1
|
Zheleznyak A, Tang R, Duncan K, Manion B, Liang K, Xu B, Vanover A, Ghai A, Prior J, Lees S, Achilefu S, Kelly K, Shokeen M. Development of New CD38 Targeted Peptides for Cancer Imaging. Mol Imaging Biol 2024; 26:738-752. [PMID: 38480650 PMCID: PMC11282151 DOI: 10.1007/s11307-024-01901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024]
Abstract
PURPOSE Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.
Collapse
Affiliation(s)
- Alexander Zheleznyak
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Tang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kathleen Duncan
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brad Manion
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Kexian Liang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Baogang Xu
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alexander Vanover
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anchal Ghai
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Julie Prior
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Stephen Lees
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Samuel Achilefu
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kimberly Kelly
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Monica Shokeen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center, Washington University School of Medicine and Barnes-Jewish Hospital, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Malih S, Lin W, Tang Z, DeLuca MC, Engle JW, Alirezapour B, Cai W, Rasaee MJ. Noninvasive PET imaging of tumor PD-L1 expression with 64Cu-labeled Durvalumab. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2024; 14:31-40. [PMID: 38500749 PMCID: PMC10944374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/04/2024] [Indexed: 03/20/2024]
Abstract
Breast cancer (BrCa) ranks as the most prevalent malignant neoplasm affecting women worldwide. The expression of programmed death-ligand 1 (PD-L1) in BrCa has recently emerged as a biomarker for immunotherapy response, but traditional immunohistochemistry (IHC)-based methods are hindered by spatial and temporal heterogeneity. Noninvasive and quantitative PD-L1 imaging using appropriate radiotracers can serve to determine PD-L1 expression in tumors. This study aims to demonstrate the viability of PET imaging with 64Cu-labeled Durvalumab (abbreviated as Durva) to assess PD-L1 expression using a murine xenograft model of breast cancer. Durvalumab, a human IgG1 monoclonal antibody against PD-L1, was assessed for specificity in vitro in two cancer cell lines (MDA-MB-231 triple-negative breast cancer cell line and AsPC-1 pancreatic cancer cell line) with positive and negative PD-L1 expression by flow cytometry. Next, we performed the in vivo evaluation of 64Cu-NOTA-Durva in murine models of human breast cancer by PET imaging and ex vivo biodistribution. Additionally, mice bearing AsPC-1 tumors were employed as a negative control. Tumor uptake was quantified based on a 3D region-of-interest (ROI) analysis of the PET images and ex vivo biodistribution measurements, and the results were compared against conventional IHC testing. The radiotracer uptake was evident in MDA-MB-231 tumors and showed minimal nonspecific binding, corroborating IHC-derived results. The results of the biodistribution showed that the MDA-MB-231 tumor uptake of 64Cu-NOTA-Durva was much higher than 64Cu-NOTA-IgG (a nonspecific radiolabeled IgG). In Conclusion, 64Cu-labeled Durvalumab PET/CT imaging offers a promising, noninvasive approach to evaluate tumor PD-L1 expression.
Collapse
Affiliation(s)
- Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| | - Wilson Lin
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Zhongmin Tang
- Department of Radiology, University of Wisconsin-MadisonMadison, WI, USA
| | - Molly C DeLuca
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
| | - Behrouz Alirezapour
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI)Tehran, Iran
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-MadisonMadison, WI, USA
- Department of Radiology, University of Wisconsin-MadisonMadison, WI, USA
| | - Mohammad J Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares UniversityTehran, Iran
| |
Collapse
|
3
|
Zhang L, Zhao L, Lin X, Zhao S, Pan W, Wang D, Sun Z, Li J, Liang Z, Zhang R, Jiang H. Comparison of Tumor Non-specific and PD-L1 Specific Imaging by Near-Infrared Fluorescence/Cerenkov Luminescence Dual-Modality In-situ Imaging. Mol Imaging 2024; 23:15353508241261473. [PMID: 38952401 PMCID: PMC11208884 DOI: 10.1177/15353508241261473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Background Labeled antibodies are excellent imaging agents in oncology to non-invasively visualize cancer-related antigens expression levels. However, tumor tracer uptake (TTU) of specific antibodies in-vivo may be inferior to non-specific IgG in some cases. Objectives To explore factors affecting labeled antibody visualization by PD-L1 specific and non-specific imaging of nude mouse tumors. Methods TTU was observed in RKO model on Cerenkov luminescence (CL) and near-infrared fluorescence (NIRF) imaging of radionuclide 131I or NIRF dyes labeled Atezolizumab and IgG. A mixture of NIRF dyes labeled Atezolizumab and 131I-labeled IgG was injected, and TTU was observed in the RKO and HCT8 model by NIRF/CL dual-modality in-situ imaging. TTU were observed by 131I-labeled Atezolizumab and IgG in-vitro distribution. Results Labeled IgG concentrated more in tumors than Atezolizumab. NIRF/CL imaging in 24 to 168 h showed that TTU gradually decreased over time, which decreased more slowly on CL imaging compared to NIRF imaging. The distribution data in-vitro showed that TTU of 131I-labeled IgG was higher than that of 131I-labeled Atezolizumab at any time point. Conclusion Non-specific IgG may not be suitable as a control for Atezolizumab in comparing tumor PD-L1 expression in nude mice via labeled antibody optical imaging under certain circumstances.
