1
|
Ural MS, Joseph JM, Wien F, Li X, Tran MA, Taverna M, Smadja C, Gref R. A comprehensive investigation of the interactions of human serum albumin with polymeric and hybrid nanoparticles. Drug Deliv Transl Res 2024; 14:2188-2202. [PMID: 38578378 DOI: 10.1007/s13346-024-01578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.
Collapse
Affiliation(s)
- Merve Seray Ural
- Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France
- Université Paris-Saclay, Institut Galien Paris-Saclay, French National Center for Scientific Research, 91400, Orsay, France
| | - Joice Maria Joseph
- Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France
- Université Paris-Saclay, Institut Galien Paris-Saclay, French National Center for Scientific Research, 91400, Orsay, France
| | - Frank Wien
- , Synchrotron Soleil, 91190, Saint-Aubin, France
| | - Xue Li
- Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France
| | - My-An Tran
- Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France
| | - Myriam Taverna
- Université Paris-Saclay, Institut Galien Paris-Saclay, French National Center for Scientific Research, 91400, Orsay, France
| | - Claire Smadja
- Université Paris-Saclay, Institut Galien Paris-Saclay, French National Center for Scientific Research, 91400, Orsay, France.
| | - Ruxandra Gref
- Université Paris-Saclay, Institute of Molecular Sciences of Orsay, French National Center for Scientific Research, 91405, Orsay, France.
| |
Collapse
|
2
|
Costa-Tuna A, Chaves OA, Almeida ZL, Cunha RS, Pina J, Serpa C. Profiling the Interaction between Human Serum Albumin and Clinically Relevant HIV Reverse Transcriptase Inhibitors. Viruses 2024; 16:491. [PMID: 38675834 PMCID: PMC11054712 DOI: 10.3390/v16040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
Tenofovir (TFV) is the active form of the prodrugs tenofovir disoproxil fumarate (TDF) and tenofovir alafenamide (TAF), both clinically prescribed as HIV reverse transcriptase inhibitors. The biophysical interactions between these compounds and human serum albumin (HSA), the primary carrier of exogenous compounds in the human bloodstream, have not yet been thoroughly characterized. Thus, the present study reports the interaction profile between HSA and TFV, TDF, and TAF via UV-Vis, steady-state, and time-resolved fluorescence techniques combined with isothermal titration calorimetry (ITC) and in silico calculations. A spontaneous interaction in the ground state, which does not perturb the microenvironment close to the Trp-214 residue, is classified as weak. In the case of HSA/TFV and HSA/TDF, the binding is both enthalpically and entropically driven, while for HSA/TAF, the binding is only entropically dominated. The binding constant (Ka) and thermodynamic parameters obtained via ITC assays agree with those obtained using steady-state fluorescence quenching measurements, reinforcing the reliability of the data. The small internal cavity known as site I is probably the main binding pocket for TFV due to the low steric volume of the drug. In contrast, most external sites (II and III) can better accommodate TAF due to the high steric volume of this prodrug. The cross-docking approach corroborated experimental drug-displacement assays, indicating that the binding affinity of TFV and TAF might be impacted by the presence of different compounds bound to albumin. Overall, the weak binding capacity of albumin to TFV, TDF, and TAF is one of the main factors for the low residence time of these antiretrovirals in the human bloodstream; however, positive cooperativity for TAF and TDF was detected in the presence of some drugs, which might improve their residence time (pharmacokinetic profile).
Collapse
Affiliation(s)
- Andreia Costa-Tuna
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Otávio A. Chaves
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
- Laboratory of Immunopharmacology, Centro de Pesquisa, Inovação e Vigilância em COVID-19 e Emergências Sanitárias (CPIV), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-361, RJ, Brazil
| | - Zaida L. Almeida
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Rita S. Cunha
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - João Pina
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| | - Carlos Serpa
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal; (A.C.-T.); (Z.L.A.); (R.S.C.); (J.P.)
| |
Collapse
|
3
|
Lirussi F, Pyrshev K, Yesylevskyy S, Rivel T, Lopez T, Coppens E, Mura S, Couvreur P, Ramseyer C. Plasma membrane lipid bilayer is druggable: Selective delivery of gemcitabine-squalene nano-medicine to cancer cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166614. [PMID: 36494037 DOI: 10.1016/j.bbadis.2022.166614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Up to now the lipid bilayers were rarely considered as targets in cancer therapy despite pronounced differences in lipid composition between plasma membranes of benign and malignant cells. In this study we demonstrate that the lipid bilayer of the plasma membrane is druggable and suitable for facilitating selective delivery of amphiphilic gemcitabine-squalene nanomedicines to cancer cells. Data from radioactive assays, fluorescent membrane probes and molecular dynamics simulations provide evidence of selective accumulation of gemcitabine-squalene in the plasma membranes with disrupted lipid asymmetry and its subsequent preferential uptake by malignant cells. This causes pronounced cytotoxicity on cancer cells in comparison to their benign counterparts originating from the same tissue.
