1
|
Pandey PK, Jain M, Jha PK. Drug delivery from a ring implant attached to intraocular lens: An in-silico investigation. J Pharm Sci 2024; 113:3332-3343. [PMID: 39245324 DOI: 10.1016/j.xphs.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Multiple iterations required to design ocular implants, which will last for the desired operational period of months or even years, necessitate the use of in-silico models for ocular drug delivery. In this study, we developed an in-silico model to simulate the flow of Aqueous Humor (AH) and drug delivery from an implant to the Trabecular Meshwork (TM). The implant, attached to the side of the intraocular lens (IOL), and the TM are treated as porous media, with their effects on AH flow accounted for using the Darcy equation. This model accurately predicts the physiological values of Intraocular Pressure (IOP) for both healthy individuals and glaucoma patients, as reported in the literature. Results reveal that the effective diffusivity of the drug within the implant is the critical parameter that can alter the bioavailability time period (BTP) from a few days to months. Intuitively, BTP should increase as effective diffusivity decreases. However, we discovered that with lower levels of initial drug loading, BTP declines when effective diffusivity falls below a specific threshold. Our findings further reveal that, while AH flow has a minimal effect on the drug release profile at the implant site, it significantly impacts drug availability at the TM.
Collapse
Affiliation(s)
- Pawan Kumar Pandey
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | | | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Yellam K, Priyadarshi A, Jha PK. Monte Carlo simulations of spherocylinders interacting with site-dependent square-well potentials. Sci Rep 2024; 14:3753. [PMID: 38355955 PMCID: PMC10866863 DOI: 10.1038/s41598-024-53182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Monte Carlo simulations are performed to study the self-assembly of a dilute system of spherocylinders interacting with square-well potential. The interactions are defined between randomly placed sites on the axis of the spherocylinder, akin to the interacting groups on a rigid rodlike molecule. This model therefore also serves as a minimal coarse-grained representation of a system of low molecular weight or stiff polymers with contour lengths significantly lower than the persistence length, interacting predominantly with short-range interactions (e.g., hydrogen bonding). The spherocylinder concentration, square-well interaction strength and range, and fraction of interacting sites are varied to study the phase behavior of the system. We observe the formation of dispersed, bundled, and network configurations of the system that may be compared with previous atomistic simulation results of weak polyelectrolytes.
Collapse
Affiliation(s)
- Kiranmai Yellam
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Anshuman Priyadarshi
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Prateek K Jha
- Department of Chemical Engineering, IIT Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
3
|
Xu K, Li S, Zhou Y, Gao X, Mei J, Liu Y. Application of Computing as a High-Practicability and -Efficiency Auxiliary Tool in Nanodrugs Discovery. Pharmaceutics 2023; 15:1064. [PMID: 37111551 PMCID: PMC10144056 DOI: 10.3390/pharmaceutics15041064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023] Open
Abstract
Research and development (R&D) of nanodrugs is a long, complex and uncertain process. Since the 1960s, computing has been used as an auxiliary tool in the field of drug discovery. Many cases have proven the practicability and efficiency of computing in drug discovery. Over the past decade, computing, especially model prediction and molecular simulation, has been gradually applied to nanodrug R&D, providing substantive solutions to many problems. Computing has made important contributions to promoting data-driven decision-making and reducing failure rates and time costs in discovery and development of nanodrugs. However, there are still a few articles to examine, and it is necessary to summarize the development of the research direction. In the review, we summarize application of computing in various stages of nanodrug R&D, including physicochemical properties and biological activities prediction, pharmacokinetics analysis, toxicological assessment and other related applications. Moreover, current challenges and future perspectives of the computing methods are also discussed, with a view to help computing become a high-practicability and -efficiency auxiliary tool in nanodrugs discovery and development.
