1
|
Bhadran A, Polara H, Calubaquib EL, Wang H, Babanyinah GK, Shah T, Anderson PA, Saleh M, Biewer MC, Stefan MC. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023; 24:5823-5835. [PMID: 37963215 DOI: 10.1021/acs.biomac.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Thermoresponsive amphiphilic poly(ε-caprolactone)s (PCL)s are excellent candidates for drug delivery due to their biodegradability, biocompatibility, and controlled release. However, the thermoresponsivity of modified PCL can often lead to premature drug release because their lower critical solution temperature (LCST) is close to physiological temperature conditions. To address this issue, we developed a novel approach that involves functionalizing redox-responsive lipoic acid to the hydrophobic block of PCL. Lipoic acid has disulfide bonds that undergo reversible cross-linking after encapsulating the drug. Herein, we synthesized an ether-linked propargyl-substituted PCL as the hydrophobic block of an amphiphilic copolymer along with unsubstituted PCL. The propargyl group was used to attach lipoic acid through a postpolymerization modification reaction. The hydrophilic block is composed of an ether-linked, thermoresponsive tri(ethylene glycol)-substituted PCL. Anticancer drug doxorubicin (DOX) was encapsulated within the core of the micelles and induced cross-linking in the presence of a reducing agent, dithiothreitol. The developed micelles are thermodynamically stable and demonstrated thermoresponsivity with an LCST value of 37.5 °C but shifted to 40.5 °C after cross-linking. The stability and release of both uncross-linked (LA-PCL) and cross-linked (CLA-PCL) micelles were studied at physiological temperatures. The results indicated that CLA-PCL was stable, and only 35% release was observed after 46 h at 37 °C while LA-PCL released more than 70% drug at the same condition. Furthermore, CLA-PCL was able to release a higher amount of DOX in the presence of glutathione and above the LCST condition (42 °C). Cytotoxicity experiments revealed that CLA-PCL micelles are more toxic toward MDA-MB-231 breast cancer cells at 42 °C than at 37 °C, which supported the thermoresponsive release of the drug. These results indicate that the use of reversible cross-linking is a great approach toward synthesizing stable thermoresponsive micelles with reduced premature drug leakage.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erika L Calubaquib
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paul Alexander Anderson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammad Saleh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
3
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
4
|
Jazani AM, Arezi N, Shetty C, Oh JK. Shell-Sheddable/Core-Degradable ABA Triblock Copolymer Nanoassemblies: Synthesis via RAFT and Concurrent ATRP/RAFT Polymerization and Drug Delivery Application. Mol Pharm 2022. [DOI: 10.1021/acs.molpharmaceut.1c00622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Newsha Arezi
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Chaitra Shetty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
5
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Wei X, Li J, Zhang Y, Zheng Y, Zhang Y, Meng H, Wu G, Hu Y, Gao Y, Huang S, Wang W, Cheng Y, Wu Z, Zhang X. Synergy between Clinical Microenvironment Targeted Nanoplatform and Near-Infrared Light Irradiation for Managing Pseudomonas aeruginosa Infections. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38979-38989. [PMID: 34433249 DOI: 10.1021/acsami.1c08132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chronic infections caused by Pseudomonas aeruginosa pose severe threats to human health. Traditional antibiotic therapy has lost its total supremacy in this battle. Here, nanoplatforms activated by the clinical microenvironment are developed to treat P. aeruginosa infection on the basis of dynamic borate ester bonds. In this design, the nanoplatforms expose targeted groups for bacterial capture after activation by an acidic infection microenvironment, resulting in directional transport delivery of the payload to bacteria. Subsequently, the production of hyperpyrexia and reactive oxygen species enhances antibacterial efficacy without systemic toxicity. Such a formulation with a diameter less than 200 nm can eliminate biofilm up to 75%, downregulate the level of cytokines, and finally promote lung repair. Collectively, the biomimetic design with phototherapy killing capability has the potential to be an alternative strategy against chronic infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Xiaosong Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jie Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yufei Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yanlong Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Huipeng Meng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guolin Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuqing Hu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yingchao Gao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Siyuan Huang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wenbo Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijie Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
