1
|
Li K, Jin J, Yang Y, Luo X, Wang Y, Xu A, Hao K, Wang Z. Application of Nanoparticles for Immunotherapy of Allergic Rhinitis. Int J Nanomedicine 2024; 19:12015-12037. [PMID: 39583318 PMCID: PMC11584337 DOI: 10.2147/ijn.s484327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Allergen Immunotherapy (AIT) is the only etiological therapeutic method available for allergic rhinitis (AR). Currently, several options for AIT in the market, such as subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT), have different routes of administration. These traditional methods have achieved encouraging outcomes in clinic. However, the side effects associated with these methods have raised the need for innovative approaches for AIT that improve safety, shorten the course of treatment and increase local drug concentration. Nanoparticles (NPs) are particles ranging in size from 1 to 100 nm, which have been hired as potential adjuvants for AIT. NPs can be employed as agents for modulating immune responses in AR or/and carriers for loading proteins, peptides or DNA molecules. This review focuses on different kinds of nanoparticle delivery systems, including chitosan nanoparticles, exosomes, metal nanoparticles, and viral nanoparticles. We summarized the advantages and limitations of NPs for the treatment of allergic rhinitis. Overall, NPs are expected to be a therapeutic option for AR, which requires more in-depth studies and long-term therapeutic validation.
Collapse
Affiliation(s)
- Kaiqiang Li
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Jing Jin
- Laboratory Medicine Center, Zhejiang Center for Clinical Laboratories, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yimin Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Xuling Luo
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Yaling Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Aibo Xu
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
| | - Ke Hao
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, People’s Republic of China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, Zhejiang, 310063, People’s Republic of China
| |
Collapse
|
2
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
3
|
Paseban K, Noroozi S, Gharehcheloo R, Haddadian A, Falahi Robattorki F, Dibah H, Amani R, Sabouri F, Ghanbarzadeh E, Hajrasouiha S, Azari A, Rashidian T, Mirzaie A, Pirdolat Z, Salarkia M, Shahrava DS, Safaeinikjoo F, Seifi A, Sadat Hosseini N, Saeinia N, Bagheri Kashtali A, Ahmadiyan A, Mazid Abadi R, Sadat Kermani F, Andalibi R, Chitgarzadeh A, Tavana AA, Piri Gharaghie T. Preparation and optimization of niosome encapsulated meropenem for significant antibacterial and anti-biofilm activity against methicillin-resistant Staphylococcus aureus isolates. Heliyon 2024; 10:e35651. [PMID: 39211930 PMCID: PMC11357772 DOI: 10.1016/j.heliyon.2024.e35651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background One of the targeted drug delivery systems is the use of nanocarriers, and one of these drug delivery systems is niosome. Niosome have a nano-vesicular structure and are composed of non-ionic surfactants. Objective: In this study, various niosome-encapsulated meropenem formulations were prepared. Subsequently, their antibacterial and anti-biofilm activities were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) strains. Methods The physicochemical properties of niosomal formulations were characterized using a field scanning electron microscope, X-Ray diffraction, Zeta potential, and dynamic light scattering. Antibacterial and anti-biofilm activities were evaluated using broth microdilution and minimum biofilm inhibitory concentration, respectively. In addition, biofilm gene expression analysis was performed using quantitative Real-Time PCR. To evaluate biocompatibility, the cytotoxicity of niosome-encapsulated meropenem in a normal human diploid fibroblast (HDF) cell line was investigated using an MTT assay. Results An F1 formulation of niosome-encapsulated meropenem with a size of 51.3 ± 5.84 nm and an encapsulation efficiency of 84.86 ± 3.14 % was achieved. The synthesized niosomes prevented biofilm capacity with a biofilm growth inhibition index of 69 % and significantly downregulated icaD, FnbA, Ebps, and Bap gene expression in MRSA strains (p < 0.05). In addition, the F1 formulation increased antibacterial activity by 4-6 times compared with free meropenem. Interestingly, the F1 formulation of niosome-encapsulated meropenem indicated cell viability >90 % at all tested concentrations against normal HDF cells. The results of the present study indicate that niosome-encapsulated meropenem increased antibacterial and anti-biofilm activities without profound cytotoxicity in normal human cells, which could prove useful as a good drug delivery system.
Collapse
Affiliation(s)
- Kamal Paseban
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Sama Noroozi
- Department of Neurology, University of Utah, Utah, USA
| | - Rokhshad Gharehcheloo
- Department of Pharmacology, Pharmaceutical Branch, Islamic Azad Universty, Tehran, Iran
| | - Abbas Haddadian
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Reza Amani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Erfan Ghanbarzadeh
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadi Hajrasouiha
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arezou Azari
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Tina Rashidian
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Zahra Pirdolat
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Massoumeh Salarkia
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | | | - Atena Seifi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Niusha Sadat Hosseini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloofar Saeinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Ahmadiyan
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Roza Mazid Abadi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | - Romina Andalibi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aryan Aryan Tavana
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | |
Collapse
|
4
|
Yousry C, Goyal M, Gupta V. Excipients for Novel Inhaled Dosage Forms: An Overview. AAPS PharmSciTech 2024; 25:36. [PMID: 38356031 DOI: 10.1208/s12249-024-02741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Pulmonary drug delivery is a form of local targeting to the lungs in patients with respiratory disorders like cystic fibrosis, pulmonary arterial hypertension (PAH), asthma, chronic pulmonary infections, and lung cancer. In addition, noninvasive pulmonary delivery also presents an attractive alternative to systemically administered therapeutics, not only for localized respiratory disorders but also for systemic absorption. Pulmonary delivery offers the advantages of a relatively low dose, low incidence of systemic side effects, and rapid onset of action for some drugs compared to other systemic administration routes. While promising, inhaled delivery of therapeutics is often complex owing to factors encompassing mechanical barriers, chemical barriers, selection of inhalation device, and limited choice of dosage form excipients. There are very few excipients that are approved by the FDA for use in developing inhaled drug products. Depending upon the dosage form, and inhalation devices such as pMDIs, DPIs, and nebulizers, different excipients can be used to provide physical and chemical stability and to deliver the dose efficiently to the lungs. This review article focuses on discussing a variety of excipients that have been used in novel inhaled dosage forms as well as inhalation devices.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University, Giza, Egypt
| | - Mimansa Goyal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, New York, 11439, USA.