Collapse
Affiliation(s)
- Frédéric Lirussi
- UMR 1231, Lipides Nutrition Cancer, INSERM, F-21000 Dijon, France; UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Plateforme PACE, Laboratoire de Pharmacologie-Toxicologie, Centre Hospitalo-Universitaire Besançon, F-25000 Besançon, France.
| | - Kyrylo Pyrshev
- UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France; Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauky ave, 03028 Kyiv, Ukraine; Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA; Department of Neurochemistry, Palladin Institute of Biochemistry of the NAS of Ukraine, 9 Leontovycha str., 01601 Kyiv, Ukraine
| | - Semen Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, 46 Nauky ave, 03028 Kyiv, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10, Prague 6, Czech Republic; Receptor.AI Inc, 20-22 Wenlock Road, London N1 7GU, United Kingdom
| | - Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice, CZ-62500, Brno, Czech Republic
| | - Tatiana Lopez
- UMR 1231, Lipides Nutrition Cancer, INSERM, F-21000 Dijon, France; UFR des Sciences de Santé, Université Bourgogne Franche-Comté, F-25000 Besançon, France
| | - Eleonore Coppens
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Patrick Couvreur
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 92296, Châtenay-Malabry, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| |
Collapse
|
4
|
Selective delivery of pentamidine toward cancer cells by self-assembled nanoparticles. Int J Pharm 2022; 625:122102. [PMID: 35961419 DOI: 10.1016/j.ijpharm.2022.122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Pentamidine (PTM) is an aromatic diamidine approved for the treatment of parasitic infections that has been recently proposed for possible repositioning as an anticancer drug. To this aim, efforts have been made to improve its therapeutic efficacy and reduce associated adverse effects through both covalent derivatization and association with nanocarriers. To efficiently encapsulate PTM into biocompatible nanoparticles and to enhance its selectivity toward cancer cells, a squalene (SQ) derivative (1,1',2-tris-norsqualenoic acid, SQ-COOH) was selected to prepare PTM-loaded nanocarriers. Indeed, SQ and its derivatives self-assemble into nanoparticles in aqueous media. Furthermore, SQ-bioconjugates strongly interact with low-density lipoproteins (LDL), thus favoring preferential accumulation in cells overexpressing the LDL receptor (LDLR). We report here the preparation of nanocarriers by ion-pairing between the negatively charged SQ-COOH and the positively charged PTM free base (PTM-B), which allowed the covalent grafting of SQ to PTM to be avoided. The nanoparticles were characterized (mean size < 200 nm and zeta potential < -20 mV for SQ-COOH/PTM-B 3:1 molar ratio) and molecular modelling studies of the SQ-COOH/PTM-B interaction confirmed the nanocarrier stability. Finally, the ability to indirectly target LDLR-overexpressing cancer cells was evaluated by in vitro cell viability assays and confirmed by LDLR silencing, serum privation and simvastatin treatment.
Collapse
|
5
|
Jiang X, Han W, Liu J, Mao J, Lee MJ, Rodriguez M, Li Y, Luo T, Xu Z, Yang K, Bissonnette M, Weichselbaum RR, Lin W. Tumor-Activatable Nanoparticles Target Low-Density Lipoprotein Receptor to Enhance Drug Delivery and Antitumor Efficacy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201614. [PMID: 35748191 PMCID: PMC9404402 DOI: 10.1002/advs.202201614] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/31/2022] [Indexed: 05/28/2023]
Abstract
The binding of plasma proteins to nanomedicines is widely considered detrimental to their delivery to tumors. Here, the design of OxPt/SN38 nanoparticle containing a hydrophilic oxaliplatin (OxPt) prodrug in a coordination polymer core and a hydrophobic cholesterol-conjugated SN38 prodrug on the lipid shell for active tumor targeting is reported. OxPt/SN38 hitchhikes on low-density lipoprotein (LDL) particles, concentrates in tumors via LDL receptor-mediated endocytosis, and selectively releases SN38 and OxPt in acidic, esterase-rich, and reducing tumor microenvironments, leading to 6.0- and 4.9-times higher accumulations in tumors over free drugs. By simultaneously crosslinking DNA and inhibiting topoisomerase I, OxPt/SN38 achieved 92-98% tumor growth inhibition in five colorectal cancer tumor models and prolonged mouse survival by 58-80 days compared to free drug controls in three human colorectal cancer tumor models without causing serious side effects. The study has uncovered a novel nanomedicine strategy to co-deliver combination chemotherapies to tumors via active targeting of the LDL receptor.