8
|
Wu D, Xu Z, Li Z, Yuan W, Wang HQ, Xie X. Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for synergistic photothermal-chemotherapy of cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Carbonylimidazole-hydroxyl coupling chemistry: Synthesis and block copolymerization of fully bio-reducible poly(carbonate-disulfide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Liu Y, van Steenbergen MJ, Zhong Z, Oliveira S, Hennink WE, van Nostrum CF. Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of Monomer, and Reducing Agent on the Dynamic Crosslinking Properties. Macromolecules 2020; 53:7009-7024. [PMID: 32884159 PMCID: PMC7458473 DOI: 10.1021/acs.macromol.0c01031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Dithiolanes are used to obtain dynamic and reversible crosslinks between polymer chains. Copolymers of two different dithiolane-containing cyclic carbonate monomers and ε-caprolactone (CL) were synthesized by ring-opening polymerization using a methoxy-poly(ethylene glycol) (mPEG) initiator and different catalysts (diphenyl phosphate (DPP), methanesulfonic acid (MSA), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD), or Sn(Oct)2). Each catalyst required a different temperature, which had a pronounced influence on the reactivity ratio of the monomers and occurrence of transesterification reactions and, therefore, the monomer sequence. Self-crosslinkable copolymers were obtained when the dithiolane units were connected closely to the polymer backbone, whereas the presence of a linker unit between the dithiolane and the backbone prevented self-crosslinking. The former amphiphilic PEGylated block copolymers formed micelles by nanoprecipitation in the aqueous environment and crosslinked spontaneously by disulfide exchange during subsequent dialysis. These dithiolane-crosslinked micelles showed reduction-responsive dissociation in the presence of 10 mM glutathione, making them promising drug delivery systems for the intracellularly triggered cargo release.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Mies J. van Steenbergen
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Zhiyuan Zhong
- Biomedical
Polymers Laboratory, College of Chemistry, Chemical Engineering and
Materials Science, and State Key Laboratory of Radiation Medicine
and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Sabrina Oliveira
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
- Division of Cell Biology, Neurobiology
and Biophysics, Department of Biology, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
11
|
Huang Y, Jazani AM, Howell EP, Reynolds LA, Oh JK, Moffitt MG. Microfluidic Shear Processing Control of Biological Reduction Stimuli-Responsive Polymer Nanoparticles for Drug Delivery. ACS Biomater Sci Eng 2020; 6:5069-5083. [DOI: 10.1021/acsbiomaterials.0c00896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuhang Huang
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Arman Moini Jazani
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Elliot P. Howell
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
| | - Matthew G. Moffitt
- Department of Chemistry, University of Victoria, PO Box 1700 Stn CSC, Victoria, BC V8W 2Y2, Canada
| |
Collapse
|
12
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
13
|
Maruya-Li K, Shetty C, Moini Jazani A, Arezi N, Oh JK. Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS OMEGA 2020; 5:3734-3742. [PMID: 32118189 PMCID: PMC7045573 DOI: 10.1021/acsomega.9b04430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 05/27/2023]
Abstract
We report a thermoresponsive double hydrophilic block copolymer degradable in response to dual reduction and acidic pH at dual locations. The copolymer consists of a poly(ethylene oxide) block covalently connected through an acid-labile acetal linkage with a thermoresponsive polymethacrylate block containing pendant oligo(ethylene oxide) and disulfide groups. The copolymer undergoes temperature-driven self-assembly in water to form nanoassemblies with acetal linkages at the core/corona interface and disulfide pendants in the core, exhibiting dual reduction/acid responses at dual locations. The physically assembled nanoaggregates are converted to disulfide-core-crosslinked nanogels through disulfide-thiol exchange reaction, retaining enhanced colloidal stability, yet degraded to water-soluble unimers upon reduction/acid-responsive degradation. Further, the copolymer exhibits improved tunability of thermoresponsive property upon the cleavage of junction acetal and pendant disulfide linkages individually and in combined manner. This work suggests that dual location dual reduction/acid-responsive degradation is a versatile strategy toward effective drug delivery exhibiting disulfide-core-crosslinking capability and disassembly as well as improved thermoresponsive tunability.
Collapse
|
14
|
Li L, Liu T, Liao JX, Zhang ZY, Song DB, Wang GH. Dual-responsive TPGS crosslinked nanocarriers to overcome multidrug resistance. J Mater Chem B 2020; 8:8383-8394. [DOI: 10.1039/d0tb01140a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Efficient delivery of chemotherapeutic agents into tumor cells and reversal of chemoresistance are crucially important to enhance cancer therapy.