Collapse
Affiliation(s)
- Linhan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lianmeng Zhao
- Ultrasound Department, Heilongjiang Provincial Hospital, Harbin, China
| | - Xue Lin
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sheng Zhao
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Pan
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinping Li
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zonghui Liang
- Department of Radiology, Jing’an District Centre Hospital (Jing’an Branch of Huashan Hospital), Shanghai, China
| | | | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
4
|
Zhu T, Hsu JC, Guo J, Chen W, Cai W, Wang K. Radionuclide-based theranostics - a promising strategy for lung cancer. Eur J Nucl Med Mol Imaging 2023; 50:2353-2374. [PMID: 36929181 PMCID: PMC10272099 DOI: 10.1007/s00259-023-06174-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
PURPOSE This review aims to provide a comprehensive overview of the latest literature on personalized lung cancer management using different ligands and radionuclide-based tumor-targeting agents. BACKGROUND Lung cancer is the leading cause of cancer-related deaths worldwide. Due to the heterogeneity of lung cancer, advances in precision medicine may enhance the disease management landscape. More recently, theranostics using the same molecule labeled with two different radionuclides for imaging and treatment has emerged as a promising strategy for systemic cancer management. In radionuclide-based theranostics, the target, ligand, and radionuclide should all be carefully considered to achieve an accurate diagnosis and optimal therapeutic effects for lung cancer. METHODS We summarize the latest radiotracers and radioligand therapeutic agents used in diagnosing and treating lung cancer. In addition, we discuss the potential clinical applications and limitations associated with target-dependent radiotracers as well as therapeutic radionuclides. Finally, we provide our views on the perspectives for future development in this field. CONCLUSIONS Radionuclide-based theranostics show great potential in tailored medical care. We expect that this review can provide an understanding of the latest advances in radionuclide therapy for lung cancer and promote the application of radioligand theranostics in personalized medicine.
Collapse
Affiliation(s)
- Tianxing Zhu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jingpei Guo
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Weiyu Chen
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
| |
Collapse
|
5
|
Dutta T, Kapoor N, Mathew M, Chakraborty SS, Ward NP, Prieto-Farigua N, Falzone A, DeLany JP, Smith SR, Coen PM, DeNicola GM, Gardell SJ. Source of nicotinamide governs its metabolic fate in cultured cells, mice, and humans. Cell Rep 2023; 42:112218. [PMID: 36897780 DOI: 10.1016/j.celrep.2023.112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/17/2023] [Indexed: 03/11/2023] Open
Abstract
Metabolic routing of nicotinamide (NAM) to NAD+ or 1-methylnicotinamide (MeNAM) has impacts on human health and aging. NAM is imported by cells or liberated from NAD+. The fate of 2H4-NAM in cultured cells, mice, and humans was determined by stable isotope tracing. 2H4-NAM is an NAD+ precursor via the salvage pathway in cultured A549 cells and human PBMCs and in A549 cell xenografts and PBMCs from 2H4-NAM-dosed mice and humans, respectively. 2H4-NAM is a MeNAM precursor in A549 cell cultures and xenografts, but not isolated PBMCs. NAM released from NAD+ is a poor MeNAM precursor. Additional A549 cell tracer studies yielded further mechanistic insight. NAMPT activators promote NAD+ synthesis and consumption. Surprisingly, NAM liberated from NAD+ in NAMPT activator-treated A549 cells is also routed toward MeNAM production. Metabolic fate mapping of the dual NAM sources across the translational spectrum (cells, mice, humans) illuminates a key regulatory node governing NAD+ and MeNAM synthesis.
Collapse
Affiliation(s)
- Tumpa Dutta
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| | - Nidhi Kapoor
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Meril Mathew
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Suban S Chakraborty
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Nathan P Ward
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Nicolas Prieto-Farigua
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Aimee Falzone
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James P DeLany
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Steven R Smith
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Paul M Coen
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA
| | - Gina M DeNicola
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, USA.
| |
Collapse
|
6
|
Marcu LG, Moghaddasi L, Bezak E. Cannot Target What Cannot Be Seen: Molecular Imaging of Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24021524. [PMID: 36675033 PMCID: PMC9864237 DOI: 10.3390/ijms24021524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Cancer stem cells are known to play a key role in tumour development, proliferation, and metastases. Their unique properties confer resistance to therapy, often leading to treatment failure. It is believed that research into the identification, targeting, and eradication of these cells can revolutionise oncological treatment. Based on the principle that what cannot be seen, cannot be targeted, a primary step in cancer management is the identification of these cells. The current review aims to encompass the state-of-the-art functional imaging techniques that enable the identification of cancer stem cells via various pathways and mechanisms. The paper presents in vivo molecular techniques that are currently available or await clinical implementation. Challenges and future prospects are highlighted to open new research avenues in cancer stem cell imaging.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics and Science, University of Oradea, 1 Universitatii Str., 410087 Oradea, Romania
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- Correspondence:
| | - Leyla Moghaddasi
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Eva Bezak
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
- School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
He Z, Liu X, Zhou Y. Research progress in the role of CD38 in clinical tumor treatment. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:952-959. [PMID: 36039593 PMCID: PMC10930288 DOI: 10.11817/j.issn.1672-7347.2022.210351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Indexed: 06/15/2023]
Abstract
Tumor is one of the ten leading causes of death in the world. Traditional tumor treatments include surgery, radiation therapy, and chemotherapy. With the development of immune checkpoint blockade therapy targeting the programmed death 1/programmed cell death 1 ligand 1 (PD-1/PD-L1) axis, the number of cancers in solid tumors has increased. Changes in the immunometabolic microenvironment have been shown to be important regulators of innate suppression of immune cell function and acquired resistance to immunotherapy. As a new target, CD38 is an enzyme that produces immunosuppressive metabolites (such as adenosine), which can be used in combination with immunotherapy to improve the clinical efficacy of tumor therapy, and can also be used as an indicator for understanding tumor immunotherapy response.
