1
|
Kali G, Haddadzadegan S, Bernkop-Schnürch A. Cyclodextrins and derivatives in drug delivery: New developments, relevant clinical trials, and advanced products. Carbohydr Polym 2024; 324:121500. [PMID: 37985088 DOI: 10.1016/j.carbpol.2023.121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Cyclodextrins (CD) and derivatives are functional excipients that can improve the bioavailability of numerous drugs. Because of their drug solubility improving properties they are used in many pharmaceutical products. Furthermore, the stability of small molecular drugs can be improved by the incorporation in CDs and an unpleasant taste and smell can be masked. In addition to well-established CD derivatives including hydroxypropyl-β-CD, hydroxypropyl-γ-CD, methylated- β-CD and sulfobutylated- β-CD, there are promising new derivatives in development. In particular, CD-based polyrotaxanes exhibiting cellular uptake enhancing properties, CD-polymer conjugates providing sustained drug release, enhanced cellular uptake, and mucoadhesive properties, and thiolated CDs showing mucoadhesive, in situ gelling, as well as permeation and cellular uptake enhancing properties will likely result in innovative new drug delivery systems. Relevant clinical trials showed various new applications of CDs such as the formation of CD-based nanoparticles, stabilizing properties for protein drugs or the development of ready-to-use injection systems. Advanced products are making use of various benefical properties of CDs at the same time. Within this review we provide an overview on these recent developments and take an outlook on how this class of excipients will further shape the landscape of drug delivery.
Collapse
Affiliation(s)
- Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Soheil Haddadzadegan
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
2
|
Jiang H, Zhang M, Lin X, Zheng X, Qi H, Chen J, Zeng X, Bai W, Xiao G. Biological Activities and Solubilization Methodologies of Naringin. Foods 2023; 12:2327. [PMID: 37372538 DOI: 10.3390/foods12122327] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Naringin (NG), a natural flavanone glycoside, possesses a multitude of pharmacological properties, encompassing anti-inflammatory, sedative, antioxidant, anticancer, anti-osteoporosis, and lipid-lowering functions, and serves as a facilitator for the absorption of other drugs. Despite these powerful qualities, NG's limited solubility and bioavailability primarily undermine its therapeutic potential. Consequently, innovative solubilization methodologies have received considerable attention, propelling a surge of scholarly investigation in this arena. Among the most promising solutions is the enhancement of NG's solubility and physiological activity without compromising its inherent active structure, therefore enabling the formulation of non-toxic and benign human body preparations. This article delivers a comprehensive overview of NG and its physiological activities, particularly emphasizing the impacts of structural modification, solid dispersions (SDs), inclusion compound, polymeric micelle, liposomes, and nanoparticles on NG solubilization. By synthesizing current research, this research elucidates the bioavailability of NG, broadens its clinical applicability, and paves the way for further exploration and expansion of its application spectrum.
Collapse
Affiliation(s)
- Hao Jiang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoling Lin
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xiaoqing Zheng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing 100026, China
| | - Junping Chen
- Meizhou Feilong Fruit Co., Ltd., Meizhou 514600, China
| | - Xiaofang Zeng
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Janrao C, Khopade S, Bavaskar A, Gomte SS, Agnihotri TG, Jain A. Recent advances of polymer based nanosystems in cancer management. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-62. [PMID: 36542375 DOI: 10.1080/09205063.2022.2161780] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is still one of the leading causes of death worldwide. Nanotechnology, particularly nanoparticle-based platforms, is at the leading edge of current cancer management research. Polymer-based nanosystems have piqued the interest of researchers owing to their many benefits over other conventional drug delivery systems. Polymers derived from both natural and synthetic sources have various biomedical applications due to unique qualities like porosity, mechanical strength, biocompatibility, and biodegradability. Polymers such as poly(lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and polyethylene glycol (PEG) have been approved by the USFDA and are being researched for drug delivery applications. They have been reported to be potential carriers for drug loading and are used in theranostic applications. In this review, we have primarily focused on the aforementioned polymers and their conjugates. In addition, the therapeutic and diagnostic implications of polymer-based nanosystems have been briefly reviewed. Furthermore, the safety of the developed polymeric formulations is crucial, and we have discussed their biocompatibility in detail. This article also discusses recent developments in block co-polymer-based nanosystems for cancer treatment. The review ends with the challenges of clinical translation of polymer-based nanosystems in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Chetan Janrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shivani Khopade