Collapse
Affiliation(s)
- Xiaomin Jiang
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Wenbo Han
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Jianqiao Liu
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Jianming Mao
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Morten J. Lee
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Megan Rodriguez
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Youyou Li
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Taokun Luo
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Ziwan Xu
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
| | - Kaiting Yang
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| | - Marc Bissonnette
- Department of MedicineDivision of Biological SciencesThe University of ChicagoChicagoIL60637USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| | - Wenbin Lin
- Department of ChemistryThe University of ChicagoChicagoIL60637USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis ResearchThe University of Chicago5758S Maryland AveChicagoIL60637USA
| |
Collapse
|
6
|
The in vivo fate of polymeric micelles. Adv Drug Deliv Rev 2022; 188:114463. [PMID: 35905947 DOI: 10.1016/j.addr.2022.114463] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 12/12/2022]
Abstract
This review aims to provide a systemic analysis of the in vivo, as well as subcellular, fate of polymeric micelles (PMs), starting from the entry of PMs into the body. Few PMs are able to cross the biological barriers intact and reach the circulation. In the blood, PMs demonstrate fairly good stability mainly owing to formation of protein corona despite controversial results reported by different groups. Although the exterior hydrophilic shells render PMs "long-circulating", the biodistribution of PMs into the mononuclear phagocyte systems (MPS) is dominant as compared with non-MPS organs and tissues. Evidence emerges to support that the copolymer poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) is first broken down into pieces of PEG and PLA and then remnants to be eliminated from the body finally. At the cellular level, PMs tend to be internalized via endocytosis due to their particulate nature and disassembled and degraded within the cell. Recent findings on the effect of particle size, surface characteristics and shape are also reviewed. It is envisaged that unraveling the in vivo and subcellular fate sheds light on the performing mechanisms and gears up the clinical translation of PMs.
Collapse
|
7
|
Alanazi SA, Harisa GI, Badran MM, Alanazi FK, Elzayat E, Alomrani AH, Al Meanazel OT, Al Meanazel AT. Crosstalk of low density lipoprotein and liposome as a paradigm for targeting of 5-fluorouracil into hepatic cells: cytotoxicity and liver deposition. Bioengineered 2021; 12:914-926. [PMID: 33678142 PMCID: PMC8806320 DOI: 10.1080/21655979.2021.1896202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/19/2021] [Indexed: 11/20/2022] Open
Abstract
This study aimed to utilize cholesterol conjugation of 5-fluorouracil (5-FUC) and liposomal formulas to enhance the partitioning of 5-FU into low density lipoprotein (LDL) to target hepatocellular carcinoma (HCC). Thus, 5-FU and 5-FUCwere loaded into liposomes. Later, the direct loading and transfer of 5-FU, and 5-FUC from liposomes into LDL were attained. The preparations were characterized in terms of particle size, zeta potential, morphology, entrapment efficiency, and cytotoxicity using the HepG2 cell line. Moreover, the drug deposition into the LDL and liver tissues was investigated. The present results revealed that liposomal preparations have a nanosize range (155 - 194 nm), negative zeta potential (- 0.82 to - 16 mV), entrapment efficiency of 69% for 5-FU, and 66% for 5-FUC. Moreover, LDL particles have a nanosize range (28-49 nm), negative zeta potential (- 17 to -27 mV), and the entrapment efficiency is 11% for 5-FU and 85% for 5-FUC. Furthermore, 5-FUC loaded liposomes displayed a sustained release profile (57%) at 24 h compared to fast release (92%) of 5-FU loaded liposomes. 5-FUC and liposomal formulas enhanced the transfer of 5-FUC into LDL compared to 5-FU. 5-FUC loaded liposomes and LDL have greater cytotoxicity against HepG2 cell lines compared to 5-FU and 5-FUC solutions. Moreover, the deposition of 5-FUC in LDL (26.87ng/mg) and liver tissues (534 ng/gm tissue) was significantly increased 5-FUC liposomes compared to 5-FU (11.7 ng/g tissue) liposomal formulation. In conclusion, 5-FUC is a promising strategy for hepatic targeting of 5-FU through LDL-mediated gateway.