Collapse
Affiliation(s)
- Zhengxi He
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008. hezhengxi@ csu.edu.cn
- Cancer Research Institute, Central South University, Changsha 410078. hezhengxi@ csu.edu.cn
| | - Xing Liu
- Functional Experimental Center of School of Basic Medical Sciences, Central South University, Changsha 410078, China
| | - Yanhong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008.
- Cancer Research Institute, Central South University, Changsha 410078.
| |
Collapse
|
8
|
Wang Q, Zhang X, Wei W, Cao M. PET Imaging of Lung Cancers in Precision Medicine: Current Landscape and Future Perspective. Mol Pharm 2022; 19:3471-3483. [PMID: 35771950 DOI: 10.1021/acs.molpharmaceut.2c00353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the recent advances in cancer treatment, lung cancer remains the leading cause of cancer mortality worldwide. Immunotherapies using immune checkpoint inhibitors (ICIs) achieved substantial efficacy in nonsmall cell lung cancer (NSCLC). Currently, most ICIs are still a monoclonal antibody (mAb). Using mAbs or antibody derivatives labeled with radionuclide as the tracers, immunopositron emission tomography (immunoPET) possesses multiple advantages over traditional 18F-FDG PET in imaging lung cancers. ImmunoPET presents excellent potential in detecting, diagnosing, staging, risk stratification, treatment guidance, and recurrence monitoring of lung cancers. By using radiolabeled mAbs, immunoPET can visualize the biodistribution and uptake of ICIs, providing a noninvasive modality for patient stratification and response evaluation. Some novel targets and associated tracers for immunoPET have been discovered and investigated. This Review introduces the value of immunoPET in imaging lung cancers by summarizing both preclinical and clinical evidence. We also emphasize the value of immunoPET in optimizing immunotherapy in NSCLC. Lastly, immunoPET probes developed for imaging small cell lung cancer (SCLC) will also be discussed. Although the major focus is to summarize the immunoPET tracers for lung cancers, we also highlighted several small-molecule PET tracers to give readers a balanced view of the development status.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Xindi Zhang
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200217, China
| | - Min Cao
- Department of Thoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200217, China
| |
Collapse
|
9
|
Manafi-Farid R, Ataeinia B, Ranjbar S, Jamshidi Araghi Z, Moradi MM, Pirich C, Beheshti M. ImmunoPET: Antibody-Based PET Imaging in Solid Tumors. Front Med (Lausanne) 2022; 9:916693. [PMID: 35836956 PMCID: PMC9273828 DOI: 10.3389/fmed.2022.916693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Immuno-positron emission tomography (immunoPET) is a molecular imaging modality combining the high sensitivity of PET with the specific targeting ability of monoclonal antibodies. Various radioimmunotracers have been successfully developed to target a broad spectrum of molecules expressed by malignant cells or tumor microenvironments. Only a few are translated into clinical studies and barely into clinical practices. Some drawbacks include slow radioimmunotracer kinetics, high physiologic uptake in lymphoid organs, and heterogeneous activity in tumoral lesions. Measures are taken to overcome the disadvantages, and new tracers are being developed. In this review, we aim to mention the fundamental components of immunoPET imaging, explore the groundbreaking success achieved using this new technique, and review different radioimmunotracers employed in various solid tumors to elaborate on this relatively new imaging modality.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahar Ataeinia
- Department of Radiology, Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Shaghayegh Ranjbar
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Zahra Jamshidi Araghi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mobin Moradi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
10
|
Dong HH, Li J, Kang L, Wei Q, Li Y. Simultaneous multiple myeloma and non‑small cell lung carcinoma: A case report and review of the literature. Oncol Lett 2022; 23:195. [PMID: 35572492 PMCID: PMC9100747 DOI: 10.3892/ol.2022.13315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiple myeloma (MM) is the second commonest hematologic malignancy. Synchronous presentation of MM and lung cancer is a rare occurrence. The present study reports a case of MM combined with lung cancer and reviews previously reported cases of the co-existence of non-small cell lung carcinoma and MM. At Hebei General Hospital (Shijiazhuang, China), a 52-year-man was diagnosed with MM complicated by lung lesion. Lung computed tomography (CT) showed an increase in lesion density after the second cycle of chemotherapy. The lesion was surgically removed and the patient was diagnosed with non-small cell lung carcinoma by lung biopsy pathology. After the fifth cycle of VDT (bortezomib, dexamethasone and thalidomide), the patient received autologous stem cell transplantation. Immunohistochemical staining for CD38, CD138, CD39, CD203a and TNF-α were positive in both MM and lung cancer; CD73 was only positive in lung cancer. The present study described the rare event of the simultaneous occurrence of MM and lung adenocarcinoma and discussed the potential link between the two tumors. CD38 may play a role in MM and lung cancer by changing the bone marrow microenvironment through adenosine.