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Bavaskar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
4
|
Gong F, Lv R, Ma J, Wang X, Qu Y, Zhang C, Xu J, Wang T. Synthesis and Characterization of Water Soluble Diethylenetriamine‐β‐Cyclodextrin/Ethinylestradiol Inclusion Complex. ChemistrySelect 2022. [DOI: 10.1002/slct.202201790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fengrong Gong
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Rongyao Lv
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Jiayue Ma
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Xuehan Wang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Yanmei Qu
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Cong Zhang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| | - Juan Xu
- National Research Institute for Family Planning Beijing 100081 P. R. China
| | - Ting Wang
- College of Chemistry Chemical Engineering and Resource Utilization Northeast Forestry University 26 Hexing Road Harbin 150040 P. R. China
| |
Collapse
|
5
|
Zhao B, Gu Z, Zhang Y, Li Z, Cheng L, Li C, Hong Y. Starch-based carriers of paclitaxel: A systematic review of carriers, interactions, and mechanisms. Carbohydr Polym 2022; 291:119628. [DOI: 10.1016/j.carbpol.2022.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/02/2022]
|
6
|
Zhao B, Li L, Lv X, Du J, Gu Z, Li Z, Cheng L, Li C, Hong Y. Progress and prospects of modified starch-based carriers in anticancer drug delivery. J Control Release 2022; 349:662-678. [PMID: 35878730 DOI: 10.1016/j.jconrel.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 10/16/2022]
Abstract
Recently, the role of starch-based carrier systems in anticancer drug delivery has gained considerable attention. Although there are same anticancer drugs, difference in their formulations account for unique therapeutic effects. However, the exploration on the effect-enhancing of anticancer drugs and their loading system by modified starch from the perspective of carrier regulation is still limited. Moreover, research on the reduced toxicity of the anticancer drugs due to modified starch as the drug carrier mediated by the intestinal microenvironment is lacking, but worth exploring. In this review, we examined the effect of modified starch on the loading and release properties of anticancer drugs, and the effect of resistant starch and its metabolites on intestinal microecology during inflammation. Particularly, the interactions between modified starch and drugs, and the effect of resistant starch on gene expression, protein secretion, and inflammatory factors were discussed. The findings of this review could serve as reference for the development of anticancer drug carriers in the future.
Collapse
Affiliation(s)
- Beibei Zhao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Lingjin Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Xinxin Lv
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Jing Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| |
Collapse
|
7
|
Guo Z, Chen P, Liu L, Song H. Compatibility and stability of methylprednisolone sodium succinate and granisetron hydrochloride in 0.9% sodium chloride solution. Medicine (Baltimore) 2022; 101:e29674. [PMID: 35839031 PMCID: PMC11132371 DOI: 10.1097/md.0000000000029674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 05/11/2022] [Indexed: 11/26/2022] Open
Abstract
A combination of methylprednisolone sodium succinate (MSS) and granisetron hydrochloride (GH) is generally devoted to treating the chemotherapy-induced nausea and vomiting. To date, none of these novel mixtures have been commercially available. The present study was aimed at investigating physical and chemical compatibility and stability of a combination of MSS with GH in 0.9% sodium chloride injection for 72 hours at 4°C and 25°C. A mixture of MSS (0.4-0.8 mg/mL) with GH (0.03 mg/mL) was prepared and stored in both polyvinyl chloride bags and glass bottles using 0.9% sodium chloride injection as a diluent. The study was performed using a validated and stability-indicating high-performance liquid chromatography method. The physical compatibility was assessed by a spectrometer. Furthermore, the pH measurement of each sample was measured electronically. All test solutions stored at 4°C or 25°C had a no >2% loss of the initial concentration throughout the 72-hour study period. All solutions remained clear and colorless throughout the study and were without precipitation or turbidity in any of the batches. The drug mixtures of MSS (0.4-0.8 mg/mL) and GH (0.03 mg/mL) in 0.9% sodium chloride injections were physically and chemically stable for at least 72 hours when stored at 4°C or 25°C in polyvinyl chloride bags or glass bottles.