Collapse
Affiliation(s)
- Saleh A. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Pharmaceutical Care Services, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Gamaleldin I. Harisa
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed M. Badran
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, Al-Azhar University, Nasr City Cairo, Egypt
| | - Fars K. Alanazi
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ehab Elzayat
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah H. Alomrani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Osaid T. Al Meanazel
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Ahmed T. Al Meanazel
- Prince Naif for the Health Research Center, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Coppens E, Desmaële D, Naret T, Garcia-Argote S, Feuillastre S, Pieters G, Cailleau C, Paul JL, Prost B, Solgadi A, Michel JP, Noiray M, Couvreur P, Mura S. Gemcitabine lipid prodrug nanoparticles: Switching the lipid moiety and changing the fate in the bloodstream. Int J Pharm 2021; 609:121076. [PMID: 34481886 DOI: 10.1016/j.ijpharm.2021.121076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
A simple approach to achieve a lipoprotein (LP)-mediated drug delivery is to trigger the spontaneous drug insertion into endogenous lipoproteins in the bloodstream, by means of its chemical modification. Nanoparticles (NPs) made of the squalene-gemcitabine (SQGem) conjugate were found to have a high affinity for plasma lipoproteins while free gemcitabine did not, suggesting a key role of the lipid moiety in this event. Whether the drug conjugation to cholesterol, one of the major lipoprotein-transported lipids, could also promote an analogous interaction was a matter of question. NPs made of the cholesterol-gemcitabine conjugate (CholGem) have been herein thoroughly investigated for their blood distribution profile both in vitro and in vivo. Unexpectedly, contrarily to SQGem, no trace of the CholGem prodrug could be found in the lipoprotein fractions, nor was it interacting with albumin. The investigation of isolated NPs and NPs/LPs physical mixtures provided a further insight into the lack of interaction of CholGem NPs with LPs. Although essential for allowing the self-assembly of the prodrug into nanoparticles, the lipid moiety may not be sufficient to elicit interaction of the conjugated drug with plasma lipoproteins but the whole NP physicochemical features must be carefully considered.
Collapse
Affiliation(s)
- Eleonore Coppens
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Timothée Naret
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Bat 547, 91191 Gif-sur-Yvette, France
| | - Catherine Cailleau
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Louis Paul
- AP-HP, Hôpital Européen Georges Pompidou, Service de Biochimie, 75015 Paris, France; Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Bastien Prost
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Audrey Solgadi
- SAMM, UMS IPSIT, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Jean-Philippe Michel
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Magali Noiray
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
| | - Simona Mura
- Institut Galien Paris-Saclay, UMR 8612, CNRS, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France.
| |
Collapse
|
9
|
Caillaud M, Gobeaux F, Hémadi M, Boutary S, Guenoun P, Desmaële D, Couvreur P, Wien F, Testard F, Massaad-Massade L. Supramolecular organization and biological interaction of squalenoyl siRNA nanoparticles. Int J Pharm 2021; 609:121117. [PMID: 34562556 DOI: 10.1016/j.ijpharm.2021.121117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/14/2022]
Abstract
Small interfering RNAs (siRNA) are attractive and powerful tools to inhibit the expression of a targeted gene. However, their extreme hydrophilicities combined with a negative charge and short plasma half-life counteract their use as therapeutics. Previously, we chemically linked siRNA to squalene (SQ) which self-assembled as nanoparticles (NPs) with pharmacological efficiency in cancers and recently in a hereditary neuropathy. In order to understand the siRNA-SQ NP assembly and fate once intravenously injected, the present study detailed characterization of siRNA-SQ NP structure and its interaction with serum components. From SAXS and SANS analysis, we propose that the siRNA-SQ bioconjugate self-assembled as 11-nm diameter supramolecular assemblies, which are connected one to another to form spherical nanoparticles of around 130-nm diameter. The siRNA-SQ NPs were stable in biological media and interacted with serum components, notably with albumin and LDL. The high specificity of siRNA to decrease or normalize gene expression and the high colloidal stability when encapsulated into squalene nanoparticles offer promising targeted therapy with wide applications for pathologies with gene expression dysregulation.
Collapse
Affiliation(s)
- Marie Caillaud
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Frédéric Gobeaux
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Miryana Hémadi
- Université de Paris, CNRS-UMR 7086, Interfaces, Traitements, Organisation et DYnamique des Systèmes (ITODYS), UFR de Chimie, 75013 Paris, France
| | - Suzan Boutary
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Didier Desmaële
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Patrick Couvreur
- Institut Galien Paris-Saclay, CNRS UMR 8612, Université Paris-Saclay, 92290 Châtenay-Malabry, France
| | | | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, LIONS, 91191 Gif-sur-Yvette, France
| | - Liliane Massaad-Massade
- U1195 Diseases and Hormones of the Nervous System, INSERM U1195 and University Paris-Saclay, 94276 Le Kremlin-Bicêtre, France.