Collapse
Affiliation(s)
- Huan-Huan Dong
- Department of Graduate School, Hebei North University, Zhangjiakou, Hebei 075132, P.R. China
| | - Jing Li
- Department of Hematology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, Hebei 050013, P.R. China
| | - Lin Kang
- Department of Pathology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Qiang Wei
- Department of Nuclear Medicine, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yan Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
11
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
12
|
Kang L, Li C, Yang Q, Sutherlin L, Wang L, Chen Z, Becker KV, Huo N, Qiu Y, Engle JW, Wang R, He C, Jiang D, Xu X, Cai W. 64Cu-labeled daratumumab F(ab') 2 fragment enables early visualization of CD38-positive lymphoma. Eur J Nucl Med Mol Imaging 2021; 49:1470-1481. [PMID: 34677626 DOI: 10.1007/s00259-021-05593-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/11/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Abnormal CD38 expression in some hematologic malignancies, including lymphoma, has made it a biomarker for targeted therapies. Daratumumab (Dara) is the first FDA-approved CD38-specific monoclonal antibody, enabling successfully immunoPET imaging over the past years. Radiolabeled Dara however has a long blood circulation and delayed tumor uptake which can limit its applications. The focus of this study is to develop 64Cu-labeled Dara-F(ab')2 for the visualization of CD38 in lymphoma models. METHODS F(ab')2 fragment was prepared from Dara using an IdeS enzyme and purified with Protein A beads. Western blotting, flow cytometry, and surface plasmon resonance (SPR) were performed for in vitro assay. Probes were labeled with 64Cu after the chelation of 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA). Small animal PET imaging and quantitative analysis were performed after injection of 64Cu-labeled Dara-F(ab')2, IgG-F(ab')2, and Dara for evaluation in lymphoma models. RESULTS Flow cytometry and SPR assay proved the specific binding ability of Dara-F(ab')2 and NOTA-Dara-F(ab')2 in vitro. Radiolabeling yield of [64Cu]Cu-NOTA-Dara-F(ab')2 was over 90% and with a specific activity of 4.0 ± 0.6 × 103 MBq/μmol (n = 5). PET imaging showed [64Cu]Cu-NOTA-Dara-F(ab')2 had a rapid and high tumor uptake as early as 2 h (6.9 ± 1.2%ID/g) and peaked (9.5 ± 0.7%ID/g) at 12 h, whereas [64Cu]Cu-NOTA-Dara reached its tumor uptake peaked at 48 h (8.3 ± 1.4%ID/g, n = 4). In comparison, IgG-F(ab')2 and HBL-1 control groups found no noticeable tumor uptake. [64Cu]Cu-NOTA-Dara-F(ab')2 had significantly lower uptake in blood pool, bone, and muscle than [64Cu]Cu-NOTA-Dara and its tumor-to-blood and tumor-to-muscle ratios were significantly higher than controls. CONCLUSIONS [64Cu]Cu-NOTA-Dara-F(ab')2 showed a rapid and high tumor uptake in CD38-positive lymphoma models with favorable imaging contrast, showing its promise as a potential PET imaging agent for future clinical applications.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China. .,Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| | - Cuicui Li
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China.,Department of Nuclear Medicine, Beijing Friendship Hospital, Beijing, 100050, China
| | - Qi Yang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Logan Sutherlin
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Lin Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Kaelyn V Becker
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Nan Huo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China
| | - Yongkang Qiu
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Xicheng Dist, No. 8 Xishiku Str, Beijing, 100034, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dawei Jiang
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA. .,Department of Medical Molecular Biology, Beijing Institute of Biotechnology, 27 Tai-Ping Rd, Beijing, 100850, China.
| | - Xiaojie Xu
- Department of Nuclear Medicine, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin - Madison, K6/562 Clinical Science Center, 600 Highland Ave, Madison, WI, 53705-2275, USA.
| |
Collapse
|
13
|
ImmunoPET imaging of multiple myeloma with [ 68Ga]Ga-NOTA-Nb1053. Eur J Nucl Med Mol Imaging 2021; 48:2749-2760. [PMID: 33543326 DOI: 10.1007/s00259-021-05218-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/24/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE Multiple myeloma (MM) remains incurable and its diagnosis relies heavily on bone marrow aspiration and biopsy. CD38 is a glycoprotein highly specific for MM. Antibody therapeutics (e.g., daratumumab) targeting CD38 have shown encouraging efficacy in treating MM, either as a monotherapy agent or in combination with other regimens. However, efficient stratification of patients who might benefit from daratumumab therapy and timely monitoring of the therapeutic responses are still clinical challenges. This work aims to devise a CD38-targeted imaging strategy and assess its value in diagnosing MMs. METHODS By labeling a CD38-specific single domain antibody (Nb1053) with 68Ga (t1/2 = 1.1 h), we developed a CD38-targeted immuno-positron emission tomography (immunoPET) imaging probe [68Ga]Ga-NOTA-Nb1053. The probe was developed with good radiochemical yield (> 50%), excellent radiochemical purity (> 99%), and immunoreactivity (> 95%). The diagnostic accuracy of the probe was thoroughly investigated in preclinical MM models. RESULTS ImmunoPET imaging with [68Ga]Ga-NOTA-Nb1053 specifically depicted all the subcutaneous and orthotopic MM lesions, outperforming the traditional 18F-fluorodeoxyglucose PET and the nonspecific [68Ga]Ga-NOTA-NbGFP immunoPET. More importantly, daratumumab preloading significantly reduced [68Ga]Ga-NOTA-Nb1053 uptake in the disseminated bone lesions, indicating the overlapping targeting epitopes of [68Ga]Ga-NOTA-Nb1053 with that of daratumumab. Furthermore, premedication with sodium maleate or fructose significantly decreased kidney retention of [68Ga]Ga-NOTA-Nb1053 and improved the diagnostic value of the probe in lymphoma models. CONCLUSION This work successfully developed a novel CD38-targeted immunoPET imaging approach that enabled precise visualization of CD38 and diagnosis of MMs. Upon clinical translation, [68Ga]Ga-NOTA-Nb1053 immunoPET may serve as a valuable CD38-targeted molecular imaging toolbox, facilitating early diagnosis of MM and precise assessment of the therapeutic responses.