| |
Collapse
|
5
|
Arroyo-Urea EM, Lázaro-Díez M, Garmendia J, Herranz F, González-Paredes A. Lipid-based nanomedicines for the treatment of bacterial respiratory infections: current state and new perspectives. Nanomedicine (Lond) 2024; 19:325-343. [PMID: 38270350 DOI: 10.2217/nnm-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The global threat posed by antimicrobial resistance demands urgent action and the development of effective drugs. Lower respiratory tract infections remain the deadliest communicable disease worldwide, often challenging to treat due to the presence of bacteria that form recalcitrant biofilms. There is consensus that novel anti-infectives with reduced resistance compared with conventional antibiotics are needed, leading to extensive research on innovative antibacterial agents. This review explores the recent progress in lipid-based nanomedicines developed to counteract bacterial respiratory infections, especially those involving biofilm growth; focuses on improved drug bioavailability and targeting and highlights novel strategies to enhance treatment efficacy while emphasizing the importance of continued research in this dynamic field.
Collapse
Affiliation(s)
- Eva María Arroyo-Urea
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas y Gobierno de Navarra (IdAB-CSIC), Av. de Pamplona, 123, 31192, Mutilva, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Fernando Herranz
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - Ana González-Paredes
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| |
Collapse
|
6
|
Krishna SS, Sudheesh MS, Viswanad V. Liposomal drug delivery to the lungs: a post covid-19 scenario. J Liposome Res 2023; 33:410-424. [PMID: 37074963 DOI: 10.1080/08982104.2023.2199068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/10/2023] [Indexed: 04/20/2023]
Abstract
High local delivery of anti-infectives to the lungs is required for activity against infections of the lungs. The present pandemic has highlighted the potential of pulmonary delivery of anti-infective agents as a viable option for infections like Covid-19, which specifically causes lung infections and mortality. To prevent infections of such type and scale in the future, target-specific delivery of drugs to the pulmonary region is a high-priority area in the field of drug delivery. The suboptimal effect of oral delivery of anti-infective drugs to the lungs due to the poor biopharmaceutical property of the drugs makes this delivery route very promising for respiratory infections. Liposomes have been used as an effective delivery system for drugs due to their biocompatible and biodegradable nature, which can be used effectively for target-specific drug delivery to the lungs. In the present review, we focus on the use of liposomal drug delivery of anti-infectives for the acute management of respiratory infections in the wake of Covid-19 infection.
Collapse
Affiliation(s)
- S Swathi Krishna
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| | - Vidya Viswanad
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS, Kochi, India
| |
Collapse
|
7
|
Shakya AK, Al-Sulaibi M, Naik RR, Nsairat H, Suboh S, Abulaila A. Review on PLGA Polymer Based Nanoparticles with Antimicrobial Properties and Their Application in Various Medical Conditions or Infections. Polymers (Basel) 2023; 15:3597. [PMID: 37688223 PMCID: PMC10490122 DOI: 10.3390/polym15173597] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The rise in the resistance to antibiotics is due to their inappropriate use and the use of a broad spectrum of antibiotics. This has also contributed to the development of multidrug-resistant microorganisms, and due to the unavailability of suitable new drugs for treatments, it is difficult to control. Hence, there is a need for the development of new novel, target-specific antimicrobials. Nanotechnology, involving the synthesis of nanoparticles, may be one of the best options, as it can be manipulated by using physicochemical properties to develop intelligent NPs with desired properties. NPs, because of their unique properties, can deliver drugs to specific targets and release them in a sustained fashion. The chance of developing resistance is very low. Polymeric nanoparticles are solid colloids synthesized using either natural or synthetic polymers. These polymers are used as carriers of drugs to deliver them to the targets. NPs, synthesized using poly-lactic acid (PLA) or the copolymer of lactic and glycolic acid (PLGA), are used in the delivery of controlled drug release, as they are biodegradable, biocompatible and have been approved by the USFDA. In this article, we will be reviewing the synthesis of PLGA-based nanoparticles encapsulated or loaded with antibiotics, natural products, or metal ions and their antibacterial potential in various medical applications.
Collapse
Affiliation(s)
- Ashok K Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mazen Al-Sulaibi
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Rajashri R Naik
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Hamdi Nsairat
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy and Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Sara Suboh
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | | |
Collapse
|
8
|
Shoji T, Takeuchi M, Uda M, Ariga Y, Yamazaki A, Sekiguchi R, Ito S. Synthesis of Azuleno[2,1- b]quinolones and Quinolines via Brønsted Acid-Catalyzed Cyclization of 2-Arylaminoazulenes. Molecules 2023; 28:5785. [PMID: 37570755 PMCID: PMC10420867 DOI: 10.3390/molecules28155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Quinolone and quinoline derivatives are frequently found as substructures in pharmaceutically active compounds. In this paper, we describe a procedure for the synthesis of azuleno[2,1-b]quinolones and quinolines from 2-arylaminoazulene derivatives, which are readily prepared via the aromatic nucleophilic substitution reaction of a 2-chloroazulene derivative with several arylamines. The synthesis of azuleno[2,1-b]quinolones was established by the Brønsted acid-catalyzed intramolecular cyclization of 2-arylaminoazulene derivatives bearing two ester groups at the five-membered ring. The halogenative aromatization of azuleno[2,1-b]quinolones with POCl3 yielded azuleno[2,1-b]quinolines with a chlorine substituent at the pyridine moiety. The aromatic nucleophilic substitution reaction of azuleno[2,1-b]quinolines bearing chlorine substituent with secondary amines was also investigated to afford the aminoquinoline derivatives. These synthetic methodologies reported in this paper should be valuable in the development of new pharmaceuticals based on the azulene skeleton.
