; 167:143-152. [DOI: 10.1016/j.biomaterials.2018.03.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/24/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
|
32
|
Shashni B, Nagasaki Y. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer. Biomaterials 2018; 178:48-62. [PMID: 29908344 DOI: 10.1016/j.biomaterials.2018.05.042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/26/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
The critical importance of reactive oxygen species (ROS) as oncogene activators and essential secondary messengers in cancer cell survival have been widely reported. Since oxidative stress has been implicated as being pivotal in various cancers, antioxidant therapy seems an apt strategy to abrogate ROS-mediated cellular processes to attenuate cancers. We therefore synthesized ROS scavenging nitroxide radical-containing nanoparticles (RNPs); pH insensitive RNPO and pH sensitive RNPN, to impede the proliferative and metastatic characteristics of the triple negative breast cancer cell line, MDA-MB-231, both in vitro and in vivo. RNPs significantly curtailed the proliferative and clonogenic potential of MDA-MB-231 and MCF-7 cell lines. Inhibition of ROS-mediated migratory and invasive characteristics of MDA-MB-231, via down regulation of NF-κB and MMP-2, was also confirmed. Furthermore, a significant anti-tumor and anti-metastatic potential of RNPs was observed in an MDA-MB-231 mouse xenograft model. Such tumoricidal effects of RNPs were attained with negligible adverse effects, compared to conventional low molecular weight antioxidants, TEMPOL. Thus, the tumoricidal effects of RNPs are suggestive of insights on precedence of nanoparticle-based therapeutics over current low molecular weight antioxidants to curtail ROS-induced tumorigenesis of various cancers.
Collapse
Affiliation(s)
- Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Isotope and Environmental Dynamics (CRiED), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
33
|
|
34
|
Ikeda Y, Shoji K, Feliciano CP, Saito S, Nagasaki Y. Antioxidative Nanoparticles Significantly Enhance Therapeutic Efficacy of an Antibacterial Therapy against Listeria monocytogenes Infection. Mol Pharm 2018; 15:1126-1132. [DOI: 10.1021/acs.molpharmaceut.7b00995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yutaka Ikeda
- Department of Materials Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Kazuhiro Shoji
- Department of Materials Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Chitho P. Feliciano
- Department of Materials Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
- Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City, Philippines 1101
| | - Shinji Saito
- Faculty of Medicine, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Japan
- Master’s School of Medical Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
35
|
Hansen KA, Blinco JP. Nitroxide radical polymers – a versatile material class for high-tech applications. Polym Chem 2018. [DOI: 10.1039/c7py02001e] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A comprehensive summary of synthetic strategies for the preparation of nitroxide radical polymer materials and a state-of-the-art perspective on their latest and most exciting applications.
Collapse
Affiliation(s)
- Kai-Anders Hansen
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - James P. Blinco
- School of Chemistry
- Physics and Mechanical Engineering
- Queensland University of Technology
- Brisbane
- Australia
| |
Collapse
|
36
|
Feliciano CP, Nagasaki Y. Oral nanotherapeutics: Redox nanoparticles attenuate ultraviolet B radiation-induced skin inflammatory disorders in Kud:Hr- hairless mice. Biomaterials 2017; 142:162-170. [DOI: 10.1016/j.biomaterials.2017.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022]
|
37
|
Komiyama M, Yoshimoto K, Sisido M, Ariga K. Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170156] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Makoto Komiyama
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Ten-noudai, Tsukuba, Ibaraki 305-8577
| | - Keitaro Yoshimoto
- Department of Life Sciences, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902
| | - Masahiko Sisido
- Professor Emeritus, Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530
| | - Katsuhiko Ariga
- World Premier International (WPI) Research Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-0827
| |
Collapse
|
38
|
Nagasaki Y, Mizukoshi Y, Gao Z, Feliciano CP, Chang K, Sekiyama H, Kimura H. Development of a local anesthetic lidocaine-loaded redox-active injectable gel for postoperative pain management. Acta Biomater 2017; 57:127-135. [PMID: 28457963 DOI: 10.1016/j.actbio.2017.04.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 12/15/2022]
Abstract
Although local anesthesia is commonly applied for pain relief, there are several issues such as its short duration of action and low effectiveness at the areas of inflammation due to the acidic pH. The presence of excessive amount of reactive oxygen species (ROS) is known to induce inflammation and aggravate pain. To resolve these issues, we developed a redox-active injectable gel (RIG) with ROS-scavenging activity. RIG was prepared by mixing polyamine-b-poly(ethylene glycol)-b-polyamine with nitroxide radical moieties as side chains on the polyamine segments (PMNT-b-PEG-b-PMNT) with a polyanion, which formed a flower-type micelle via electrostatic complexation. Lidocaine could be stably incorporated in its core. When the temperature of the solution was increased to 37°C, the PIC-type flower micelle transformed to gel. The continuous release of lidocaine from the gel was observed for more than three days, without remarkable initial burst, which is probably owing to the stable entrapment of lidocaine in the PIC core of the gel. We evaluated the analgesic effect of RIG in carrageenan-induced arthritis mouse model. Results showed that lidocaine-loaded RIG has stronger and longer analgesic effect when administered in inflamed areas. In contrast, while the use of non-complexed lidocaine did not show analgesic effect one day after its administration. Note that no effect was observed when PIC-type flower micelle without ROS-scavenging ability was used. These findings suggest that local anesthetic-loaded RIG can effectively reduce the number of injection times and limit the side effects associated with the use of anti-inflammatory drugs for postoperative pain management. STATEMENT OF SIGNIFICANCE 1. We have been working on nanomaterials, which effectively eliminate ROS, avoiding dysfunction of mitochondria in healthy cells. 2. We designed redox injectable gel using polyion complexed flower type micelle, which can eliminates ROS locally. 3. We could prepare local anesthesia-loaded redox injectable gel (lido@RIG). 4. Drug release could be extended by local administration of lido@RIG. 5. Deprotonation of lidocaine improved anesthetic effect because ROS were eliminated locally by RIG. 6. Local inflammation could be also suppressed by lido@RIG.