| |
Collapse
|
10
|
Navarro Chica CE, Qin T, de Haan BJ, Faas MM, Smink AM, Sierra L, López BL, de Vos P. In vitro determination of the immunosuppressive effect, internalization, and release mechanism of squalene-gusperimus nanoparticles for managing inflammatory responses. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:651-661. [PMID: 34751061 DOI: 10.1080/21691401.2021.1999968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gusperimus is an anti-inflammatory drug that has shown to be effective in managing autoimmunity and preventing graft rejection. This is unstable and easily broken down into cytotoxic components. We encapsulated gusperimus binding it covalently to squalene obtaining squalene-gusperimus nanoparticles (Sq-GusNPs). These nanoparticles enhanced the immunosuppressive effect of gusperimus in both mouse macrophages and T cells. The half-maximal inhibitory concentration in macrophages was 9-fold lower for Sq-GusNPs compared with the free drug. The anti-inflammatory effect of the Sq-GusNPs was maintained over time without cytotoxicity. By studying nanoparticles uptake by cells with flow cytometry, we demonstrated that Sq-GusNPs are endocytosed by macrophages after binding to low-density lipoprotein receptors (LDLR). In presence of cathepsin B or D release of gusperimus is increased demonstrating the participation of proteases in the release process. Our approach may allow the application of Sq-GusNPs for effective management of inflammatory disorders including autoimmunity and graft rejection.
Collapse
Affiliation(s)
- Carlos E Navarro Chica
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Grupo de Investigación Ciencia de los Materiales, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Tian Qin
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J de Haan
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - M M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Alexandra M Smink
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Betty L López
- Grupo de Investigación Ciencia de los Materiales, Facultad de Ciencias Exactas y Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Singh IR, Yesylevskyy SO, Mitra S. Dietary polyphenols inhibit plasma protein arabinosylation: Biomolecular interaction of genistein and ellagic acid with serum albumins. Biophys Chem 2021; 277:106651. [PMID: 34217110 DOI: 10.1016/j.bpc.2021.106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/08/2023]
Abstract
The mode of interaction of polyphenolic compounds like genistein (GTN) and ellagic acid (EGA) with human and bovine serum albumin (HSA and BSA, respectively) was found to differ significantly. Stern-Volmer (SV) analysis of the fluorescence quenching data revealed that the binding strength of EGA (1.9 ± 0.09 × 105 M-1) to HSA is about one order of magnitude higher than GTN (2.24 ± 0.06 × 104 M-1). While the static quenching of HSA fluorescence was found to proceed through simple Stern-Volmer (SV) mechanism, a quenching sphere-of-action model was indispensable for BSA. Temperature dependent fluorescence along with a series of other biophysical experiments and ensemble docking calculation revealed that EGA and GTN bind to the serum proteins primarily through the entropy driven process. The α-helical content and the microenvironment near Trp residue of HSA and BSA did not show any appreciable change due to the binding of either GTN or EGA. Interestingly, both GTN and EGA were found to inhibit the formation of advanced glycated end (AGE) product of serum proteins up to the extent of 70-90% within 12-24 h. Relatively moderate binding propensity along with the anti-glycation ability of the polyphenols confirmed that GTN and EGA can be used either as an alternative or towards development of suitable drugs in the prevention of many diabetic-related complications.
Collapse
Affiliation(s)
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
12
|
|
13
|
Membrane Environment Modulates Ligand-Binding Propensity of P2Y12 Receptor. Pharmaceutics 2021; 13:pharmaceutics13040524. [PMID: 33918934 PMCID: PMC8069422 DOI: 10.3390/pharmaceutics13040524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/17/2023] Open
Abstract
The binding of natural ligands and synthetic drugs to the P2Y12 receptor is of great interest because of its crucial role in platelets activation and the therapy of arterial thrombosis. Up to now, all computational studies of P2Y12 concentrated on the available crystal structures, while the role of intrinsic protein dynamics and the membrane environment in the functioning of P2Y12 was not clear. In this work, we performed all-atom molecular dynamics simulations of the full-length P2Y12 receptor in three different membrane environments and in two possible conformations derived from available crystal structures. The binding of ticagrelor, its two major metabolites, adenosine diphosphate (ADP) and 2-Methylthioadenosine diphosphate (2MeS-ADP) as agonist, and ethyl 6-[4-(benzylsulfonylcarbamoyl)piperidin-1-yl]-5-cyano-2-methylpyridine-3-carboxylate (AZD1283)as antagonist were assessed systematically by means of ensemble docking. It is shown that the binding of all ligands becomes systematically stronger with the increase of the membrane rigidity. Binding of all ligands to the agonist-bound-like conformations is systematically stronger in comparison to antagonist-bound-likes ones. This is dramatically opposite to the results obtained for static crystal structures. Our results show that accounting for internal protein dynamics, strongly modulated by its lipid environment, is crucial for correct assessment of the ligand binding to P2Y12.