Collapse
Affiliation(s)
- Taku Shoji
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama 963-8642, Japan
| | - Mutsumi Takeuchi
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Mayumi Uda
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Yukino Ariga
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Akari Yamazaki
- Graduate School of Science and Technology, Shinshu University, Matsumoto 390-8621, Japan
| | - Ryuta Sekiguchi
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan; (R.S.); (S.I.)
| | - Shunji Ito
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan; (R.S.); (S.I.)
| |
Collapse
|
9
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The incidence of bacterial respiratory tract infections is growing. In a context of increasing antibiotic resistance and lack of new classes of antibiotics, inhaled antibiotics emerge as a promising therapeutic strategy. Although they are generally used for cystic fibrosis, their use in other conditions is becoming more frequent, including no-cystic fibrosis bronchiectasis, pneumonia and mycobacterial infections. RECENT FINDINGS Inhaled antibiotics exert beneficial microbiological effects in bronchiectasis and chronic bronchial infection. In nosocomial and ventilator-associated pneumonia, aerosolized antibiotics improve cure rates and bacterial eradication. In refractory Mycobacterium avium complex infections, amikacin liposome inhalation suspension is more effective in achieving long-lasting sputum conversion. In relation to biological inhaled antibiotics (antimicrobial peptides, interfering RNA and bacteriophages), currently in development, there is no still enough evidence that support their use in clinical practice. SUMMARY The effective antimicrobiological activity of inhaled antibiotics, added to their potential to overcoming resistances to systemic antibiotics, make inhaled antibiotics a plausible alternative.
Collapse
|
11
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
12
|
Abo-zeid Y, Amer A, Bakkar MR, El-Houssieny B, Sakran W. Antimicrobial Activity of Azithromycin Encapsulated into PLGA NPs: A Potential Strategy to Overcome Efflux Resistance. Antibiotics (Basel) 2022; 11:1623. [PMID: 36421266 PMCID: PMC9686761 DOI: 10.3390/antibiotics11111623] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance represents a public health problem with a major negative impact on health and socioeconomic development, and is one of the biggest threats in the modern era. This requires the discovery of new approaches to control microbial infections. Nanomedicine could be one of the promising strategies to improve the treatment of microbial infections. Polymer nanoparticles (PNPs) were reported to overcome the efflux-resistant mechanism toward chemotherapeutic agents. However, to the best of our knowledge, no studies were performed to explore their ability to overcome the efflux-resistant mechanism in bacteria. In the current study, azithromycin (AZI), a macrolide antibiotic, was encapsulated into a biocompatible polymer, poly (lactic-co-glycolic acid) (PLGA) using the nano-precipitation method. The effect of the drug to polymer ratio, surfactant, and pH of the aqueous medium on particle size and drug loading percentage (DL%) were investigated in order to maximize the DL% and control the size of NPs to be around 100 nm. The antibacterial activity of AZI-PLGA NPs was investigated against AZI-resistant bacteria; Methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis (E. faecalis), where the efflux mechanism was demonstrated to be one of the resistant mechanisms. AZI-PLGA NPs were safer than free AZI, as revealed from the cytotoxicity test, and were able to overcome the efflux-resistant mechanism, as revealed by decreasing the MIC of AZI-PLGA NPs by four times than free AZI. The MIC value reduced from 256 to 64 µg/mL and from >1000 to 256 µg/mL for MRSA and E. faecalis, respectively. Therefore, encapsulation of AZI into PNPs was shown to be a promising strategy to overcome the efflux-resistant mechanism towards AZI and improve its antibacterial effect. However, future investigations are necessary to explore the effect (if any) of particle size, surface charge, and material composition of PNPs on antibacterial activity. Moreover, it is essential to ascertain the safety profiles of these PNPs, the possibility of their large-scale manufacture, and if this concept could be extended to other antibiotics.
Collapse
Affiliation(s)
- Yasmin Abo-zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
- Helwan Nanotechnology Center, Helwan University, Cairo 11792, Egypt
| | - Amr Amer
- National Organization for Drug Control and Research (NODCAR), Giza 12511, Egypt
| | - Marwa Reda Bakkar
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | | | - Wedad Sakran
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
13
|
Design and Synthesis of Thionated Levofloxacin: Insights into a New Generation of Quinolones with Potential Therapeutic and Analytical Applications. Curr Issues Mol Biol 2022; 44:4626-4638. [PMID: 36286031 PMCID: PMC9600924 DOI: 10.3390/cimb44100316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
Levofloxacin is a widely used fluoroquinolone in several infectious diseases. The structure–activity relationship of levofloxacin has been studied. However, the effect of changing the carbonyl into thiocarbonyl of levofloxacin has not been investigated up to the date of this report. In this work, levofloxacin structure was slightly modified by making a thionated form (compound 3), which was investigated for its antibacterial activity, biocompatibility, and cytotoxicity, as well as spectroscopic properties. The antibacterial susceptibility testing against five different bacteria showed promising minimum inhibitory concentrations (MICs), particularly against B. spizizenii and E. coli, with an MIC value of 1.9 µM against both bacteria, and 7.8 µM against P. mirabilis. The molecular docking experiment showed similar binding interactions of both levofloxacin and compound 3 with the active site residues of topoisomerase IV. The biocompatibility and cytotoxicity results revealed that compound 3 was more biocompatible with normal cells and more cytotoxic against cancer cells, compared to levofloxacin. Interestingly, compound 3 also showed an excitation profile with a distinctive absorption peak at λmax 404 nm. Overall, our results suggest that the thionation of quinolones may provide a successful approach toward a new generation with enhanced pharmacokinetic and safety profiles and overall activity as potential antibacterial agents.