Collapse
Affiliation(s)
- Li Li
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Tao Liu
- Department of Otolaryngology-Head and Neck Surgery
- Guangdong Provincial People's Hospital
- Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Jia-Xin Liao
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Zhe-Yi Zhang
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Dai-Bo Song
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| | - Guan-Hai Wang
- School of Pharmacy
- Guangdong Medical University
- Dongguan
- China
| |
Collapse
|
15
|
Stimuli-responsive self-assembled dendrimers for oral protein delivery. J Control Release 2019; 315:206-213. [DOI: 10.1016/j.jconrel.2019.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/24/2019] [Accepted: 10/26/2019] [Indexed: 12/17/2022]
|
16
|
Bhattacharya K, Banerjee SL, Das S, Samanta S, Mandal M, Singha NK. REDOX Responsive Fluorescence Active Glycopolymer Based Nanogel: A Potential Material for Targeted Anticancer Drug Delivery. ACS APPLIED BIO MATERIALS 2019; 2:2587-2599. [DOI: 10.1021/acsabm.9b00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bak JM, Lee HI. Use of Core-Cross-Linked Polymeric Micelles Induced by the Selective Detection of Cu(II) Ions for the Sustained Release of a Model Drug. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14368-14375. [PMID: 30916935 DOI: 10.1021/acsami.9b02432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A well-defined amphiphilic phenylthiosemicarbazone-based block copolymer was successfully synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization, followed by postpolymerization modification. Poly( N,N-dimethylacrylamide) (pDMA) was synthesized via RAFT polymerization of N,N-dimethylacrylamide (DMA). The resulting pDMA macrochain transfer agent was further extended using 3-vinylbenzaldehyde (VBA) to yield the poly[( N,N-dimethylacrylamide)- b-(3-vinylbenzaldehyde)] [p(DMA- b-VBA)] block copolymer. The aldehyde groups of p(DMA- b-VBA) were then made to react with 4-phenylthiosemicarbazide to yield the target block copolymer poly{ N,N-dimethylacrylamide- b-[ N-phenyl-2-(3-vinylbenzylidene)hydrazine carbothioamide]} [p(DMA- b-PVHC)]. p(DMA- b-PVHC) self-assembled in aqueous solution to yield polymeric micelles that comprise a pDMA block that forms a hydrophilic shell and a pPVHC block that forms a hydrophobic core. p(DMA- b-PVHC) micelles can detect Cu(II) ions which can be determined by a color change from colorless to yellow induced by the formation of coordination complexes between Cu(II) ions and the phenylthiosemicarbazone units of p(DMA- b-PVHC). As Cu(II) ions slowly penetrated the core of p(DMA- b-PVHC) micelles, these cores cross-linked with each other, which in turn resulted in the micelle particles swelling in water. Upon the addition of Cu(II) ions to a solution of p(DMA- b-PVHC) micelles encapsulating the hydrophobic model drug coumarin 102, this drug was released from the micelles in a sustained manner due to the gradual swelling of the cross-linked micelle cores caused by the slow penetration of Cu(II) ions.
Collapse
Affiliation(s)
- Jae Min Bak
- Department of Chemistry , University of Ulsan , Ulsan 680-749 , Republic of Korea
| | - Hyung-Il Lee
- Department of Chemistry , University of Ulsan , Ulsan 680-749 , Republic of Korea
| |
Collapse
|
18
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
19
|
Advances and applications of block-copolymer-based nanoformulations. Drug Discov Today 2018; 23:1139-1151. [DOI: 10.1016/j.drudis.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/11/2018] [Accepted: 03/13/2018] [Indexed: 11/19/2022]
|
20
|
Qin B, Liu L, Wu X, Liang F, Hou T, Pan Y, Song S. mPEGylated solanesol micelles as redox-responsive nanocarriers with synergistic anticancer effect. Acta Biomater 2017; 64:211-222. [PMID: 28963017 DOI: 10.1016/j.actbio.2017.09.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
We prepared an amphiphilic redox-responsive conjugate based on mPEGylated solanesol, solanesyl poly(ethylene glycol) dithiodipropionate (SPDP), along with its inert counterpart solanesyl poly(ethylene glycol) succinate (SPGS), which self-assembled in aqueous solution to form redox-responsive micelles. Used as efficient drug carriers for doxorubicin (DOX), the micelles acted as synergistic agents for cancer therapy. Dynamic light scattering (DLS) measurements showed that the SPDP micelles had average diameters of 111nm, which decreased to 88nm after the encapsulation of DOX. The mean diameters and size distribution of the disulfide-containing micelles changed obviously in the presence of the reducing agent glutathione (GSH), whereas no changes occurred in the case of redox-insensitive SPGS micelles. DOX could be loaded into both types of micelles, with drug loading content of about 4.0%. A significantly accelerated release of DOX was triggered by GSH for DOX-loaded SPDP micelles, compared with DOX-loaded SPGS micelles. Blank SPGS and SPDP micelles displayed higher inhibition of HeLa and MCF-7 cell proliferation but less cytotoxicity to normal L-02 cells at similar concentrations. Confocal microscopic observation indicated that a greater amount of DOX was delivered into the nuclei of cells following 9 or 12h incubation with DOX-loaded micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded SPDP micelles over free DOX and DOX-loaded SPGS micelles. All of the data presented here suggested that these SPDP micelles may have a dual function, as they are preferentially toxic for tumor cells alone and are efficient and safe carriers for anticancer drugs. STATEMENT OF SIGNIFICANCE Various nanoscale drug carriers were used to enhance therapeutic effect of many drugs. While, the metabolites of high quantities of carriers may cause additional short- or long-term toxicities. In this study, a new systems based on solanesol derivatives was developed for anticancer drug delivery. There are two features for this system. One is solanesol originated bioactivity of the carrier, which will synergistically facilitate therapeutic effect of the encapsulated drug. The other is the redox-responsive drug release behavior adaptable to the glutathione-rich atmosphere of tumor cell. All the hypothesis have been elucidated in this work through in vitro and in vivo studies. It was found that this drug delivery system may have a dual function, as they are preferentially toxic for tumor cells alone and are efficient and safe carriers for anticancer drugs.