Collapse
|
14
|
Rybak MY, Balanda AO, Yatsyshyna AP, Kotey IM, Starosyla SA, Bdzhola VG, Lukash LL, Yarmoluk SM, Tukalo MA, Volynets GP. Discovery of novel antituberculosis agents among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives targeting aminoacyl-tRNA synthetases. Sci Rep 2021; 11:7162. [PMID: 33785838 PMCID: PMC8010095 DOI: 10.1038/s41598-021-86562-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/17/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotic resistance is a major problem of tuberculosis treatment. This provides the stimulus for the search of novel molecular targets and approaches to reduce or forestall resistance emergence in Mycobacterium tuberculosis. Earlier, we discovered a novel small-molecular inhibitor among 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazoles targeting simultaneously two enzymes-mycobacterial leucyl-tRNA synthetase (LeuRS) and methionyl-tRNA synthetase (MetRS), which are promising molecular targets for antibiotic development. Unfortunately, the identified inhibitor does not reveal antibacterial activity toward M. tuberculosis. This study aims to develop novel aminoacyl-tRNA synthetase inhibitors among this chemical class with antibacterial activity toward resistant strains of M. tuberculosis. We performed molecular docking of the library of 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives and selected 41 compounds for investigation of their inhibitory activity toward MetRS and LeuRS in aminoacylation assay and antibacterial activity toward M. tuberculosis strains using microdilution assay. In vitro screening resulted in 10 compounds active against MetRS and 3 compounds active against LeuRS. Structure-related relationships (SAR) were established. The antibacterial screening revealed 4 compounds active toward M. tuberculosis mono-resistant strains in the range of concentrations 2-20 mg/L. Among these compounds, only one compound 27 has significant enzyme inhibitory activity toward mycobacterial MetRS (IC50 = 148.5 µM). The MIC for this compound toward M. tuberculosis H37Rv strain is 12.5 µM. This compound is not cytotoxic to human HEK293 and HepG2 cell lines. Therefore, 3-phenyl-5-(1-phenyl-1H-[1,2,3]triazol-4-yl)-[1,2,4]oxadiazole derivatives can be used for further chemical optimization and biological research to find non-toxic antituberculosis agents with a novel mechanism of action.
Collapse
Affiliation(s)
- Mariia Yu Rybak
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine.
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Anna P Yatsyshyna
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Igor M Kotey
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy A Starosyla
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Lubov L Lukash
- Department of Human Genetics, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Michael A Tukalo
- Department of Protein Synthesis Enzymology, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| | - Galyna P Volynets
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of the NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
15
|
Baruah P, Yesylevskyy SO, Aguan K, Mitra S. Modulation of enzyme activity at nano-bio interface: A case study with acetylcholinesterase and citrate synthase adsorbed on colloidal metal nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Gobeaux F, Bizeau J, Samson F, Marichal L, Grillo I, Wien F, Yesylevsky SO, Ramseyer C, Rouquette M, Lepêtre-Mouelhi S, Desmaële D, Couvreur P, Guenoun P, Renault JP, Testard F. Albumin-driven disassembly of lipidic nanoparticles: the specific case of the squalene-adenosine nanodrug. NANOSCALE 2020; 12:2793-2809. [PMID: 31961354 DOI: 10.1039/c9nr06485k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the field of nanomedicine, nanostructured nanoparticles (NPs) made of self-assembling prodrugs emerged in the recent years with promising properties. In particular, squalene-based drug nanoparticles have already shown their efficiency through in vivo experiments. However, a complete pattern of their stability and interactions in the blood stream is still lacking. In this work we assess the behavior of squalene-adenosine (SQAd) nanoparticles - whose neuroprotective effect has already been demonstrated in murine models - in the presence of fetal bovine serum (FBS) and of bovine serum albumin (BSA), the main protein of blood plasma. Extensive physicochemical characterizations were performed using Small Angle Neutron Scattering (SANS), cryogenic transmission electron microscopy (Cryo-TEM), circular dichroism (CD), steady-state fluorescence spectroscopy (SSFS) and isothermal titration calorimetry (ITC) as well as in silico by means of ensemble docking simulations with human serum albumin (HSA). Significant changes in the colloidal stability of the nanoparticles in the presence of serum albumin were observed. SANS, CD and SSFS analyses demonstrated an interaction between SQAd and BSA, with a partial disassembly of the nanoparticles in the presence of BSA and the formation of a complex between SQAd and BSA. The interaction free energy of SQAd nanoparticles with BSA derived from ITC experiments, is about -8 kcal mol-1 which is further supported in silico by ensemble docking simulations. Overall, our results show that serum albumin partially disassembles SQAd nanoparticles by extracting individual SQAd monomers from them. As a consequence, the SQAd nanoparticles would act as a circulating reservoir in the blood stream. The approach developed in this study could be extended to other soft organic nanoparticles.
