1
|
Hu Y, Huang J, Wang S, Sun X, Wang X, Yu H. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation 2024:10.1007/s10753-024-02079-2. [PMID: 38914737 DOI: 10.1007/s10753-024-02079-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024]
Abstract
Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.
Collapse
Affiliation(s)
- Yuelin Hu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jialing Huang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shuqing Wang
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Sun
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xin Wang
- School of Basic Medical Sciences, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Hongsong Yu
- Department of Immunology, Special Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
| |
Collapse
|
2
|
Chen Y, Teng Y, Xu P, Wang S. The Role of Citrullination Modification in CD4 + T Cells in the Pathogenesis of Immune-Related Diseases. Biomolecules 2024; 14:400. [PMID: 38672418 PMCID: PMC11047979 DOI: 10.3390/biom14040400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The post-translational modifications (PTMs) of proteins play a crucial role in increasing the functional diversity of proteins and are associated with the pathogenesis of various diseases. This review focuses on a less explored PTM called citrullination, which involves the conversion of arginine to citrulline. This process is catalyzed by peptidyl arginine deiminases (PADs). Different members of the PAD family have distinct tissue distribution patterns and functions. Citrullination is a post-translational modification of native proteins that can alter their structure and convert them into autoantigens; thus, it mediates the occurrence of autoimmune diseases. CD4+ T cells, including Th1, Th2, and Th17 cells, are important immune cells involved in mediating autoimmune diseases, allergic reactions, and tumor immunity. PADs can induce citrullination in CD4+ T cells, suggesting a role for citrullination in CD4+ T cell subset differentiation and function. Understanding the role of citrullination in CD4+ T cells may provide insights into immune-related diseases and inflammatory processes.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Teng
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ping Xu
- Department of Laboratory Medicine, The Fifth People’s Hospital of Suzhou, Suzhou 215505, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China;
- Jiangsu Key Laboratory of Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
van Weijsten MJ, Venrooij KR, Lelieveldt L, Kissel T, van Buijtenen E, van Dalen FJ, Verdoes M, Toes R, Bonger KM. Effect of Antigen Valency on Autoreactive B-Cell Targeting. Mol Pharm 2024; 21:481-490. [PMID: 37862070 PMCID: PMC10848265 DOI: 10.1021/acs.molpharmaceut.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
Many autoimmune diseases are characterized by B cells that mistakenly recognize autoantigens and produce antibodies toward self-proteins. Current therapies aim to suppress the immune system, which is associated with adverse effects. An attractive and more specific approach is to target the autoreactive B cells selectively through their unique B-cell receptor (BCR) using an autoantigen coupled to an effector molecule able to modulate the B-cell activity. The cellular response upon antigen binding, such as receptor internalization, impacts the choice of effector molecule. In this study, we systematically investigated how a panel of well-defined mono-, di-, tetra-, and octavalent peptide antigens affects the binding, activation, and internalization of the BCR. To test our constructs, we used a B-cell line expressing a BCR against citrullinated antigens, the main autoimmune epitope in rheumatoid arthritis. We found that the dimeric antigen construct has superior targeting properties compared to those of its monomeric and multimeric counterparts, indicating that it can serve as a basis for future antigen-specific targeting studies for the treatment of RA.
Collapse
Affiliation(s)
- M. J. van Weijsten
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - K. R. Venrooij
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - L.P.W.M. Lelieveldt
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - T. Kissel
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - E. van Buijtenen
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - F. J. van Dalen
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - M. Verdoes
- Department
of Medical BioSciences, Radboudumc, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| | - R.E.M. Toes
- Department
of Rheumatology, Leiden University Medical
Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - K. M. Bonger
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Institute
for Chemical Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
4
|
Holborough-Kerkvliet MD, Kroos S, de Wetering RV, Toes REM. Addressing the key issue: Antigen-specific targeting of B cells in autoimmune diseases. Immunol Lett 2023:S0165-2478(23)00075-5. [PMID: 37209914 DOI: 10.1016/j.imlet.2023.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Autoimmune diseases are heterogeneous pathologies characterized by a breakdown of immunological tolerance to self, resulting in a chronic and aberrant immune response to self-antigens. The scope and extent of affected tissues can vary greatly per autoimmune disease and can involve multiple organs and tissue types. The pathogenesis of most autoimmune diseases remains unknown but it is widely accepted that a complex interplay between (autoreactive) B and T cells in the context of breached immunological tolerance drives autoimmune pathology. The importance of B cells in autoimmune disease is exemplified by the successful use of B cell targeting therapies in the clinic. For example, Rituximab, a depleting anti-CD20 antibody, has shown favorable results in reducing the signs and symptoms of multiple autoimmune diseases, including Rheumatoid Arthritis, Anti-Neutrophil Cytoplasmic Antibody associated vasculitis and Multiple Sclerosis. However, Rituximab depletes the entire B cell repertoire, leaving patients susceptible to (latent) infections. Therefore, multiple ways to target autoreactive cells in an antigen-specific manner are currently under investigation. In this review, we will lay out the current state of antigen-specific B cell inhibiting or depleting therapies in the context of autoimmune diseases.