Collapse
Affiliation(s)
- Yukio Nagasaki
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Satellite Laboratory, International Center of Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan.
| | - Yutaro Mizukoshi
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Zhenyu Gao
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
| | - Chitho P Feliciano
- Department of Material Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Biomedical Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (PNRI-DOST), Commonwealth Avenue, Diliman, Quezon City, Philippines
| | - Kyungho Chang
- Department of Medical Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hiroshi Sekiyama
- Department of Anesthesiology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroyuki Kimura
- Department of Analytical and Bioinorganic Chemistry, Kyoto Pharmaceutical University, Misasagi-Nakauchicho 5, Yamashinaku, Kyoto 607-8414, Japan
| |
Collapse
|
39
|
Boonruamkaew P, Chonpathompikunlert P, Vong LB, Sakaue S, Tomidokoro Y, Ishii K, Tamaoka A, Nagasaki Y. Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer's disease. Sci Rep 2017. [PMID: 28630497 PMCID: PMC5476667 DOI: 10.1038/s41598-017-03411-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study aimed to assess whether our newly developed redox nanoparticle (RNPN) that has antioxidant potential decreases Aβ levels or prevents Aβ aggregation associated with oxidative stress. The transgenic Tg2576 Alzheimer’s disease (AD) mice were used to investigate the effect of chronic ad libitum drinking of RNPN solution for 6 months, including memory and learning functions, antioxidant activity, and amyloid plaque aggregation. The results showed that RNPN-treated mice had significantly attenuated cognitive deficits of both spatial and non-spatial memories, reduced oxidative stress of lipid peroxide, and DNA oxidation. RNPN treatment increased the percent inhibition of superoxide anion and glutathione peroxidase activity, neuronal densities in the cortex and hippocampus, decreased Aβ(1-40), Aβ(1-42) and gamma (γ)-secretase levels, and reduced Aβ plaque observed using immunohistochemistry analysis and thioflavin S staining. Our results suggest that RNPN may be a promising candidate for AD therapy because of its antioxidant properties and reduction in Aβ aggregation, thereby suppressing its adverse side effect.
Collapse
Affiliation(s)
- Phetcharat Boonruamkaew
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Pennapa Chonpathompikunlert
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,College of Alternative Medicine, Chandrakasem Rajabhat University, 39/1 Ratchadaphisek Road, Khwaeng Chantharakasem, Chatuchak Districk, Bangkok, 10900, Thailand
| | - Long Binh Vong
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 702500, Vietnam
| | - Sho Sakaue
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yasushi Tomidokoro
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuhiro Ishii
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Satellite Laboratory, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Sciences (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
40
|
Feliciano CP, Tsuboi K, Suzuki K, Kimura H, Nagasaki Y. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials 2017; 129:68-82. [DOI: 10.1016/j.biomaterials.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/04/2017] [Accepted: 03/10/2017] [Indexed: 01/08/2023]
|
41
|
Shashni B, Alshwimi A, Minami K, Furukawa T, Nagasaki Y. Nitroxide radical-containing nanoparticles as potential candidates for overcoming drug resistance in epidermoid cancers. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Application of surface enhanced Raman spectroscopy as a diagnostic system for hypersialylated metastatic cancers. Biomaterials 2017; 134:143-153. [PMID: 28460336 DOI: 10.1016/j.biomaterials.2017.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/15/2017] [Accepted: 04/21/2017] [Indexed: 12/14/2022]
Abstract
Early diagnosis of metastatic cancers could greatly limit the number of cancer-associated deaths. Aberrant surface expression of sialic acid (hypersialylation) on tumors correlating with metastatic incidence and its involvement in tumorigenesis and progression is widely reported; hence detection of hypersialylated tumors may be an effective strategy to identify metastatic cancers. We herein report on the application of phenylboronic acid-installed PEGylated gold nanoparticles coupled with Toluidine blue O (T/BA-GNPs) as SERS probes to target surface sialic acid (N-acetylneuraminic acid, Neu5Ac). Strong SERS signals from metastatic cancer cell lines (breast cancer; MDA-MB231 and colon cancer; Colon-26) were observed, contrary to non-metastatic MCF-7 cells (breast cancer). The detected SERS signals from various cancer cell lines correlated with their reported metastatic potential, implying that our T/BA-GNP based SERS system was capable of distinguishing the metastaticity of cells based on the surface Neu5Ac density. T/BA-GNP based SERS system could also significantly differentiate between hypersialylated tumor tissues and healthy tissues with high SERS signal to noise ratio, due to plasmon coupling between the specifically aggregated functionalized GNPs. Furthermore, we also confirmed reduction in SERS signals from MDA-MB231 surface upon treatment with our original reactive oxygen species (ROS)-scavenging polymeric micelle, nitroxide-radical containing nanoparticles (RNPs). The ROS-mediated abrogation of sialylation by impairing the activation of NF-κB-sialyltransferase signaling cascade upon RNP treatment was confirmed by expression studies and the T/BA-GNPs based SERS system. The aforementioned findings thus, establish T/BA-GNPs based SERS as a potential cytodiagnostic system to detect hypersialylated metastatic tumors and RNPs as anti-metastatic cancer drug candidates.
Collapse
|