Collapse
|
14
|
Solnes LB, Shokeen M, Pandit-Taskar N. Novel Agents and Future Perspectives on Theranostics. Semin Radiat Oncol 2021; 31:83-92. [PMID: 33246639 DOI: 10.1016/j.semradonc.2020.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the current era of precision medicine, there is renewed interest in radiopharmaceutical therapy and theranostics. The approval of somatostatin receceptor directed therapy and norepinephrine transporter targeted 131I-MIBG therapies by the FDA and the rapid progress of highly promising beta and alpha emitter tagged PSMA directed therapy of prostate cancer have stimulated clinically impactful changes in practice. Many novel strategies are being explored and novel radiopharmaceutical therapeutic agents including peptide based ligands as well as antibodies or antibody fragments are being developed preclinically or are in early phase clinical trials. While beta particle emitters have most commonly been used for targeted radiotherapy and radioimmunotargeting, there is an emerging interest in alpha emitters that cause greater density of ionization events leading to increased double-strand DNA damage and cluster breaks because of the high-energy particles within a shorter tissue range of penetration and thereby lower toxicity to adjacent normal tissues.
Collapse
Affiliation(s)
- Lilja B Solnes
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Monica Shokeen
- Department of Radiology, St. Louis, MO.; Department of Biomedical Engineering, St. Louis, MO.; Alvin J. Siteman Cancer Center Washington University School of Medicine, St. Louis, MO
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY.; Department of Radiology, Weill Cornell Medical College, New York, NY..
| |
Collapse
|
15
|
Evolving Role of Daratumumab: From Backbencher to Frontline Agent. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:572-587. [DOI: 10.1016/j.clml.2020.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
16
|
Abstract
CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.
Collapse
Affiliation(s)
- Yanli Li
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Rui Yang
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| | - Limo Chen
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009 USA
| | - Sufang Wu
- Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, PR China
| |
Collapse
|
17
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
18
|
Abstract
Immuno-positron emission tomography (immunoPET) is a paradigm-shifting molecular imaging modality combining the superior targeting specificity of monoclonal antibody (mAb) and the inherent sensitivity of PET technique. A variety of radionuclides and mAbs have been exploited to develop immunoPET probes, which has been driven by the development and optimization of radiochemistry and conjugation strategies. In addition, tumor-targeting vectors with a short circulation time (e.g., Nanobody) or with an enhanced binding affinity (e.g., bispecific antibody) are being used to design novel immunoPET probes. Accordingly, several immunoPET probes, such as 89Zr-Df-pertuzumab and 89Zr-atezolizumab, have been successfully translated for clinical use. By noninvasively and dynamically revealing the expression of heterogeneous tumor antigens, immunoPET imaging is gradually changing the theranostic landscape of several types of malignancies. ImmunoPET is the method of choice for imaging specific tumor markers, immune cells, immune checkpoints, and inflammatory processes. Furthermore, the integration of immunoPET imaging in antibody drug development is of substantial significance because it provides pivotal information regarding antibody targeting abilities and distribution profiles. Herein, we present the latest immunoPET imaging strategies and their preclinical and clinical applications. We also emphasize current conjugation strategies that can be leveraged to develop next-generation immunoPET probes. Lastly, we discuss practical considerations to tune the development and translation of immunoPET imaging strategies.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Room 7137, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin 53705, United States
| |
Collapse
|
19
|
Ulaner GA, Sobol NB, O'Donoghue JA, Kirov AS, Riedl CC, Min R, Smith E, Carter LM, Lyashchenko SK, Lewis JS, Landgren CO. CD38-targeted Immuno-PET of Multiple Myeloma: From Xenograft Models to First-in-Human Imaging. Radiology 2020; 295:606-615. [PMID: 32255416 DOI: 10.1148/radiol.2020192621] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background Current measurements of multiple myeloma disease burden are suboptimal. Daratumumab is a monoclonal antibody that targets CD38, an antigen expressed on nearly all myeloma cells. Purpose To demonstrate preclinical and first-in-human application of an antibody composed of the native daratumumab labeled with the positron-emitting radionuclide zirconium 89 (89Zr) through the chelator deferoxamine (DFO), or 89Zr-DFO-daratumumab, for immunologic PET imaging of multiple myeloma. Materials and Methods 89Zr-DFO-daratumumab was synthesized by conjugating 89Zr to daratumumab with DFO. A murine xenograft model using CD38-positive OPM2 multiple myeloma cells was used to evaluate CD38-specificity of 89Zr-DFO-daratumumab. Following successful preclinical imaging, a prospective phase I study of 10 patients with multiple myeloma was performed. Study participants received 74 MBq (2 mCi) of intravenous 89Zr-DFO-daratumumab. Each participant underwent four PET/CT scans over the next 8 days, as well as blood chemistry and whole-body counts, to determine safety, tracer biodistribution, pharmacokinetics, and radiation dosimetry. Because 89Zr has a half-life of 78 hours, only a single administration of tracer was needed to obtain all four PET/CT scans. Results 89Zr-DFO-daratumumab was synthesized with radiochemical purity greater than 99%. In the murine model, substantial bone marrow uptake was seen in OPM2 mice but not in healthy mice, consistent with CD38-targeted imaging of OPM2 multiple myeloma cells. In humans, 89Zr-DFO-daratumumab was safe and demonstrated acceptable dosimetry. 89Zr-DFO-daratumumab uptake was visualized at PET in sites of osseous myeloma. Conclusion These data demonstrate successful CD38-targeted immunologic PET imaging of multiple myeloma in a murine model and in humans. © RSNA, 2020 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Gary A Ulaner
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Nicholas B Sobol
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Joseph A O'Donoghue
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Assen S Kirov
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Christopher C Riedl
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Ryan Min
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Eric Smith
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Lukas M Carter
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Serge K Lyashchenko
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - Jason S Lewis
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| | - C Ola Landgren
- From the Department of Radiology (G.A.U., N.B.S., C.C.R., R.M., L.M.C., S.K.L., J.S.L.), Department of Medical Physics (J.A.O., A.S.K.), Myeloma Service, Department of Medicine (E.S., C.O.L.), and Molecular Pharmacology Program (J.S.L.), Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065; and Department of Radiology, Weill Cornell Medical College, New York, NY (G.A.U., C.C.R., J.S.L.)