Collapse
Affiliation(s)
| | - Sanne Kroos
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Renee van de Wetering
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
5
|
Ancheta LR, Shramm PA, Bouajram R, Higgins D, Lappi DA. Streptavidin-Saporin: Converting Biotinylated Materials into Targeted Toxins. Toxins (Basel) 2023; 15:toxins15030181. [PMID: 36977072 PMCID: PMC10059012 DOI: 10.3390/toxins15030181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/12/2023] [Accepted: 02/19/2023] [Indexed: 03/02/2023] Open
Abstract
Streptavidin-Saporin can be considered a type of ‘secondary’ targeted toxin. The scientific community has taken advantage of this conjugate in clever and fruitful ways using many kinds of biotinylated targeting agents to send saporin into a cell selected for elimination. Saporin is a ribosome-inactivating protein that causes inhibition of protein synthesis and cell death when delivered inside a cell. Streptavidin-Saporin, mixed with biotinylated molecules to cell surface markers, results in powerful conjugates that are used both in vitro and in vivo for behavior and disease research. Streptavidin-Saporin harnesses the ‘Molecular Surgery’ capability of saporin, creating a modular arsenal of targeted toxins used in applications ranging from the screening of potential therapeutics to behavioral studies and animal models. The reagent has become a well-published and validated resource in academia and industry. The ease of use and diverse functionality of Streptavidin-Saporin continues to have a significant impact on the life science industry.
Collapse
|
6
|
Khatri S, Hansen J, Pedersen NB, Brandt-Clausen IP, Gram-Nielsen S, Mendes AC, Chronakis IS, Keiding UB, Catrina AI, Rethi B, Clausen MH, Kragstrup T, Astakhova K. Cyclic Citrullinated Peptide Aptamer Treatment Attenuates Collagen-Induced Arthritis. Biomacromolecules 2022; 23:2126-2137. [PMID: 35438963 DOI: 10.1021/acs.biomac.2c00144] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We describe the study of a novel aptamer-based candidate for treatment of seropositive rheumatoid arthritis. The candidate is a nanoparticle-formulated cyclic citrullinated peptide aptamer, which targets autoantibodies and/or the immune reactions leading to antibody production. Due to its specificity, the peptide aptamer nanoparticles might not interfere with normal immune functions as seen with other disease-modifying antirheumatic drugs. Over a 3-week course of treatment, joint swelling and arthritis score in collagen-induced rats were significantly decreased compared with animals treated with phosphate-buffered saline, unloaded nanoparticles, or nanoparticles with a noncitrullinated control peptide. The reduction in joint swelling was associated with decreased anticitrullinated peptide autoantibody levels in the blood. Treatment with aptamer nanoparticles also increased interleukin-10 levels. The effect seen with the proposed treatment candidate could be mediated by upregulation of anti-inflammatory mediators and decreased levels of anticitrullinated peptide antibodies.
Collapse
Affiliation(s)
- Sangita Khatri
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Jonas Hansen
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Nadia Bom Pedersen
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Sanne Gram-Nielsen
- DTU Biofacility, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Ana C Mendes
- DTU FOOD, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | | | - Ulrik Bering Keiding
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Anca I Catrina
- Department of Medicine/Solna, Division of Rheumatology, Karolinska Institute and Karolinska University Hospital, Stockholm 164 90, Sweden
| | - Bence Rethi
- Department of Medicine/Solna, Division of Rheumatology, Karolinska Institute and Karolinska University Hospital, Stockholm 164 90, Sweden
| | - Mads Hartvig Clausen
- IBIO TECH ApS, Copenhagen 2450, Denmark.,Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Tue Kragstrup
- IBIO TECH ApS, Copenhagen 2450, Denmark.,Department of Biomedicine, University of Aarhus, Aarhus C 8000, Denmark
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, Kgs Lyngby 2800, Denmark.,IBIO TECH ApS, Copenhagen 2450, Denmark
| |
Collapse
|
7
|
Kristyanto H, Holborough-Kerkvliet MD, Lelieveldt L, Bartels Y, Hammink R, van Schie KAJ, Toes REM, Bonger KM, Scherer HU. Multifunctional, Multivalent PIC Polymer Scaffolds for Targeting Antigen-Specific, Autoreactive B Cells. ACS Biomater Sci Eng 2022; 8:1486-1493. [PMID: 35259296 PMCID: PMC9006213 DOI: 10.1021/acsbiomaterials.1c01395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Multivalent scaffolds
that carry multiple molecules with immunophenotyping
or immunomodulatory properties are invaluable tools for studying and
modulating specific functions of human immune responses. So far, streptavidin–biotin-based
tetramers have been widely used for B-cell immunophenotyping purposes.