Collapse
|
21
|
Li P, Zhou X, Qu D, Guo M, Fan C, Zhou T, Ling Y. Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of self-assembled micelles of covalently conjugated celastrol-polyethylene glycol-ginsenoside Rh2. Drug Deliv 2017; 24:834-845. [PMID: 28532223 PMCID: PMC8241176 DOI: 10.1080/10717544.2017.1326540] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/01/2017] [Accepted: 05/02/2017] [Indexed: 01/26/2023] Open
Abstract
The aim of this study was to develop an amphipathic polyethylene glycol (PEG) derivative that was bi-terminally modified with celastrol and ginsenoside Rh2 (Celastrol-PEG-G Rh2). Such derivative was capable of forming novel, celastrol-loaded polymeric micelles (CG-M) for endo/lysosomal delivery and thereby synergistic treatment of lung cancer. Celastrol-PEG-G Rh2 with a yield of 55.6% was first synthesized and characterized. Its critical micellar concentration was 1 × 10-5 M, determined by pyrene entrapment method. CG-M had a small particle size of 121.53 ± 2.35 nm, a narrow polydispersity index of 0.214 ± 0.001 and a moderately negative zeta potential of -23.14 ± 3.15 mV. Celastrol and G Rh2 were rapidly released from CG-M under acidic and enzymatic conditions, but slowly released in normal physiological environments. In cellular studies, the internalization of celastrol and G Rh2 by human non-small cell lung cancer (A549) cells treated with CG-M was 5.8-fold and 1.8-fold higher than that of non-micelle control. Combinational therapy of celastrol and G Rh2 using CG-M exhibited synergistic anticancer activities in cell apoptosis and proliferation assays via rapid drug release within endo/lysosomes. Most importantly, the celastrol in CG-M exhibited a long elimination half-life of 445.3 ± 43.5 min and an improved area under the curve of 645060.8 ± 63640.7 ng/mL/h, that were 1.03-fold and 2.44-fold greater than those of non-micelle control, respectively. These findings suggest that CG-M is a promising vector for precisely releasing anticancer drugs within the tumor cells, and thereby exerts an improved synergistic anti-lung cancer effect.
Collapse
Affiliation(s)
- Peng Li
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
| | - XiaoYue Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Chenyi Fan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China, and
| | - Tong Zhou
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| | - Yang Ling
- Department of Oncology, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
- Clinical Oncology Laboratory, Changzhou Cancer Hospital of Soochow University, Changzhou, P.R. China
| |
Collapse
|
22
|
Bawa KK, Oh JK. Stimulus-Responsive Degradable Polylactide-Based Block Copolymer Nanoassemblies for Controlled/Enhanced Drug Delivery. Mol Pharm 2017; 14:2460-2474. [DOI: 10.1021/acs.molpharmaceut.7b00284] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kamaljeet K. Bawa
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| | - Jung Kwon Oh
- Department of Chemistry and
Biochemistry, Concordia University, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
23
|
Rolph MS, Inam M, O'Reilly RK. The application of blocked isocyanate chemistry in the development of tunable thermoresponsive crosslinkers. Polym Chem 2017. [DOI: 10.1039/c7py01706e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of a novel monomer, methacryloyl pyrazole, and its subsequent reaction with diisocyanates to produce thermoresponsive crosslinkers is reported.
Collapse
Affiliation(s)
| | - Maria Inam
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | |
Collapse
|