Collapse
|
14
|
Prasher P, Sharma M, Singh SK, Gulati M, Jha NK, Gupta PK, Gupta G, Chellappan DK, Zacconi F, de Jesus Andreoli Pinto T, Chan Y, Liu G, Paudel K, Hansbro PM, George Oliver BG, Dua K. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact 2022; 365:110048. [PMID: 35932910 DOI: 10.1016/j.cbi.2022.110048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/13/2022] [Indexed: 11/26/2022]
Abstract
Mucus gel constitutes of heavily cross-linked mucin fibers forming a viscoelastic, dense porous network that coats all the exposed epithelia not covered with the skin. The layer provides protection to the underlying gastrointestinal, respiratory, and female reproductive tracts, in addition to the organs such as the surface of eye by trapping the pathogens, irritants, environmental fine particles, and potentially hazardous foreign matter. However, this property of mucus gel poses a substantial challenge for realizing the localized and sustained drug delivery across the mucosal surfaces. The mucus permeating particles that spare the protective properties of mucus gel improve the therapeutic potency of the drugs aimed at the management of diseases, including sexually transmitted infections, lung cancer, irritable bowel disease, degenerative eye diseases and infections, and cystic fibrosis. As such, the mucoadhesive materials conjugated with drug molecules display a prolonged retention time in the mucosal gel that imparts a sustained release of the deliberated drug molecules across the mucosa. The contemporarily developed mucus penetrating materials for drug delivery applications comprise of a finer size, appreciable hydrophilicity, and a neutral surface to escape the entrapment within the cross-inked mucus fibers. Pertaining to the mucus secretion as a first line of defence in respiratory tract in response to the invading physical, chemical, and biological pathogens, the development of mucus penetrating materials hold promise as a stalwart approach for revolutionizing the respiratory drug delivery paradigm. The present review provides an epigrammatic collation of the mucus penetrating/mucoadhesive materials for achieving a controlled/sustained release of the cargo pharmaceutics and drug molecules across the respiratory mucus barrier.
Collapse
Affiliation(s)
- Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, 248007, India
| | - Mousmee Sharma
- Department of Chemistry, Uttaranchal University, Dehradun, 248007, India
| | - Sachin Kumar Singh
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Monica Gulati
- School of Pharmacy and Pharmaceutical Science, Lovely Professional University, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, 201310, UP, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Flavia Zacconi
- Departamento de Quimica Organica, Facultad de Quimica y de Farmacia, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, Macul, Santiago, 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, 7820436, Chile
| | - Terezinha de Jesus Andreoli Pinto
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Professor Lineu Prestes Street, São Paulo, 05508-000, Brazil
| | - Yinghan Chan
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW, 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
15
|
Huck BC, Thiyagarajan D, Bali A, Boese A, Besecke KFW, Hozsa C, Gieseler RK, Furch M, Carvalho‐Wodarz C, Waldow F, Schwudke D, Metelkina O, Titz A, Huwer H, Schwarzkopf K, Hoppstädter J, Kiemer AK, Koch M, Loretz B, Lehr C. Nano-in-Microparticles for Aerosol Delivery of Antibiotic-Loaded, Fucose-Derivatized, and Macrophage-Targeted Liposomes to Combat Mycobacterial Infections: In Vitro Deposition, Pulmonary Barrier Interactions, and Targeted Delivery. Adv Healthc Mater 2022; 11:e2102117. [PMID: 35112802 PMCID: PMC11468583 DOI: 10.1002/adhm.202102117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/14/2022] [Indexed: 12/12/2022]
Abstract
Nontuberculous mycobacterial infections rapidly emerge and demand potent medications to cope with resistance. In this context, targeted loco-regional delivery of aerosol medicines to the lungs is an advantage. However, sufficient antibiotic delivery requires engineered aerosols for optimized deposition. Here, the effect of bedaquiline-encapsulating fucosylated versus nonfucosylated liposomes on cellular uptake and delivery is investigated. Notably, this comparison includes critical parameters for pulmonary delivery, i.e., aerosol deposition and the noncellular barriers of pulmonary surfactant (PS) and mucus. Targeting increases liposomal uptake into THP-1 cells as well as peripheral blood monocyte- and lung-tissue derived macrophages. Aerosol deposition in the presence of PS, however, masks the effect of active targeting. PS alters antibiotic release that depends on the drug's hydrophobicity, while mucus reduces the mobility of nontargeted more than fucosylated liposomes. Dry-powder microparticles of spray-dried bedaquiline-loaded liposomes display a high fine particle fraction of >70%, as well as preserved liposomal integrity and targeting function. The antibiotic effect is maintained when deposited as powder aerosol on cultured Mycobacterium abscessus. When treating M. abscessus infected THP-1 cells, the fucosylated variant enabled enhanced bacterial killing, thus opening up a clear perspective for the improved treatment of nontuberculous mycobacterial infections.
