1
|
McKaig CW, Malfetano J, Tran Y, Yang X, Pal U, Wycoff K, Lin YP. Complement therapeutic Factor H-IgG proteins as pre-exposure prophylaxes against Lyme borreliae infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615144. [PMID: 39386713 PMCID: PMC11463399 DOI: 10.1101/2024.09.26.615144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Lyme disease (LD) is the most common vector-borne disease in the northern hemisphere and is caused by the bacteria Borrelia burgdorferi sensu lato (also known as Lyme borreliae) with no effective prevention available. Lyme borreliae evade complement killing, a critical arm of host immune defense, by producing outer surface proteins that bind to a host complement inhibitor, factor H (FH). These outer surface proteins include CspA and CspZ, which bind to the 6th and 7th short consensus repeats of FH (SCR(6-7)), and the OspE family of proteins (OspE), which bind to the 19th and 20th SCR (SCR19-20). In this study, we produced two chimeric proteins, FH-Fc, containing the Fc region of immunoglobulin G (Fc) with SCR(6-7) or SCR(19-20). We found that both FH-Fc constructs killed B. burgdorferi in the presence of complement and reduced bacterial colonization and LD-associated joint inflammation in vivo. While SCR(6-7)-Fc displayed Lyme borreliae species-specific bacterial killing, SCR(19-20)-Fc versatilely eradicated all tested bacterial species/strains. This correlated with SCR(6-7)-Fc binding to select variants of CspA and CspZ, but SCR(19-20)-Fc binding to all tested OspE variants. Overall, we demonstrated the concept of using FH-Fc constructs to kill Lyme borreliae and defined underlying mechanisms, highlighting the potential of FH-Fc as a pre-exposure prophylaxis against LD infection.
Collapse
Affiliation(s)
- Connor W. McKaig
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jill Malfetano
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| | - Y Tran
- Planet Biotechnology, Inc., Hayward, CA, USA
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | | | - Yi-Pin Lin
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
- Division of Infectious Diseases, Wadsworth Center, NYSDOH, Albany, NY, USA
| |
Collapse
|
2
|
Imamura H, Ooishi A, Honda S. Getting Smaller by Denaturation: Acid-Induced Compaction of Antibodies. J Phys Chem Lett 2023; 14:3898-3906. [PMID: 37093025 PMCID: PMC10150727 DOI: 10.1021/acs.jpclett.3c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
Protein denaturation is a ubiquitous process that occurs both in vitro and in vivo. While our molecular understanding of the denatured structures of proteins is limited, it is commonly accepted that the loss of unique intramolecular contacts makes proteins larger. Herein, we report compaction of the immunoglobulin G1 (IgG1) protein upon acid denaturation. Small-angle X-ray scattering coupled with size exclusion chromatography revealed that IgG1 radii of gyration at pH 2 were ∼75% of those at a neutral pH. Scattering profiles showed a compact globular shape, supported by analytical ultracentrifugation. The acid denaturation of proteins with a decrease in size is energetically costly, and acid-induced compaction requires an attractive force for domain reorientation. Such intramolecular aggregation may be widespread in immunoglobulin proteins as noncanonical structures. Herein, we discuss the potential biological significance of these noncanonical structures of antibodies.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
- Department
of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
- Department
of Bio-Science, Nagahama Institute of Bio-Science
and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Ayako Ooishi
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical
Research Institute, National Institute of
Advanced Industrial Science and Technology (AIST), 1-1-1, Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
3
|
Miyafusa T, Watanabe H, Honda S. Local disorder of the C-terminal segment of the heavy chain as a common sign of stressed antibodies evidenced with a peptide affinity probe specific to non-native IgG. Int J Biol Macromol 2021; 182:1697-1703. [PMID: 34048835 DOI: 10.1016/j.ijbiomac.2021.05.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
Therapeutic antibodies have many biopharmaceutical applications; however, characterization of their higher-order structures is a major concern in quality control. We have developed AF.2A1, an artificial protein, that specifically recognizes non-native, structured IgGs. We performed binding assays using various types of IgGs and fragments to investigate the mechanisms by which AF.2A1 interacts with the non-native IgG. AF.2A1 recognized the acid-stressed IgGs from human, mouse, and rat, but not rabbit. Binding assays using the human IgG1 fragments revealed that an interface emerged by deleting five C-terminal residues. We conclude that AF.2A1 recognizes an exposed hydrophobic core centered on the Trp417. Our results concur with those of the previous studies showing that C-terminal structural changes occur early during antibody denaturation and aggregation. Our findings explain the molecular rationale for using AF.2A1 in quality control of biopharmaceutical IgGs.