Collapse
Affiliation(s)
- Zhilei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Liu
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongping Song
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Dadashpour S, Ghobadi E, Emami S. Chemical and biological aspects of posaconazole as a classic antifungal agent with non-classical properties: highlighting a tetrahydrofuran-based drug toward generation of new drugs. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Cyclodextrins and drug membrane permeation: Thermodynamic considerations. J Pharm Sci 2022; 111:2571-2580. [PMID: 35487262 DOI: 10.1016/j.xphs.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
Cyclodextrins are hydrophilic oligosaccharides that can increase aqueous solubility of lipophilic drugs through formation of water-soluble drug/cyclodextrin complexes. Although the complexes are hydrophilic, and as such do not permeate biological membranes, the complexes are known to enhance drug permeation through lipophilic membranes and improve drug bioavailability after, for example, oral administration. However, it is not clear how cyclodextrins enhance the permeation. An artificial biomembrane (PermeaPad®) was used to study the effect of donor medium composition on drug permeation. It was observed that in aqueous solutions the hydrophilic cyclodextrins behave not like disperse systems but rather like organic cosolvents such as ethanol, increasing the solubility without having significant effect on the molecular mobility and ability of lipophilic drug molecules to partition into the lipophilic membrane. Also, that partition of dissolved drug molecules from the aqueous exterior into the membrane is at its maximum when their thermodynamic activity is at its maximum. In other words, that drug flux from aqueous cyclodextrin solutions through lipophilic membranes depends on both the concentration and the thermodynamic activity of dissolved drug. Maximum flux is obtained when both the drug concentration and thermodynamic activity of the dissolved drug molecules are at their maximum value.
Collapse
|
10
|
Jansook P, Loftsson T. Self-assembled γ-cyclodextrin as nanocarriers for enhanced ocular drug bioavailability. Int J Pharm 2022; 618:121654. [DOI: 10.1016/j.ijpharm.2022.121654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022]
|
11
|
Preparation of water-soluble altrenogest inclusion complex with β-cyclodextrin derivatives and in vitro sustained-release test. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Špehar TK, Pocrnić M, Klarić D, Bertoša B, Čikoš A, Jug M, Padovan J, Dragojević S, Galić N. Investigation of Praziquantel/Cyclodextrin Inclusion Complexation by NMR and LC-HRMS/MS: Mechanism, Solubility, Chemical Stability, and Degradation Products. Mol Pharm 2021; 18:4210-4223. [PMID: 34670371 PMCID: PMC8564759 DOI: 10.1021/acs.molpharmaceut.1c00716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Praziquantel (PZQ) is a biopharmaceutical classification system (BCS) class II anthelmintic drug characterized by poor solubility and a bitter taste, both of which can be addressed by inclusion complexation with cyclodextrins (CD). In this work, a comprehensive investigation of praziquantel/cyclodextrin (PZQ/CD) complexes was conducted by means of UV-vis spectroscopy, spectrofluorimetry, NMR spectroscopy, liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS), and molecular modeling. Phase solubility studies revealed that among four CDs tested, the randomly methylated β-CD (RMβCD) and the sulfobutylether sodium salt β-CD (SBEβCD) resulted in the highest increase in PZQ solubility (approximately 16-fold). The formation of 1:1 inclusion complexes was confirmed by HRMS, NMR, and molecular modeling. Both cyclohexane and the central pyrazino ring, as well as an aromatic part of PZQ are included in the CD central cavity through several different binding modes, which exist simultaneously. Furthermore, the influence of CDs on PZQ stability was investigated in solution (HCl, NaOH, H2O2) and in the solid state (accelerated degradation, photostability) by ultra-high-performance liquid chromatography-diode array detection-tandem mass spectrometry (UPLC-DAD/MS). CD complexation promoted new degradation pathways of the drug. In addition to three already known PZQ degradants, seven new degradation products were identified (m/z 148, 215, 217, 301, 327, 343, and 378) and their structures were proposed based on HRMS/MS data. Solid complexes were prepared by mechanochemical activation, a solvent-free and ecologically acceptable method.