Collapse
Affiliation(s)
- Benedikt C. Huck
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Durairaj Thiyagarajan
- Department of Anti‐infective Drug DiscoveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8 1Saarbrücken66123Germany
| | - Aghiad Bali
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| | - Annette Boese
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Karen F. W. Besecke
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Solmic BioTech GmbHDüsseldorf40225Germany
| | - Constantin Hozsa
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Siegfried AG HamelnHameln31789Germany
| | - Robert K. Gieseler
- Rodos Biotarget GmbHHannover30625Germany
- Laboratory of Immunology and Molecular Biologyand Department of Internal MedicineUniversity HospitalKnappschaftskrankenhaus BochumRuhr University BochumBochum44892Germany
| | - Marcus Furch
- Rodos Biotarget GmbHHannover30625Germany
- Present address:
Biolife Holding AGHeidelberg69126Germany
| | - Cristiane Carvalho‐Wodarz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Franziska Waldow
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
| | - Dominik Schwudke
- Research Center BorstelLeibniz Lung CenterBorstel23845Germany
- German Center for Infection ResearchThematic Translational Unit TuberculosisPartner Site Hamburg‐Lübeck‐Borstel‐RiemsBraunschweig38124Germany
- German Center for Lung Research (DZL)Airway Research Center North (ARCN)Kiel NanoSurface and Interface Science KiNSISKiel UniversityKiel24118Germany
| | - Olga Metelkina
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
| | - Alexander Titz
- Chemical Biology of Carbohydrates (CBCH)Helmholtz‐Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection ResearchSaarbrücken66123Germany
- Department of ChemistrySaarland UniversitySaarbrücken66123Germany
- Deutsches Zentrum für Infektionsforschung (DZIF)Hannover‐Braunschweig siteBraunschweig38124Germany
| | - Hanno Huwer
- Cardiothoracic SurgeryHeart Center VoelklingenVölklingen66333Germany
| | - Konrad Schwarzkopf
- Department of Anaesthesia and Intensive CareKlinikum Saarbrücken gGmbHSaarbrücken66119Germany
| | | | | | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 2Saarbrücken66123Germany
| | - Brigitta Loretz
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
| | - Claus‐Michael Lehr
- Department of Drug DeliveryHelmholtz Institute for Pharmaceutical Research SaarlandCampus E8.1Saarbrücken66123Germany
- Department of PharmacyHelmholtz Institute for Pharmaceutical Research SaarlandSaarland UniversityCampus E8 1Saarbrücken66123Germany
| |
Collapse
|
16
|
Briot T, Kolenda C, Ferry T, Medina M, Laurent F, Leboucher G, Pirot F. Paving the way for phage therapy using novel drug delivery approaches. J Control Release 2022; 347:414-424. [PMID: 35569589 DOI: 10.1016/j.jconrel.2022.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/24/2022]
Abstract
Bacterial resistance against antibiotics is an emergent medical issue. The development of novel therapeutic approaches is urgently needed and, in this context, bacteriophages represent a promising strategy to fight multi resistant bacteria. However, for some applications, bacteriophages cannot be used without an appropriate drug delivery system which increases their stability or provides an adequate targeting to the site of infection. This review summarizes the main application routes for bacteriophages and presents the new delivery approaches designed to increase phage's activity. Clinical successes of these formulations are also highlighted. Globally, this work paves the way for the design and optimization of nano and micro delivery systems for phage therapy.
Collapse
Affiliation(s)
- Thomas Briot
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France.
| | - Camille Kolenda
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Tristan Ferry
- Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France; Infectious and Tropical Diseases unit, Croix-Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Mathieu Medina
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Frederic Laurent
- Laboratory of bacteriology, French National Reference Centre for Staphylococci, Hospices Civils de Lyon, Lyon, France; Reference Center for Complex Bone and Joint Infection (CRIOAc), Hospices Civils de Lyon, Lyon, France; International Centre for Research in Infectiology, INSERM U1111, Université Claude Bernard Lyon 1, Lyon, France
| | - Gilles Leboucher
- Pharmacy department, Hospices Civils de Lyon, Groupement Hospitalier Nord, Lyon, France
| | - Fabrice Pirot
- Plateforme FRIPHARM, Service pharmaceutique, Groupement Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France; Laboratoire de Recherche et Développement de Pharmacie Galénique Industrielle, Plateforme FRIPHARM, Faculté de Pharmacie, Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique - UMR 5305, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
17
|
Inhalable Mannosylated Rifampicin–Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy. Pharmaceutics 2022; 14:pharmaceutics14050959. [PMID: 35631546 PMCID: PMC9145552 DOI: 10.3390/pharmaceutics14050959] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)–curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.
Collapse
|
18
|
Ibarra-Sánchez LÁ, Gámez-Méndez A, Martínez-Ruiz M, Nájera-Martínez EF, Morales-Flores BA, Melchor-Martínez EM, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Nanostructures for drug delivery in respiratory diseases therapeutics: Revision of current trends and its comparative analysis. J Drug Deliv Sci Technol 2022; 70:103219. [PMID: 35280919 PMCID: PMC8896872 DOI: 10.1016/j.jddst.2022.103219] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 02/02/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Respiratory diseases are leading causes of death and disability in developing and developed countries. The burden of acute and chronic respiratory diseases has been rising throughout the world and represents a major problem in the public health system. Acute respiratory diseases include pneumonia, influenza, SARS-CoV-2 and MERS viral infections; while chronic obstructive pulmonary disease (COPD), asthma and, occupational lung diseases (asbestosis, pneumoconiosis) and other parenchymal lung diseases namely lung cancer and tuberculosis are examples of chronic respiratory diseases. Importantly, chronic respiratory diseases are not curable and treatments for acute pathologies are particularly challenging. For that reason, the integration of nanotechnology to existing drugs or for the development of new treatments potentially benefits the therapeutic goals by making drugs more effective and exhibit fewer undesirable side effects to treat these conditions. Moreover, the integration of different nanostructures enables improvement of drug bioavailability, transport and delivery compared to stand-alone drugs in traditional respiratory therapy. Notably, there has been great progress in translating nanotechnology-based cancer therapies and diagnostics into the clinic; however, researchers in recent years have focused on the application of nanostructures in other relevant pulmonary diseases as revealed in our database search. Furthermore, polymeric nanoparticles and micelles are the most studied nanostructures in a wide range of diseases; however, liposomal nanostructures are recognized to be some of the most successful commercial drug delivery systems. In conclusion, this review presents an overview of the recent and relevant research in drug delivery systems for the treatment of different pulmonary diseases and outlines the trends, limitations, importance and application of nanomedicine technology in treatment and diagnosis and future work in this field.