Collapse
Affiliation(s)
- Takamitsu Miyafusa
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan; Bioprocess Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Hideki Watanabe
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Shinya Honda
- Biomedical Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
4
|
Wang S, Rong Y, Wang Y, Kong D, Wang PG, Chen M, Kong Y. Homogeneous production and characterization of recombinant N-GlcNAc-protein in Pichia pastoris. Microb Cell Fact 2020; 19:7. [PMID: 31931833 PMCID: PMC6956495 DOI: 10.1186/s12934-020-1280-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Therapeutic glycoproteins have occupied an extremely important position in the market of biopharmaceuticals. N-Glycosylation of protein drugs facilitates them to maintain optimal conformations and affect their structural stabilities, serum half-lives and biological efficiencies. Thus homogeneous N-glycoproteins with defined N-glycans are essential in their application in clinic therapeutics. However, there still remain several obstacles to acquire homogeneous N-glycans, such as the high production costs induced by the universal utilization of mammalian cell expression systems, the non-humanized N-glycan structures and the N-glycosylation microheterogeneities between batches. RESULTS In this study, we constructed a Pichia pastoris (Komagataella phaffii) expression system producing truncated N-GlcNAc-modified recombinant proteins through introducing an ENGase isoform (Endo-T) which possesses powerful hydrolytic activities towards high-mannose type N-glycans. The results showed that the location of Endo-T in different subcellular fractions, such as Endoplasmic reticulum (ER), Golgi or cell membrane, affected their hydrolytic efficiencies. When the Endo-T was expressed in Golgi, the secreted IgG1-Fc region was efficiently produced with almost completely truncated N-glycans and the N-GlcNAc modification on the glycosite Asn297 was confirmed via Mass Spectrometry. CONCLUSION This strategy develops a simple glycoengineered yeast expression system to produce N-GlcNAc modified proteins, which could be further extended to different N-glycan structures. This system would provide a prospective platform for mass production of increasing novel glycoprotein drugs.
Collapse
Affiliation(s)
- Shengjun Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yongheng Rong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yaoguang Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Decai Kong
- Department of General Surgery, Heze Municipal Hospital, Heze, 274000, Shandong, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Min Chen
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yun Kong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
5
|
Streamlining the polishing step development process via physicochemical characterization of monoclonal antibody aggregates. J Chromatogr A 2019; 1598:101-112. [DOI: 10.1016/j.chroma.2019.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/08/2019] [Accepted: 03/21/2019] [Indexed: 01/07/2023]
|
6
|
Yageta S, Imamura H, Shibuya R, Honda S. C H2 domain orientation of human immunoglobulin G in solution: Structural comparison of glycosylated and aglycosylated Fc regions using small-angle X-ray scattering. MAbs 2019; 11:453-462. [PMID: 30513259 PMCID: PMC6512918 DOI: 10.1080/19420862.2018.1546086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 01/27/2023] Open
Abstract
The N-linked glycan in immunoglobulin G is critical for the stability and function of the crystallizable fragment (Fc) region. Alteration of these protein properties upon the removal of the N-linked glycan has often been explained by the alteration of the CH2 domain orientation in the Fc region. To confirm this hypothesis, we examined the small-angle X-ray scattering (SAXS) profile of the glycosylated Fc region (gFc) and aglycosylated Fc region (aFc) in solution. Conformational characteristics of the CH2 domain orientation were validated by comparison with SAXS profiles theoretically calculated from multiple crystal structures of the Fc region with different CH2 domain orientations. The reduced chi-square values from the fitting analyses of gFc and aFc associated with the degree of openness or closure of each crystal structure, as determined from the first principal component that partially governed the variation of the CH2 domain orientation extracted by a singular value decomposition analysis. For both gFc and aFc, the best-fitted SAXS profiles corresponded to ones calculated based on the crystal structure of gFc that formed a "semi-closed" CH2 domain orientation. Collectively, the data indicated that the removal of the N-linked glycan only negligibly affected the CH2 domain orientation in solution. These findings will guide the development of methodology for the production of highly refined functional Fc variants.