| |
Collapse
|
20
|
Liu W, Zhang C, Cao H, Shi D, Zhao S, Liang T, Hou G. Radioimmunoimaging of 125I-labeled anti-CD93 monoclonal antibodies in a xenograft model of non-small cell lung cancer. Oncol Lett 2019; 18:6413-6422. [PMID: 31819775 PMCID: PMC6896371 DOI: 10.3892/ol.2019.11036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/09/2019] [Indexed: 01/12/2023] Open
Abstract
Lung cancer, especially non-small cell lung cancer (NSCLC), is the most common malignant tumor associated with poor prognosis. Angiogenesis plays a vital role in NSCLC, and could be used in tumor staging and therapy evaluation. CD93 (C1q receptor) is reportedly a key regulator of tumor angiogenesis. In the present study, the efficacy and specificity of a 125I-labeled CD93-specific monoclonal antibody (125I-anti-CD93 mAb) in detecting NSCLC xenografts were analyzed, and the association between CD93 expression and 125I-anti-CD93 mAb uptake by tumors was evaluated. The targeting ability of 125I-anti-CD93 mAb enabled its rapid, continuous and highly specific accumulation in CD93-expressing tumors in vivo. These results revealed the potential applicability of 125I-anti-CD93 mAb for non-invasive imaging diagnosis of CD93-positive NSCLC.
Collapse
Affiliation(s)
- Weiwei Liu
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Chao Zhang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Hui Cao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dai Shi
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shanshan Zhao
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ting Liang
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Guihua Hou
- Biomedical Isotope Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
21
|
Li S, England CG, Ehlerding EB, Kutyreff CJ, Engle JW, Jiang D, Cai W. ImmunoPET imaging of CD38 expression in hepatocellular carcinoma using 64Cu-labeled daratumumab. Am J Transl Res 2019; 11:6007-6015. [PMID: 31632568 PMCID: PMC6789222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
CD38 is expressed on the surface of many immune cells, which are closely associated with antitumor immunity and immune tolerance of tumor cells. Therefore, monitoring CD38 expression has gained great attention for tracking the progression of tumors and cancer treatment. Herein, we aim to develop a PET tracer using an anti-CD38 monoclonal antibody (daratumumab) to monitor CD38 expression in hepatocellular carcinoma (HCC). In this study, daratumumab was radiolabeled with 64Cu (t1/2=12.7 h) to obtain 64Cu-NOTA-daratumumab. Relative CD38 expression in HepG2 and Huh7 HCC cell lines was assessed using western blot. The specificity of 64Cu-NOTA-daratumumab to both cell lines was examined using an in vitro cell-binding assay. PET imaging in subcutaneous models of HCC was performed to evaluate the capability and specificity of 64Cu-NOTA-daratumumab to target CD38 in vivo. Region-of-interest analysis and ex vivo biodistribution were performed to verify the tracer targeting capability of CD38. Through cellular studies of two HCC cell lines, CD38 expression was found to be higher in HepG2 and minimal in Huh7 cells. 64Cu-NOTA-daratumumab showed relatively high affinity to CD38 (Ka=18.21 ± 1.74 nM), while the affinity of Huh7 was in the micromolar range for daratumumab binding to the cells (Ka=3.98 ± 0.87 μM). At 48 h post-injection, PET imaging of subcutaneous models with 64Cu-NOTA-daratumumab revealed tumor uptakes of 12.23 ± 2.4 and 2.7 ± 1.2 %ID/g for HepG2 and Huh7, respectively (n=4), which correlated well with relative CD38 expression of the cells. Moreover, the 64Cu-NOTA-IgG nonspecific analogue showed a significantly lower uptake in HepG2 subcutaneous model in mice, suggesting a specific binding of daratumumab with CD38 in vivo. Our cellular studies and PET imaging confirmed the capability and specificity of 64Cu-NOTA-daratumumab for the imaging of CD38 in murine models of HCC. This study supports our claim that 64Cu-NOTA-daratumumab is an effective PET tracer for the non-invasive evaluation of CD38 expression and sensitive detection of CD38-positive tumor lesions in HCC.