Collapse
Affiliation(s)
- Luis Ángel Ibarra-Sánchez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Ana Gámez-Méndez
- Universidad de Monterrey, Department of Basic Sciences, Av. Ignacio Morones Prieto 4500 Pte., 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Manuel Martínez-Ruiz
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Erik Francisco Nájera-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Brando Alan Morales-Flores
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Elda M Melchor-Martínez
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| | - Hafiz M N Iqbal
- Tecnológico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, N.L., Mexico
| |
Collapse
|
19
|
Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, Khademhosseini SH, Hoseinnezhad-Lazarjani E, Mousavi A, Kabiri H, Rajaei N, Riahi A, Farhadi-Biregani A, Fatehi-Ghahfarokhi S. Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Sci Rep 2022; 12:5140. [PMID: 35332241 PMCID: PMC8948213 DOI: 10.1038/s41598-022-09195-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
We aim to assess the antibacterial and anti-biofilm properties of Niosome-encapsulated Imipenem. After isolating Staphylococcus epidermidis isolates and determining their microbial sensitivity, their ability to form biofilms was examined using plate microtiter assay. Various formulations of Niosome-encapsulated Imipenem were prepared using the thin-film hydration method, Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Inhibitory Concentration (MIC) were determined, and biofilm genes expression was examined. Drug formulations' toxicity effect on HDF cells were determined using MTT assay. Out of the 162 separated S. epidermidis, 106 were resistant to methicillin. 87 MRSE isolates were vancomycin-resistant, all of which could form biofilms. The F1 formulation of niosomal Imipenem with a size of 192.3 ± 5.84 and an encapsulation index of 79.36 ± 1.14 was detected, which prevented biofilm growth with a BGI index of 69% and reduced icaD, FnbA, EbpS biofilms' expression with P ≤ 0.001 in addition to reducing MBIC and MIC by 4-6 times. Interestingly, F1 formulation of niosomal Imipenem indicated cell viability over 90% at all tested concentrations. The results of the present study indicate that Niosome-encapsulated Imipenem reduces the resistance of MRSE to antibiotics in addition to increasing its anti-biofilm and antibiotic activity, and could prove useful as a new strategy for drug delivery.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Microbial Biotechnology Laboratory, AmitisGen Med TECH Group, P.O. Box: 1416673744, Tehran, Iran.
| | - Neda Jegargoshe-Shirin
- Department of Biotechnology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Sara Saremi-Nouri
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Branch, Azarbaijan Shahid Madani University, Azarbaijan, Iran
| | | | | | - Aezam Mousavi
- Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Negin Rajaei
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Anali Riahi
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Farhadi-Biregani
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Sadegh Fatehi-Ghahfarokhi
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
20
|
Coache D, Friciu M, Roullin VG, Boulé M, Forest JM, Leclair G. Stability evaluation of compounded clonidine hydrochloride oral liquids based on a solid-phase extraction HPLC-UV method. PLoS One 2021; 16:e0260279. [PMID: 34847160 PMCID: PMC8631633 DOI: 10.1371/journal.pone.0260279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/05/2021] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to assess the stability of clonidine hydrochloride oral liquids (20-μg/mL) prepared from two different generic tablets in Ora-Blend and stored in amber plastic bottles. Physical and chemical stabilities were evaluated over a period of 90 days at 25°C. Analytical challenges were overcome with the development of a new extraction procedure based on solid phase extraction to ensure efficient clonidine hydrochloride quantification. The absence of physical instabilities, evaluated by qualitative and quantitative measurements (static multiple light scattering), as well as the absence of chemical instabilities, evidenced by a stability-indicating HPLC-UV method, confirmed that a beyond-use date of 90 days was appropriate for these compounded oral liquids.
Collapse
Affiliation(s)
- Daphné Coache
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Mihaela Friciu
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - V. Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
| | - Marianne Boulé
- Sainte-Justine University Hospital Center, Montréal, Québec, Canada
| | - Jean-Marc Forest
- Sainte-Justine University Hospital Center, Montréal, Québec, Canada
| | - Grégoire Leclair
- Faculty of Pharmacy, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
21
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
22
|
Passos Gibson V, Nunes JBB, Falcao DQ, Roullin VG, Leblond Chain J. Lipid Coating of Chitosan Nanogels for Improved Colloidal Stability and In Vitro Biocompatibility. AAPS PharmSciTech 2021; 22:159. [PMID: 34019243 DOI: 10.1208/s12249-021-02027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Chitosan-based carriers have coined their position as delivery agents. When assembled with polyanions into nanogels (NG), these vectors have enabled the delivery of drugs, genes, and proteins to a myriad of applications. However, the chemical and colloidal instability of chitosan nanoformulations in physiologically compatible media prejudices in vitro biocompatibility and, thus, scale-up applications. To overcome this issue, we envisaged the coating of chitosan nanogel with phospholipids. In this investigation, we report a two-stage synthesis of hybrid lipid-coated chitosan nanogels, named nanolipogels (NLG), to improve colloidal stability and in vitro biocompatibility over chitosan NG. Practically, we employed a mixing platform to first prepare chitosan NG by ionic gelation, dilute the suspension, and, in a second stage, coat the NG with lipids. We demonstrate that lipid coating increased particle size and reversed the ζ-potential to negative values, suggesting the successful formation of NLG, while maintaining a homogeneous size distribution (PDI < 0.25). Furthermore, multiple light scattering analysis confirmed NLG improved colloidal stability in phosphate buffer saline and cell culture medium, with respect to NG. Finally, lipid coating completely abrogated the cytotoxicity of NG when incubated at 50 μg·mL-1 with HeLa, U87, or b.End3 cell lines and significantly improved the biocompatibility at 100 and 150 μg·mL-1. Future investigations will explore how the lipid coating affects drug loading, release profile, and the ability of NLG to deliver drugs and genes in vitro.
Collapse
|
23
|
Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021; 11:1634-1654. [PMID: 33694082 PMCID: PMC7945609 DOI: 10.1007/s13346-021-00954-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
Collapse
Affiliation(s)
- Zheng Huang
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Sylvia Natalie Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Feng Wan
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
24
|
Wang Y. Liposome as a delivery system for the treatment of biofilm-mediated infections. J Appl Microbiol 2021; 131:2626-2639. [PMID: 33650748 DOI: 10.1111/jam.15053] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/11/2022]
Abstract
Biofilm formation by pathogenic microorganisms has been a tremendous challenge for antimicrobial therapies due to various factors. The biofilm matrix sequesters bacterial cells from the exterior environment and therefore prevents antimicrobial agents from reaching the interior. In addition, biofilm surface extracellular polymeric substances can absorb antimicrobial agents and thus reduce their bioavailability. To conquer these protection mechanisms, liposomes have been developed into a drug delivery system for antimicrobial agents against biofilm-mediated infections. The unique characteristics of liposomes, including versatility for cargoes, target-specificity, nonimmunogenicity, low toxicity, and biofilm matrix-/cell membrane-fusogenicity, remarkably improve the effectiveness of antimicrobial agents and minimize recurrence of infections. This review summarizes current development of liposomal carriers for biofilm therapeutics, presents evidence in their practical applications and discusses their potential limitations.