Collapse
Affiliation(s)
- Frédéric Gobeaux
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Joëlle Bizeau
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Firmin Samson
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Laurent Marichal
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France. and I2BC, JOLIOT, DRF, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle Grillo
- Institut Laue Langevin, 71 avenue des martyrs, B.P. 156, 38042 Grenoble Cedex 9, France
| | | | - Semen O Yesylevsky
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Marie Rouquette
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Sinda Lepêtre-Mouelhi
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Didier Desmaële
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud, UMR 8612, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry Cedex, France
| | - Patrick Guenoun
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Jean-Philippe Renault
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| | - Fabienne Testard
- LIONS - NIMBE CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
17
|
Mougin J, Yesylevskyy SO, Bourgaux C, Chapron D, Michel JP, Dosio F, Stella B, Ramseyer C, Couvreur P. Stacking as a Key Property for Creating Nanoparticles with Tunable Shape: The Case of Squalenoyl-Doxorubicin. ACS NANO 2019; 13:12870-12879. [PMID: 31603305 DOI: 10.1021/acsnano.9b05303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The development of elongated nanoparticles for drug delivery is of growing interest in recent years, due to longer blood circulation and improved efficacy compared to spherical counterparts. Squalenoyl-doxorubicin (SQ-Dox) conjugate was previously shown to form elongated nanoparticles with improved therapeutic efficacy and decreased toxicity compared to free doxorubicin. By using experimental and computational techniques, we demonstrate here that the specific physical properties of SQ-Dox, which include stacking and electrostatic interactions of doxorubicin as well as hydrophobic interactions of squalene, are involved in the formation of nanoassemblies with diverse elongated structures. We show that SQ-Dox bioconjugate concentration, ionic strength, and anion nature can be used to modulate the shape and stiffness of SQ-Dox nanoparticles. As those parameters are involved in nanoparticle behavior in biological media, these findings could bring interesting opportunities for drug delivery and serve as an example for the design of original nanodrugs with stacking properties tuned for particular clinical purposes.
Collapse
Affiliation(s)
- Julie Mougin
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Semen O Yesylevskyy
- Department of Physics of Biological Systems , Institute of Physics of the National Academy of Sciences of Ukraine , Prospect Nauky 46 , 03028 Kyiv , Ukraine
- Laboratoire Chrono Environnement UMR CNRS 6249 , Université de Bourgogne Franche-Comté , 16 route de Gray , 25030 Besançon Cedex, France
| | - Claudie Bourgaux
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - David Chapron
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Jean-Philippe Michel
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| | - Franco Dosio
- Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , 10125 Turin , Italy
| | - Barbara Stella
- Dipartimento di Scienza e Tecnologia del Farmaco , Università degli Studi di Torino , 10125 Turin , Italy
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249 , Université de Bourgogne Franche-Comté , 16 route de Gray , 25030 Besançon Cedex, France
| | - Patrick Couvreur
- Institut Galien Paris-Sud UMR CNRS 8612 , Faculty of Pharmacy, Université Paris-Sud, Université Paris-Saclay , 92290 Châtenay-Malabry , France
| |
Collapse
|
18
|
Yesylevskyy S, Rivel T, Ramseyer C. Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Sci Rep 2019; 9:17214. [PMID: 31748538 PMCID: PMC6868207 DOI: 10.1038/s41598-019-53952-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/26/2019] [Indexed: 01/15/2023] Open
Abstract
In this work the permeability of a model asymmetric plasma membrane, for ions, water and the anti-cancer drugs cisplatin and gemcitabine is studied by means of all-atom molecular dynamics simulations. It is shown for the first time that permeability of the highly curved membrane increases from one to three orders of magnitude upon membrane bending depending on the compound and the sign of curvature. Our results suggest that the membrane curvature could be an important factor of drug translocation through the membrane.
Collapse
Affiliation(s)
- Semen Yesylevskyy
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France.
- Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028, Kyiv, Ukraine.
| | - Timothée Rivel
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| | - Christophe Ramseyer
- Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030, Besançon, Cedex, France
| |
Collapse
|
19
|
Xu Y, Ren H, Liu J, Wang Y, Meng Z, He Z, Miao W, Chen G, Li X. A switchable NO-releasing nanomedicine for enhanced cancer therapy and inhibition of metastasis. NANOSCALE 2019; 11:5474-5488. [PMID: 30855625 DOI: 10.1039/c9nr00732f] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Clinical chemotherapy for cancer is limited by the physiological barrier of tumors, resulting in low drug delivery to tumors, poor efficacy of drugs and inability to block tumor metastasis. Here we developed an intelligent switchable nitric oxide (NO)-releasing nanoparticle, IPH-NO, which loads a photosensitizer (IR780) and the chemotherapy drug paclitaxel (PTX) into NO donor-S-nitrosated human serum albumin (HSA-NO). NO exhibits two effects based on its concentration: enhancement of chemotherapy by increasing the enhanced permeability and retention (EPR) effect at low concentrations and direct killing of cancer cells at high concentrations. IPH-NO can slowly release NO in the presence of glutathione to boost tumor vascular permeability and improve drug accumulation. Near-infrared light irradiation was utilized to induce a quick release of NO that can directly kill cancer cells at high concentrations. This combination of phototherapy and NO gas therapy activated by NIR together with chemotherapy showed significant effects in tumor inhibition. Furthermore, IPH-NO blocked tumor metastasis by inhibiting epithelial mesenchymal transition. PH-NO provides a novel strategy to control NO release at tumor site for drug accumulation and combination therapies, consequently potentiating the anticancer efficacy and inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Yan Xu
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rouquette M, Lepetre-Mouelhi S, Dufrançais O, Yang X, Mougin J, Pieters G, Garcia-Argote S, IJzerman AP, Couvreur P. Squalene-Adenosine Nanoparticles: Ligands of Adenosine Receptors or Adenosine Prodrug? J Pharmacol Exp Ther 2019; 369:144-151. [DOI: 10.1124/jpet.118.254961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/14/2023] Open
|
21
|
Ye J, Zhang R, Chai W, Du X. Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Drug Deliv 2018; 25:2007-2014. [PMID: 30799656 PMCID: PMC6319454 DOI: 10.1080/10717544.2018.1531953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Combinational therapy is usually considered as a preferable approach for effective cancer therapy. Especially, combinational chemotherapies targeting different molecular targets are of particular interest due to its high flexibility as well as efficiency. In our study, the surface of silica nanoparticles (SLN) was modified with low-density lipoprotein (LDL) to construct platform (LDL-SLN) capable of specifically targeting low-density lipoprotein receptors (LDLRs) that overexpressing in hepatocellular carcinoma (HCC). In addition, the versatile drug loading capacity of LDL-SLN was employed to fabricate a preferable drug delivery system to co-deliver sorafenib (Sor) and doxorubicin (Dox) for combinational chemotherapy of HCC. Our results revealed that the LDL-SLN/Sor/Dox nanoparticles with size around 100 nm showed preferable stability in physiological environments. Moreover, the LDL-SLN/Sor/Dox could target LDLR overexpressed HepG2 cells. More importantly, both in vitro and in vivo experiments demonstrated that the LDL-SLN/Sor/Dox exerted elevated antitumor efficacy compared to Sor or Dox alone, which indicated that LDL-SLN/Sor/Dox could be a powerful tool for effective combinational chemotherapy of HCC.
Collapse
Affiliation(s)
- Junfeng Ye
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Ruoyan Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Wengang Chai
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Xiaohong Du
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|
22
|
Kapoor B, Gupta R, Singh SK, Gulati M, Singh S. Prodrugs, phospholipids and vesicular delivery - An effective triumvirate of pharmacosomes. Adv Colloid Interface Sci 2018; 253:35-65. [PMID: 29454464 DOI: 10.1016/j.cis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022]
Abstract
With the advent from the laboratory bench to patient bedside in last five decades, vesicular systems have now come to be widely accepted as pragmatic means for controlled delivery of drugs. Their success stories include those of liposomes, niosomes and even the lately developed ethosomes and transferosomes. Pharmacosomes, which, as delivery systems offer numerous advantages and have been widely researched, however, remain largely unacknowledged as a successful delivery system. Though a large number of drugs have been derivatized and formulated into self-assembled vesicular systems, the term pharmacosomes has not been widely used while reporting them. Therefore, their relative obscurity may be attributed to the non-usage of the nomenclature of pharmacosomes by the researchers working in the area. We present a review on the scenario that lead to origin of these bio-inspired vesicles composed of self-assembling amphiphilic molecules. Various drugs that have been formulated into pharmacosomes, their characterization techniques, their properties relative to those of other vesicular delivery systems, and the success achieved so far are also discussed.
Collapse
|