However, the utility of these tetramers is limited by their tetravalency,
the inherent immunogenicity of streptavidin (a bacterial protein that
can potentially be recognized by B cells), and the limited feasibility
to functionalize these reagents. This has rendered tetramers suboptimal
for studying rare, in particular, antigen-specific B-cell populations
in the context of clinical applications. Here, we used polyisocyanopeptides
(PICs), multivalent polymeric scaffolds functionalized with around
50 peptide antigens, to detect autoreactive B cells in the peripheral
blood of patients with rheumatoid arthritis. To explore the potential
immunomodulatory functionalities, we functionalized PICs with autoantigenic
peptides and a trisaccharide CD22 ligand to inhibit autoreactive B-cell
activation through interference with the B-cell receptor activation
pathway, as evidenced by reduced phospho-Syk expression upon PIC binding.
Given the possibilities to functionalize PICs, our data demonstrate
that the modular and versatile character of PIC scaffolds makes them
promising candidates for future clinical applications in B-cell-mediated
diseases.
Collapse
Affiliation(s)
- Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | | | - Lianne Lelieveldt
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Yvonne Bartels
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Division of Immunotherapy, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands.,Oncode Institute, Radboud University Medical Center, 6525 GA Nijmegen, Netherlands
| | - Karin A J van Schie
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Rene E M Toes
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Hans Ulrich Scherer
- Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
8
|
Liu J, Gao J, Wu Z, Mi L, Li N, Wang Y, Peng X, Xu K, Wu F, Zhang L. Anti-citrullinated Protein Antibody Generation, Pathogenesis, Clinical Application, and Prospects. Front Med (Lausanne) 2022; 8:802934. [PMID: 35096892 PMCID: PMC8791387 DOI: 10.3389/fmed.2021.802934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Anti-citrullinated protein antibodies (ACPAs) are autoantibodies commonly observed in patients with rheumatoid arthritis (RA). Currently, most of the mechanisms of ACPA formation and bone destruction are well-understood, however, some unknown mechanisms still exist. There have been many new advances in ACPA-related clinical applications and targeted therapies. However, the existence of different ACPA subtypes is a limitation of targeted therapy. Herein, we present an overview of the process of ACPA generation, the underlying pathogenesis, and relevant clinical application and prospects.
Collapse
|
9
|
Wu Z, Li P, Tian Y, Ouyang W, Ho JWY, Alam HB, Li Y. Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives. Front Immunol 2021; 12:761946. [PMID: 34804050 PMCID: PMC8599989 DOI: 10.3389/fimmu.2021.761946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Peptidylarginine deiminases (PADs) are a group of enzymes that catalyze post-translational modifications of proteins by converting arginine residues into citrullines. Among the five members of the PAD family, PAD2 and PAD4 are the most frequently studied because of their abundant expression in immune cells. An increasing number of studies have identified PAD2 as an essential factor in the pathogenesis of many diseases. The successes of preclinical research targeting PAD2 highlights the therapeutic potential of PAD2 inhibition, particularly in sepsis and autoimmune diseases. However, the underlying mechanisms by which PAD2 mediates host immunity remain largely unknown. In this review, we will discuss the role of PAD2 in different types of cell death signaling pathways and the related immune disorders contrasted with functions of PAD4, providing novel therapeutic strategies for PAD2-associated pathology.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Patrick Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Internal Medicine, New York University (NYU) Langone Health, New York, NY, United States
| | - Yuzi Tian
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlu Ouyang
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,Department of Infectious Diseases, Xiangya 2 Hospital, Central South University, Changsha, China
| | - Jessie Wai-Yan Ho
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hasan B. Alam
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yongqing Li
- Department of Surgery, University of Michigan Hospital, Ann Arbor, MI, United States,*Correspondence: Yongqing Li,
| |
Collapse
|
10
|
Tan R, Wan Y, Yang X. Hydroxyethyl starch and its derivatives as nanocarriers for delivery of diagnostic and therapeutic agents towards cancers. BIOMATERIALS TRANSLATIONAL 2020; 1:46-57. [PMID: 35837654 PMCID: PMC9255820 DOI: 10.3877/cma.j.issn.2096-112x.2020.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 01/17/2023]
Abstract
Many types of drugs and agents used for cancer diagnosis and therapy often have low bioavailability and insufficient efficacy, as well as causing various side effects due to their nonspecific delivery. Nanocarriers with purposely-designed compositions and structures have shown varying degrees of abilities to deliver these compounds towards cancers in passive or active manners. Despite the availability of a variety of materials for the construction of nanocarriers, natural polymers with good biocompatibility and biodegradability are preferable for such usage because of their high in vivo safety as well as easy removal of degradation products. Among the natural polymers intended for building nanocarriers, hydroxyethyl starch and its derivatives have gained tremendous attention in the field of drug delivery in the form of nanomedicines over the last decade. There is growing optimism that ever more hydroxyethyl starch-based nanomedicines will be a significant addition to the armoury currently used for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | - Ying Wan
- Corresponding authors: Ying Wan, ; Xiangliang Yang,
| | | |
Collapse
|
11
|
Chen D, Qin W, Fang H, Wang L, Peng B, Li L, Huang W. Recent progress in two-photon small molecule fluorescent probes for enzymes. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|