Collapse
Affiliation(s)
- Y Wang
- School of Agriculture and Food Sciences, University of Queensland, St Lucia, Qld, Australia
| |
Collapse
|
25
|
Finbloom JA, Sousa F, Stevens MM, Desai TA. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv Drug Deliv Rev 2020; 167:89-108. [PMID: 32535139 PMCID: PMC10822675 DOI: 10.1016/j.addr.2020.06.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Micro and nanoscale drug carriers must navigate through a plethora of dynamic biological systems prior to reaching their tissue or disease targets. The biological obstacles to drug delivery come in many forms and include tissue barriers, mucus and bacterial biofilm hydrogels, the immune system, and cellular uptake and intracellular trafficking. The biointerface of drug carriers influences how these carriers navigate and overcome biological barriers for successful drug delivery. In this review, we examine how key material design parameters lead to dynamic biointerfaces and improved drug delivery across biological barriers. We provide a brief overview of approaches used to engineer key physicochemical properties of drug carriers, such as morphology, surface chemistry, and topography, as well as the development of dynamic responsive materials for barrier navigation. We then discuss essential biological barriers and how biointerface engineering can enable drug carriers to better navigate and overcome these barriers to drug delivery.
Collapse
Affiliation(s)
- Joel A Finbloom
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Flávia Sousa
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
26
|
Efficacy of Levofloxacin Loaded Nonionic Surfactant Vesicles (Niosomes) in a Model of Pseudomonas aeruginosa Infected Sprague Dawley Rats. Adv Pharmacol Pharm Sci 2020; 2020:8815969. [PMID: 33179011 PMCID: PMC7609151 DOI: 10.1155/2020/8815969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/05/2020] [Accepted: 10/17/2020] [Indexed: 11/21/2022] Open
Abstract
This study examined the effectiveness of niosomes loaded with levofloxacin in treating Pseudomonas aeruginosa (American Type Culture Collection—ATCC 27853) infections in Sprague Dawley rats since these infections are becoming more common and resistant to treatment. Levofloxacin entrapped in niosomes was prepared using the thin-film hydration method and was assessed for in vitro release and stability. Three groups of six (6) animals were infected with a lethal dose of Pseudomonas aeruginosa via the intraperitoneal (Ip) route. At six (6) hours postinfection, the animals were treated with either drug-free niosomes (control), free levofloxacin (conventional), or levofloxacin trapped in niosomes (Ip) at a dose of 7.5 mg/kg/once daily. Blood was collected via tail snips on days 0, 1, 3, 5, 7, and 10 for complete blood counts and viable bacterial counts (CFU/μl). At day 10, the animals were sacrificed, and the kidney, liver, and spleen were harvested for bacterial counts. The niosomes showed a sustained drug release profile and were most stable at 4°C. All animals in the control group succumbed to the infection; one animal from the conventional group died, and all niosome treated animals survived at day 10. The mean lymphocyte count (×109) was lower for the niosome (7.258 ± 1.773) versus conventional group (17.684 ± 10.008) (p < 0.03) at day ten (10). Neutrophil counts (×109) were lower for the niosome (2.563 ± 1.609) versus conventional (6.2 ± 6.548) (p < 0.02) groups. Though CFUs in the bloodstream were comparable for both treatment groups, the niosome treated group showed a significant reduction of CFUs in the liver, kidney, and spleen versus the conventional group (1.33 ± 2.074) vs (5.8 ± 3.74) (p < 0.043), (1.5 ± 2.35) vs (9.6 ± 8.65) (p < 0.038) and (3.8 4.71) vs (25.6 14.66) (p < 0.007), respectively. These findings indicate that niosome is promising as a drug delivery system in treating systemic infections, but further work using niosomes with surface modification is recommended.
Collapse
|
27
|
Hedayati Ch M, Abolhassani Targhi A, Shamsi F, Heidari F, Salehi Moghadam Z, Mirzaie A, Behdad R, Moghtaderi M, Akbarzadeh I. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res A 2020; 109:966-980. [PMID: 32865883 DOI: 10.1002/jbm.a.37086] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022]
Abstract
In the current study, niosome-encapsulated tobramycin based on Span 60 and Tween 60 was synthesized and its biological efficacies including anti-bacterial, anti-efflux, and anti-biofilm activities were investigated against multidrug resistant (MDR) clinical strains of Pseudomonas aeruginosa. The niosomal formulations were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering measurement. The encapsulation efficiency was found to be 69.54% ±; 0.67. The prepared niosomal formulations had a high storage stability to 60 days with small changes in size and drug entrapment, which indicates that it is a suitable candidate for pharmaceutical applications. The results of biological study showed the anti-bacterial activity via reduction of antibiotic resistance, enhanced anti-efflux and anti-biofilm activities by more folds in comparison to free tobramycin. In addition, niosome encapsulated tobramycin down-regulated the MexAB-OprM efflux genes, pslA and pelA biofilm related genes in MDR P. aeruginosa strains. The anti-proliferative activity of formulation was evaluated against HEK293 cell lines, which exhibited negligible cytotoxicity against HEK293 cells. The finding of our study shows that encapsulation of tobramycin in niosome enhanced the antibacterial activity and reduced antibiotic resistance in MDR strains of P. aeruginosa comparing to free tobramycin and it can be considered as a favorable drug delivery system.
