2
|
Yukuyama MN, de Araujo GLB, de Souza A, Löbenberg R, Barbosa EJ, Henostroza MAB, Rocha NPD, de Oliveira IF, Folchini BR, Peroni CM, Masiero JF, Bou-Chacra NA. Cancer treatment in the lymphatic system: A prospective targeting employing nanostructured systems. Int J Pharm 2020; 587:119697. [PMID: 32750440 DOI: 10.1016/j.ijpharm.2020.119697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Cancer related to lymphangiogenesis has gained a great deal of attention in recent decades ever since specific markers of this intriguing system were discovered. Unlike the blood system, the lymphatic system has unique features that can advance cancer in future metastasis, or, conversely, can provide an opportunity to prevent or treat this disease that affects people worldwide. The aim of this review is to show the recent research of cancer treatment associated with the lymphatic system, considered one of the main gateways for disseminating metastatic cells to distant organs. Nanostructured systems based on theranostics and immunotherapies can offer several options for this complex disease. Precision targeting and accumulation of nanomaterials into the tumor sites and their elimination, or targeting the specific immune defense cells to promote optimal regression of cancer cells are highlighted in this paper. Moreover, therapies based on nanostructured systems through lymphatic systems may reduce the side effects and toxicity, avoid first pass hepatic metabolism, and improve patient recovery. We emphasize the general understanding of the association between the immune and lymphatic systems, their interaction with tumor cells, the mechanisms involved and the recent developments in several nanotechnology treatments related to this disease.
Collapse
Affiliation(s)
- Megumi Nishitani Yukuyama
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Gabriel Lima Barros de Araujo
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| | - Aline de Souza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Raimar Löbenberg
- Division of Pharmaceutical Sciences, Faculty of Pharmacy & Pharmaceutical Sciences, Katz Group-Rexall Centre for Pharmacy & Health Research, University of Alberta, 11361 - 87 Avenue, Room 3-142-K, Edmonton, AB T6G 2E1, Canada
| | - Eduardo José Barbosa
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Mirla Anali Bazán Henostroza
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nataly Paredes da Rocha
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Isabela Fernandes de Oliveira
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Beatriz Rabelo Folchini
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Camilla Midori Peroni
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Jessica Fagionato Masiero
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil
| | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Sao Paulo, Avenida Professor Lineu Prestes 508, Butantan, Sao Paulo, SP, Brazil.
| |
Collapse
|
3
|
Abstract
The field of nanotechnology has grown exponentially during the last few decades, due in part to the use of nanoparticles in many manufacturing processes, as well as their potential as clinical agents for treatment of diseases and for drug delivery. This has created several new avenues by which humans can be exposed to nanoparticles. Unfortunately, investigations assessing the toxicological impacts of nanoparticles (i.e. nanotoxicity), as well as their possible risks to human health and the environment, have not kept pace with the rapid rise in their use. This has created a gap-in-knowledge and a substantial need for more research. Studies are needed to help complete our understanding of the mechanisms of toxicity of nanoparticles, as well as the mechanisms mediating their distribution and accumulation in cells and tissues and their elimination from the body. This review summarizes our knowledge on nanoparticles, including their various applications, routes of exposure, their potential toxicity and risks to human health.
Collapse
|
4
|
Monteiro LM, Löbenberg R, Ferreira EI, Cotrim PC, Kanashiro E, Rocha M, Chung MC, Bou-Chacra N. Targeting Leishmania amazonensis amastigotes through macrophage internalisation of a hydroxymethylnitrofurazone nanostructured polymeric system. Int J Antimicrob Agents 2017; 50:88-92. [DOI: 10.1016/j.ijantimicag.2017.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/26/2017] [Accepted: 01/28/2017] [Indexed: 11/25/2022]
|