Collapse
Affiliation(s)
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - David Klarić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Branimir Bertoša
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| | - Ana Čikoš
- Institute Ruđer Bošković, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| | - Jasna Padovan
- Fidelta Ltd., Prilaz baruna Filipovića 29, 10 000 Zagreb, Croatia
| | | | - Nives Galić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia
| |
Collapse
|
13
|
Kalenikova EI, Gorodetskaya EA, Obolenskaya ON, Shapavo NS, Makarov VG, Medvedev OS. Pharmacokinetics and Tissue Distribution of Oxidized and Reduced Coenzyme Q10 Upon Intravenous Administration. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02471-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int J Pharm 2021; 598:120363. [PMID: 33556487 DOI: 10.1016/j.ijpharm.2021.120363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic drug with poor hydrophilicity and permeability. Its lipophilic properties decrease its absorption in systemic circulation which hinders its therapeutic efficacy & safety. Cyclodextrins (CDs) with their unique structural properties enhance solubility of chemotherapeutic drugs. The study was designed to formulate docetaxel-cyclodextrins inclusion complexes for enhancement of solubility with sulfobutyl ether β-cyclodextrin (SBE7-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD). Further, by using ionic gelation method polymeric nanoparticles of docetaxel-cyclodextrins were prepared with sodium tri poly phosphate (STPP) and chitosan (CS). Optimization is performed by varying CS and STPP mass ratios. Nanoparticles were analyzed for their physicochemical properties, drug-excipient compatibility, thermal stability and oral toxicity. CDs enhanced the solubility of DTX. Nanoparticles were found within 144.8 ± 65.19 - 372.0 ± 126.9 nm diameters with polydispersity ranging 0.117-0.375. The particles were found round & circular in shape with smooth and non-porous surface. Increased quantity of drug release was observed from DTX-CDs loaded nanoparticles than pure drug loaded nanoparticles. Oral toxicity in rabbits revealed biochemical, histopathological profile with no toxic effect on cellular structure of animals.
Collapse
Affiliation(s)
- Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | | | - Rabbiya Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
15
|
Cyclodextrin-Based Contrast Agents for Medical Imaging. Molecules 2020; 25:molecules25235576. [PMID: 33261035 PMCID: PMC7730728 DOI: 10.3390/molecules25235576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 11/17/2022] Open
Abstract
Cyclodextrins (CDs) are naturally occurring cyclic oligosaccharides consisting of multiple glucose subunits. CDs are widely used in host–guest chemistry and biochemistry due to their structural advantages, biocompatibility, and ability to form inclusion complexes. Recently, CDs have become of high interest in the field of medical imaging as a potential scaffold for the development of a large variety of the contrast agents suitable for magnetic resonance imaging, ultrasound imaging, photoacoustic imaging, positron emission tomography, single photon emission computed tomography, and computed tomography. The aim of this review is to summarize and highlight the achievements in the field of cyclodextrin-based contrast agents for medical imaging.
Collapse
|
16
|
Complexation with Random Methyl-β-Cyclodextrin and (2-Hydroxypropyl)-β-Cyclodextrin Promotes Chrysin Effect and Potential for Liver Fibrosis Therapy. MATERIALS 2020; 13:ma13215003. [PMID: 33171970 PMCID: PMC7664245 DOI: 10.3390/ma13215003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022]
Abstract
Liver fibrosis results from chronic liver injury and is characterized by the accumulation of extracellular matrix in excess driven by hepatic stellate cells (HSCs) activation. Chrysin (CHR) is a natural flavonoid that is limited by its low solubility to exert its anti-inflammatory, antioxidant and anti-fibrotic properties. The aim of this study was to investigate the biocompatibility of CHR complexes with two cyclodextrins (CDs)-(2-hydroxypropyl)-β-cyclodextrin (HPBCD) and random methyl-β-cyclodextrin (RAMEB), and their potential to induce anti-inflammatory, antioxidant and anti-fibrotic effects. Biocompatibility of the complexes was evaluated on Huh7 and LX2 cell lines: MTT and Live/Dead tests indicated the cell viability and an LDH test showed the cytotoxicity. Immunohistochemical staining of Nuclear Factor Kappa B (NF-κB) nuclear translocation was performed to evaluate the anti-inflammatory effect of the complexes. Oxygen Radical Absorbance assay, Superoxide Dismutase activity and Glutathione Peroxidase (GPx) assays indicated the antioxidant properties of the chrysin complexes. Finally, the complexes’ anti-fibrotic potential was evaluated at the protein and gene level of α-sma. In HSCs, CDs induced higher cytotoxicity correlated with lower cell viability than CHR–CD. The 1:1 CHR–RAMEB pretreatment avoided p65 translocation. The 1:2 CHR–RAMEB complex increased ORAC values, improved SOD activity and produced the highest stimulation of GPx activity. CHR–RAMEB reduced α-sma expression at lower concentration than CHR–HPBCD, proving to be more efficient. In conclusion, both CHR–CD complexes proved to be biocompatible, but CHR–RAMEB showed improved anti-inflammatory, antioxidant and anti-fibrotic effects that could recommend its further use in liver fibrosis treatment.