Collapse
Affiliation(s)
- Shiyong Li
- Department of Rehabilitation, Second Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi, China
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Christopher G England
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Emily B Ehlerding
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Christopher J Kutyreff
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Jonathan W Engle
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Dawei Jiang
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| | - Weibo Cai
- Department of Radiology and Medical Physics, University of Wisconsin-MadisonWI 53705, United States
| |
Collapse
|
22
|
Ehlerding EB, Lee HJ, Barnhart TE, Jiang D, Kang L, McNeel DG, Engle JW, Cai W. Noninvasive Imaging and Quantification of Radiotherapy-Induced PD-L1 Upregulation with 89Zr-Df-Atezolizumab. Bioconjug Chem 2019; 30:1434-1441. [PMID: 30973703 DOI: 10.1021/acs.bioconjchem.9b00178] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune checkpoint expression is highly dynamic, and combination treatments including radiotherapy can particularly modulate this expression. PET imaging using 89Zr-Df-atezolizumab can provide insight into the levels of PD-L1 variation following radiotherapy treatments. In vitro screening was used to monitor PD-L1 expression by lung cancer cells following radiotherapy. Mice bearing PD-L1+ (H460) or PD-L1- (A549) tumors were subjected to various external beam radiotherapy regimens and then imaged using 89Zr-Df-atezolizumab PET. ROI analysis and ex vivo biodistribution studies were employed to quantify tracer accumulations. H460 cells were found to have PD-L1 expression at baseline, and this expression increased following daily radiotherapy of 5 fractions of 2 Gy. PD-L1 expression could not be induced on A549 cells, regardless of radiotherapy regimen. The increase in PD-L1 expression in H460 tumors following fractionated radiotherapy could be imaged in vivo using 89Zr-Df-atezolizumab, with statistically significant higher tracer accumulation noted in fractionated H460 tumors over that in all other H460 or A549 groups after 72 h postinjection of the tracer. Significant accumulation of the tracer was also noted in other PD-L1+ organs, including the spleen and lymph nodes. Ex vivo staining of tumor tissues verified that tumor cells as well as tumor-infiltrating immune cells were responsible for increased PD-L1 expression after radiotherapy in tumor tissues. Overall, PD-L1 expression can be modulated with radiotherapy interventions, and 89Zr-Df-atezolizumab is able to noninvasively monitor these changes in preclinical models.
Collapse
Affiliation(s)
- Emily B Ehlerding
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Hye Jin Lee
- Pharmaceutical Sciences Department , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Todd E Barnhart
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | | | | | - Douglas G McNeel
- Department of Medicine , University of Wisconsin-Madison , 1685 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Jonathan W Engle
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Weibo Cai
- Medical Physics Department , University of Wisconsin-Madison , 1111 Highland Avenue , Madison , Wisconsin 53705 , United States.,Pharmaceutical Sciences Department , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| |
Collapse
|
23
|
Wissler HL, Ehlerding EB, Lyu Z, Zhao Y, Zhang S, Eshraghi A, Buuh ZY, McGuth JC, Guan Y, Engle JW, Bartlett SJ, Voelz VA, Cai W, Wang RE. Site-Specific Immuno-PET Tracer to Image PD-L1. Mol Pharm 2019; 16:2028-2036. [PMID: 30875232 DOI: 10.1021/acs.molpharmaceut.9b00010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The rapid ascension of immune checkpoint blockade treatments has placed an emphasis on the need for viable, robust, and noninvasive imaging methods for immune checkpoint proteins, which could be of diagnostic value. Immunoconjugate-based positron emission tomography (immuno-PET) allows for sensitive and quantitative imaging of target levels and has promising potential for the noninvasive evaluation of immune checkpoint proteins. However, the advancement of immuno-PET is currently limited by available imaging tools, which heavily rely on full-length IgGs with Fc-mediated effects and are heterogeneous mixtures upon random conjugation with chelators for imaging. Herein, we have developed a site-specific αPD-L1 Fab conjugate with the chelator 1,4,7-triazacyclononane- N, N', N″-triacetic acid (NOTA), enabling radiolabeling for PET imaging, using the amber suppression-mediated genetic incorporation of unnatural amino acid (UAA), p-azidophenylalanine. This Fab conjugate is homogeneous and demonstrated tight binding toward the PD-L1 antigen in vitro. The radiolabeled version, 64Cu-NOTA-αPD-L1, has been employed in PET imaging to allow for effective visualization and mapping of the biodistribution of PD-L1 in two normal mouse models, including the capturing of different PD-L1 expression levels in the spleens of the different mouse types. Follow-up in vivo blocking studies and ex vivo fluorescent staining further validated specific tissue uptakes of the imaging agent. This approach illustrates the utility of UAA-based site-specific Fab conjugation as a general strategy for making sensitive PET imaging probes, which could facilitate the elucidation of the roles of a wide variety of immune checkpoint proteins in immunotherapy.
Collapse
Affiliation(s)
- Haley L Wissler
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Emily B Ehlerding
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Zhigang Lyu
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Yue Zhao
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Si Zhang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Anisa Eshraghi
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Zakey Yusuf Buuh
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Jeffrey C McGuth
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Yifu Guan
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Jonathan W Engle
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Sarah J Bartlett
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Vincent A Voelz
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| | - Weibo Cai
- Departments of Radiology and Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Rongsheng E Wang
- Department of Chemistry , Temple University , 1901 N. 13th Street , Philadelphia , Pennsylvania 19122 , United States
| |
Collapse
|
24
|
Poly(ADP-Ribose) Polymerases in Host-Pathogen Interactions, Inflammation, and Immunity. Microbiol Mol Biol Rev 2018; 83:83/1/e00038-18. [PMID: 30567936 DOI: 10.1128/mmbr.00038-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The literature review presented here details recent research involving members of the poly(ADP-ribose) polymerase (PARP) family of proteins. Among the 17 recognized members of the family, the human enzyme PARP1 is the most extensively studied, resulting in a number of known biological and metabolic roles. This review is focused on the roles played by PARP enzymes in host-pathogen interactions and in diseases with an associated inflammatory response. In mammalian cells, several PARPs have specific roles in the antiviral response; this is perhaps best illustrated by PARP13, also termed the zinc finger antiviral protein (ZAP). Plant stress responses and immunity are also regulated by poly(ADP-ribosyl)ation. PARPs promote inflammatory responses by stimulating proinflammatory signal transduction pathways that lead to the expression of cytokines and cell adhesion molecules. Hence, PARP inhibitors show promise in the treatment of inflammatory disorders and conditions with an inflammatory component, such as diabetes, arthritis, and stroke. These functions are correlated with the biophysical characteristics of PARP family enzymes. This work is important in providing a comprehensive understanding of the molecular basis of pathogenesis and host responses, as well as in the identification of inhibitors. This is important because the identification of inhibitors has been shown to be effective in arresting the progression of disease.