Collapse
Affiliation(s)
- Seiki Yageta
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Manufacturing Technology Association of Biologics, Tsukuba, Ibaraki, Japan
| | - Hiroshi Imamura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Risa Shibuya
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba, Japan
- Manufacturing Technology Association of Biologics, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Zeng F, Yang C, Gao X, Li X, Zhang Z, Gong R. Comprehensive elucidation of the structural and functional roles of engineered disulfide bonds in antibody Fc fragment. J Biol Chem 2018; 293:19127-19135. [PMID: 30327432 DOI: 10.1074/jbc.ra118.005367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/28/2018] [Indexed: 11/06/2022] Open
Abstract
Therapeutic monoclonal antibodies and Fc-fusion proteins containing antibody Fc fragment may tend to destabilize (e.g. unfold and aggregate), which leads to loss of functions and increase of adverse risks. Although engineering of an additional disulfide bond has been performed in Fc or Fc domains for optimization, the relationships between introduced disulfide bond and alteration of the stability, aggregation propensity and function were still unclear and should be addressed for achievement of better therapeutic outcome. Here, we constructed three human IgG1 Fc mutants including FcCH2-s-s- (one engineered disulfide bond in CH2 domain), FcCH3-s-s- (one engineered disulfide bond in CH3 domain), and FcCH3-s-s- CH2-s-s- (two engineered disulfide bonds in CH2 and CH3 domains, respectively) for evaluation. As expected, each mutated domain shows obviously increased stability during thermo-induced unfolding, and FcCH3-s-s- CH2-s-s- is most thermo-stable among wildtype Fc (wtFc) and three mutants. The order of overall stability against denaturant is FcCH3-s-s- CH2-s-s- > FcCH2-s-s- > FcCH3-s-s- > wtFc. Then the aggregation propensity was compared among these four proteins. Under conditions of incubation at 60 °C, their aggregation resistance is in the order of FcCH3-s-s- CH2-s-s- > FcCH2-s-s- > FcCH3-s-s- ≈ wtFc. In contrast, the order is FcCH3-s-s- CH2-s-s- > FcCH3-s-s- > FcCH2-s-s- ≈ wtFc under acidic conditions. In addition, the Fc-mediated functions are not obviously affected by engineered disulfide bond. Our results give a comprehensive elucidation of structural and functional effects caused by additional disulfide bonds in the Fc fragment, which is important for Fc engineering toward the desired clinical performance.
Collapse
Affiliation(s)
- Fang Zeng
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunpeng Yang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Gao
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Li
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and
| | - Zhe Zhang
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and
| | - Rui Gong
- From the CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China and
| |
Collapse
|
8
|
Yang C, Gao X, Gong R. Engineering of Fc Fragments with Optimized Physicochemical Properties Implying Improvement of Clinical Potentials for Fc-Based Therapeutics. Front Immunol 2018; 8:1860. [PMID: 29375551 PMCID: PMC5766897 DOI: 10.3389/fimmu.2017.01860] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023] Open
Abstract
Therapeutic monoclonal antibodies and Fc-fusion proteins are successfully used in treatment of various diseases mainly including cancer, immune disease, and viral infection, which belong to the Fc-based therapeutics. In recent years, engineered Fc-derived antibody domains have also shown potential for Fc-based therapeutics. To increase the druggability of Fc-based therapeutic candidates, many efforts have been made in optimizing physicochemical properties and functions mediated by Fc fragment. The desired result is that we can simultaneously obtain Fc variants with increased physicochemical properties in vitro and capacity of mediating appropriate functions in vivo. However, changes of physicochemical properties of Fc may result in alternation of Fc-mediated functions and vice versa, which leads to undesired outcomes for further development of Fc-based therapeutics. Therefore, whether modified Fc fragments are suitable for achievement of expected clinical results or not needs to be seriously considered. Now, this question comes to be noticed and should be figured out to make better translation from the results of laboratory into clinical applications. In this review, we summarize different strategies on engineering physicochemical properties of Fc, and preliminarily elucidate the relationships between modified Fc in vitro and the subsequent therapeutic influence in vivo.
Collapse
Affiliation(s)
- Chunpeng Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Gao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|