Collapse
|
17
|
Aly UF, Sarhan HAM, Ali TFS, Sharkawy HAEB. Applying Different Techniques to Improve the Bioavailability of Candesartan Cilexetil Antihypertensive Drug. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1851-1865. [PMID: 32523332 PMCID: PMC7234962 DOI: 10.2147/dddt.s248511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 01/31/2023]
Abstract
Purpose The objective of this study was to compare different techniques to enhance the solubility and dissolution rate, and hence the bioavailability of candesartan cilexetil. Methods To achieve this target, various techniques were employed such as solid dispersions, inclusion complexes, and preparation of candesartan nanoparticles. Following the preparations, all samples were characterized for their physicochemical properties, and the samples of the best results were subjected to further bioavailability studies. Results Results of dissolution studies revealed an increase in the dissolution rate of all samples. The highest dissolution rate was achieved using solid dispersion of the drug with PVP K-90 (1:4). Physicochemical investigations (XR, DSC, and FT-IR) suggested formation of hydrogen bonding and changing in the crystalline structure of the drug. Regarding the inclusion complexes, more stable complex was formed between HP-β-CD and CC compared to β-CD, as indicated by phase solubility diagrams. Antisolvent method resulted in the preparation of stable nanoparticles, as indicated by ζ potential, with average particle size of 238.9 ± 19.25 nm using PVP K-90 as a hydrophilic polymer. The best sample that gave the highest dissolution rate (CC/PVP K-90 1:4) was allowed for further pharmacokinetic studies using UPLC MS/MS assay of rabbit plasma. Results showed a significant increase in the bioavailability of CC from ~15% to ~48%. Conclusion The bioavailability of CC was significantly improved from ~15% to ~48% when formulated as SDs with PVP K-90 with 1:4 drug:polymer ratio.
Collapse
Affiliation(s)
- Usama Farghaly Aly
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Taha F S Ali
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
18
|
Schönbeck C, Holm R. Exploring the Origins of Enthalpy–Entropy Compensation by Calorimetric Studies of Cyclodextrin Complexes. J Phys Chem B 2019; 123:6686-6693. [DOI: 10.1021/acs.jpcb.9b03393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - René Holm
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
19
|
Shi WJ, Ren FD. Cooperativity effect of the ππ interaction between drug and DNA on intercalative binding induced by H-bonds: a QM/QTAIM investigation of the curcuminadenineH 2O model system. Phys Chem Chem Phys 2019; 21:11871-11882. [PMID: 31119251 DOI: 10.1039/c9cp01667h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In order to reveal the nature of intercalative binding of drug to DNA, the cooperativity effect of the ππ interaction was investigated in the curcuminadenineH2O model system by applying a combined QM and QTAIM computational approach. The H-bonds between the electron-donating group of curcumin and adenine induce the formation of the ππ stacking. The introduction of H2O weakens the H-bonding and ππ interactions, leading to an anti-cooperativity effect, as is confirmed by the AIM (atoms in molecules) and RDG (reduced density gradient) analysis. Thus, it can be inferred that the anti-cooperative effect is the main driving force for the intercalative binding of drug to DNA bases, which is in agreement with many experimental phenomena. Therefore, the designed DNA-targeted intercalating drugs should possess not only hydrophobic moieties, but also strong electron-donating groups bound to the DNA bases with H-bonds, which can slow the variation rates of the strengths of the H-bonding and ππ interactions between drug and DNA bases in the anti-cooperative process, leading to the intercalation formation. The enthalpy change is the major factor driving the positive thermodynamic cooperativity.
Collapse
Affiliation(s)
- Wen-Jing Shi
- The Second Hospital of Shanxi Medical University, Taiyuan 030053, China.
| | | |
Collapse
|