Collapse
Affiliation(s)
- Mojtaba Hedayati Ch
- Department of Microbiology, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Farzaneh Shamsi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Heidari
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Amir Mirzaie
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Reyhaneh Behdad
- Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Maryam Moghtaderi
- Department of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
28
|
Rathnayake K, Patel U, Pham C, McAlpin A, Budisalich T, Jayawardena SN. Targeted Delivery of Antibiotic Therapy to Inhibit Pseudomonas aeruginosa Using Lipid-Coated Mesoporous Silica Core–Shell Nanoassembly. ACS APPLIED BIO MATERIALS 2020; 3:6708-6721. [DOI: 10.1021/acsabm.0c00622] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Chi Pham
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Anna McAlpin
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Travis Budisalich
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Surangi N. Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| |
Collapse
|
29
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2020; 7:872. [PMID: 31998680 PMCID: PMC6965326 DOI: 10.3389/fchem.2019.00872] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C. van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J. Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
30
|
Novel drug delivery systems and significance in respiratory diseases. TARGETING CHRONIC INFLAMMATORY LUNG DISEASES USING ADVANCED DRUG DELIVERY SYSTEMS 2020. [PMCID: PMC7499344 DOI: 10.1016/b978-0-12-820658-4.00004-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pulmonary drug delivery offers targeted therapy for the treatment of respiratory diseases such as asthma, lung cancer, and chronic obstructive pulmonary diseases. However, this route poses challenges like deposition mechanism, drug instability, and rapid clearance mechanism. Other factors like the type of inhaler device, patient compatibility, consistent delivery by device, and inhaler technique also affect the performance of pulmonary delivery systems. Thus, to overcome these issues, pulmonary delivery systems utilizing particle-based approaches (nano/microparticles) have emerged in the last two decades. This chapter provides insight into various mechanisms of pulmonary drug administration, the ideal requirements of a pulmonary system, and the general devices used for pulmonary delivery. An overview of new pulmonary delivery systems and their relevance in the treatment of respiratory diseases is provided. In the end, novel pulmonary technologies that have been patented and cleared clinical trials have been highlighted along with the advances in the inhaler device.
Collapse
|
31
|
Abstract
Infections with Pseudomonas aeruginosa have been marked with the highest priority for surveillance and epidemiological research on the basis of parameters such as incidence, case fatality rates, chronicity of illness, available options for prevention and treatment, health-care utilization, and societal impact. P. aeruginosa is one of the six ESKAPE pathogens that are the major cause of nosocomial infections and are a global threat because of their capacity to become increasingly resistant to all available antibiotics. This review reports on current pre-clinical and clinical advances of anti-pseudomonal therapies in the fields of drug development, antimicrobial chemotherapy, vaccines, phage therapy, non-bactericidal pathoblockers, outer membrane sensitizers, and host defense reinforcement.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Clinical Research Group 'Molecular Pathology of Cystic Fibrosis' and 'Pseudomonas Genomics', Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center of Lung Disease, Hannover, 30625, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
32
|
Lima R, Del Fiol FS, Balcão VM. Prospects for the Use of New Technologies to Combat Multidrug-Resistant Bacteria. Front Pharmacol 2019; 10:692. [PMID: 31293420 PMCID: PMC6598392 DOI: 10.3389/fphar.2019.00692] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/28/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology. The use of these technologies, alone or in combination, is promising for solving a problem that humanity faces today and that could lead to human extinction: the domination of pathogenic bacteria resistant to artificial drugs. This prospective paper discusses the potential of bacteriophage particles, CRISPR-Cas, and nanotechnology for use in combating human (bacterial) infections.
Collapse
Affiliation(s)
- Renata Lima
- LABiToN-Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, Brazil
| | - Fernando Sá Del Fiol
- CRIA-Antibiotic Reference and Information Center, University of Sorocaba, Sorocaba, Brazil
| | - Victor M Balcão
- PhageLab-Laboratory of Biofilms and Bacteriophages, i(bs)2-intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, Brazil.,Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
33
|
Wang DY, van der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-Based Antimicrobial Delivery-Systems for the Treatment of Bacterial Infections. Front Chem 2019. [PMID: 31998680 DOI: 10.3389/fchem.2019.00872/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Many nanotechnology-based antimicrobials and antimicrobial-delivery-systems have been developed over the past decades with the aim to provide alternatives to antibiotic treatment of infectious-biofilms across the human body. Antimicrobials can be loaded into nanocarriers to protect them against de-activation, and to reduce their toxicity and potential, harmful side-effects. Moreover, antimicrobial nanocarriers such as micelles, can be equipped with stealth and pH-responsive features that allow self-targeting and accumulation in infectious-biofilms at high concentrations. Micellar and liposomal nanocarriers differ in hydrophilicity of their outer-surface and inner-core. Micelles are self-assembled, spherical core-shell structures composed of single layers of surfactants, with hydrophilic head-groups and hydrophobic tail-groups pointing to the micellar core. Liposomes are composed of lipids, self-assembled into bilayers. The hydrophilic head of the lipids determines the surface properties of liposomes, while the hydrophobic tail, internal to the bilayer, determines the fluidity of liposomal-membranes. Therefore, whereas micelles can only be loaded with hydrophobic antimicrobials, hydrophilic antimicrobials can be encapsulated in the hydrophilic, aqueous core of liposomes and hydrophobic or amphiphilic antimicrobials can be inserted in the phospholipid bilayer. Nanotechnology-derived liposomes can be prepared with diameters <100-200 nm, required to prevent reticulo-endothelial rejection and allow penetration into infectious-biofilms. However, surface-functionalization of liposomes is considerably more difficult than of micelles, which explains while self-targeting, pH-responsive liposomes that find their way through the blood circulation toward infectious-biofilms are still challenging to prepare. Equally, development of liposomes that penetrate over the entire thickness of biofilms to provide deep killing of biofilm inhabitants still provides a challenge. The liposomal phospholipid bilayer easily fuses with bacterial cell membranes to release high antimicrobial-doses directly inside bacteria. Arguably, protection against de-activation of antibiotics in liposomal nanocarriers and their fusogenicity constitute the biggest advantage of liposomal antimicrobial carriers over antimicrobials free in solution. Many Gram-negative and Gram-positive bacterial strains, resistant to specific antibiotics, have been demonstrated to be susceptible to these antibiotics when encapsulated in liposomal nanocarriers. Recently, also progress has been made concerning large-scale production and long-term storage of liposomes. Therewith, the remaining challenges to develop self-targeting liposomes that penetrate, accumulate and kill deeply in infectious-biofilms remain worthwhile to pursue.
Collapse
Affiliation(s)
- Da-Yuan Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China.,Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Yijin Ren
- Department of Orthodontics, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Henk J Busscher
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|