Collapse
|
25
|
Kang L, Jiang D, Ehlerding EB, Barnhart TE, Ni D, Engle JW, Wang R, Huang P, Xu X, Cai W. Noninvasive Trafficking of Brentuximab Vedotin and PET Imaging of CD30 in Lung Cancer Murine Models. Mol Pharm 2018. [PMID: 29537283 DOI: 10.1021/acs.molpharmaceut.7b01168] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
CD30 has been considered a unique diagnostic and therapeutic target for CD30-positive lymphomas and some lung diseases. Additionally, CD30 has shown high expression in clinical lung cancer samples. In this study, 89Zr-radiolabeled brentuximab vedotin (BV) was developed for in vivo tracking of BV and imaging CD30 expression in lung cancer models via conjugation with desferrioxamine (Df). CD30 expression in three lung cancer cell lines (H460, H358, and A549) was quantified by Western blot. Flow cytometry and saturation binding assays were used to evaluate the binding capabilities of the tracer in vitro. After longitudinal positron emission tomography (PET) imaging and quantitative analysis were performed, ex vivo biodistribution and histological studies were used to verify PET results. Finally, dosimetric extrapolation of murine data to humans was performed. At the cellular level, CD30 was found to be expressed on H460 and A549 cells with the highest and lowest levels of expression, respectively. Both Df-BV and 89Zr-Df-BV displayed high binding affinity to H460 cells. PET images and their quantification verified that BV accumulated in H460 tumor models (9.93 ± 2.70% ID/g at 24 h after injection; n = 4) at the highest level, followed by H358 and A549 tumors (8.05 ± 2.43 and 5.00 ± 1.56% ID/g; n = 4). The nonspecific 89Zr-labeled IgG showed a low tumor uptake of 5.2 ± 1.0% ID/g for H460 models. Ex vivo biodistribution and fluorescence immunohistochemistry also corroborated these findings. Dosimetric results displayed safe dose estimations. Therefore, 89Zr-Df-BV provides a potential agent for evaluating CD30 expression noninvasively in lung cancer, and also for imaging of brentuximab vedotin for better understanding of its pharmacokinetics.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , China.,Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Dawei Jiang
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Emily B Ehlerding
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Todd E Barnhart
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Dalong Ni
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Jonathan W Engle
- Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States
| | - Rongfu Wang
- Department of Nuclear Medicine , Peking University First Hospital , Beijing 100034 , China
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Xiaojie Xu
- Department of Medical Molecular Biology , Beijing Institute of Biotechnology , Beijing 100850 , China
| | - Weibo Cai
- Department of Radiology , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,Department of Medical Physics , University of Wisconsin-Madison , Madison , Wisconsin 53705 , United States.,University of Wisconsin Carbone Cancer Center , Madison , Wisconsin 53705 , United States
| |
Collapse
|
26
|
Kang L, Jiang D, England CG, Barnhart TE, Yu B, Rosenkrans ZT, Wang R, Engle JW, Xu X, Huang P, Cai W. ImmunoPET imaging of CD38 in murine lymphoma models using 89Zr-labeled daratumumab. Eur J Nucl Med Mol Imaging 2018; 45:1372-1381. [PMID: 29450576 DOI: 10.1007/s00259-018-3941-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/04/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE CD38 is considered a potential biomarker for multiple myeloma (MM) and has shown a strong link with chronic lymphocytic leukemia due to high and uniform expression on plasma cells. In vivo evaluation of CD38 expression may provide useful information about lesion detection and prognosis of treatment in MM. In this study, immunoPET imaging with 89Zr-labeled daratumumab was used for differentiation of CD38 expression in murine lymphoma models to provide a potential non-invasive method for monitoring CD38 in the clinic. METHODS Daratumumab was radiolabeled with 89Zr (t1/2 = 78.4 h) via conjugation with desferrioxamine (Df). After Western blot (WB) was used to screen CD38 expression in five lymphoma cell lines, flow cytometry and cellular binding assays were performed to test the binding ability of labeled or conjugated daratumumab with CD38 in vitro. PET imaging and biodistribution studies were performed to evaluate CD38 expression after injection of 89Zr-Df-daratumumab. 89Zr-Df-IgG was also evaluated as a non-specific control group in the Ramos model. Finally, CD38 expression in tumor tissues was verified by histological analysis. RESULTS Using WB screening, the Ramos cell line was found to express the highest level of CD38 while the HBL-1 cell line had the lowest expression. Df-conjugated and 89Zr-labeled daratumumab displayed similar high binding affinities with Ramos cells. PET imaging of 89Zr-Df-daratumumab showed a high tumor uptake of up to 26.6 ± 8.0 %ID/g for Ramos at 120 h post-injection, and only up to 6.6 ± 2.9 %ID/g for HBL-1 (n = 4). Additionally, 89Zr-Df-IgG demonstrated a low tumor uptake in the Ramos model (only 4.3 ± 0.8 %ID/g at 120 h post-injection). Ex vivo biodistribution studies showed similar trends with imaging results. Immunofluorescence staining of tumor tissues verified higher CD38 expression of Ramos than that of HBL-1. CONCLUSIONS The role of 89Zr-Df-daratumumab was investigated for evaluating CD38 expression in lymphoma models non-invasively and was found to be to a promising imaging agent of CD38-positive hematological diseases such as MM in future clinical applications.
Collapse
Affiliation(s)
- Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, 53705, USA
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China
| | - Christopher G England
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Bo Yu
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | | | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Xiaojie Xu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Peng Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Health Science Center, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060, China.
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA.
| |
Collapse
|