Collapse
Affiliation(s)
- Ke Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangkai Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglong Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
4
|
Khedri M, Keshavarz Moraveji M. Biomolecular engineering of drugs loading in Riboflavin-targeted polymeric devices: simulation and experimental. Sci Rep 2022; 12:5119. [PMID: 35332259 PMCID: PMC8948184 DOI: 10.1038/s41598-022-09164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
The synthesis of polymeric nanoparticles (NPs) with efficient drug loading content and targeting moieties is an attractive field and remains a challenge in drug delivery systems. Atomistic investigations can provide an in-depth understanding of delivery devices and reduce the number of expensive experiments. In this paper, we studied the self-assembly of poly (lactic-co-glycolic acid)-b-poly (ethylene glycol) with different molecular weights and surface compositions. The innovation of this molecular study is the loading of an antitumor drug (docetaxel) on a targeting ligand (riboflavin). According to this work, a novel, biocompatible and targeted system for cancer treatment has been developed. The obtained results revealed a correlation between polymer molecular weight and the stability of particles. In this line, samples including 20 and 10 w/w% moiety NPs formed from polymers with 3 and 4.5 kDa backbone sizes, respectively, are the stable models with the highest drug loading and entrapment efficiencies. Next, we evaluated NP morphology and found that NPs have a core/shell structure consisting of a hydrophobic core with a shell of poly (ethylene glycol) and riboflavin. Interestingly, morphology assessments confirmed that the targeting moiety located on the surface can improve drug delivery to receptors and cancerous cells. The developed models provided significant insight into the structure and morphology of NPs before the synthesis and further analysis of NPs in biological environments. However, in the best cases of this system, Dynamic Light Scattering (DLS) tests were also taken and the results were consistent with the results obtained from All Atom and Coarse Grained simulations.
Collapse
Affiliation(s)
- Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Ave, Valiasr Square, 15916-34311, Tehran, Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), No. 350, Hafez Ave, Valiasr Square, 15916-34311, Tehran, Iran.
| |
Collapse
|
5
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
6
|
Mollazadeh S, Sahebkar A, Shahlaei M, Moradi S. Nano drug delivery systems: Molecular dynamic simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115823] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Casalini T. Not only in silico drug discovery: Molecular modeling towards in silico drug delivery formulations. J Control Release 2021; 332:390-417. [PMID: 33675875 DOI: 10.1016/j.jconrel.2021.03.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/18/2022]
Abstract
The use of methods at molecular scale for the discovery of new potential active ligands, as well as previously unknown binding sites for target proteins, is now an established reality. Literature offers many successful stories of active compounds developed starting from insights obtained in silico and approved by Food and Drug Administration (FDA). One of the most famous examples is raltegravir, a HIV integrase inhibitor, which was developed after the discovery of a previously unknown transient binding area thanks to molecular dynamics simulations. Molecular simulations have the potential to also improve the design and engineering of drug delivery devices, which are still largely based on fundamental conservation equations. Although they can highlight the dominant release mechanism and quantitatively link the release rate to design parameters (size, drug loading, et cetera), their spatial resolution does not allow to fully capture how phenomena at molecular scale influence system behavior. In this scenario, the "computational microscope" offered by simulations at atomic scale can shed light on the impact of molecular interactions on crucial parameters such as release rate and the response of the drug delivery device to external stimuli, providing insights that are difficult or impossible to obtain experimentally. Moreover, the new paradigm brought by nanomedicine further underlined the importance of such computational microscope to study the interactions between nanoparticles and biological components with an unprecedented level of detail. Such knowledge is a fundamental pillar to perform device engineering and to achieve efficient and safe formulations. After a brief theoretical background, this review aims at discussing the potential of molecular simulations for the rational design of drug delivery systems.
Collapse
Affiliation(s)
- Tommaso Casalini
- Department of Chemistry and Applied Bioscience, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland; Polymer Engineering Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via la Santa 1, Lugano 6962, Switzerland.
| |
Collapse
|
8
|
Katiyar RS, Jha PK. Mimicking the Dissolution Mechanisms of pH‐Responsive Drug Release Formulations in Atomistic MD Simulations. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201900053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ratna S. Katiyar
- Department of Chemical EngineeringIndian Institute of Technology Roorkee Uttarakhand 247667 India
| | - Prateek K. Jha
- Department of Chemical EngineeringIndian Institute of Technology Roorkee Uttarakhand 247667 India
| |
Collapse
|
9
|
Kyrychenko A, Blazhynska MM, Slavgorodska MV, Kalugin ON. Stimuli-responsive adsorption of poly(acrylic acid) onto silver nanoparticles: Role of polymer chain length and degree of ionization. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|