1
|
Jayaswal N, Srivastava S, Kumar S, Belagodu Sridhar S, Khalid A, Najmi A, Zoghebi K, Alhazmi HA, Mohan S, Tambuwala MM. Precision arrows: Navigating breast cancer with nanotechnology siRNA. Int J Pharm 2024; 662:124403. [PMID: 38944167 DOI: 10.1016/j.ijpharm.2024.124403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Nanotechnology-based drug delivery systems, including siRNA, present an innovative approach to treating breast cancer, which disproportionately affects women. These systems enable personalized and targeted therapies, adept at managing drug resistance and minimizing off-target effects. This review delves into the current landscape of nanotechnology-derived siRNA transport systems for breast cancer treatment, discussing their mechanisms of action, preclinical and clinical research, therapeutic applications, challenges, and future prospects. Emphasis is placed on the importance of targeted delivery and precise gene silencing in improving therapeutic efficacy and patient outcomes. The review addresses specific hurdles such as specificity, biodistribution, immunological reactions, and regulatory approval, offering potential solutions and avenues for future research. SiRNA drug delivery systems hold promise in revolutionizing cancer care and improving patient outcomes, but realizing their full potential necessitates ongoing research, innovation, and collaboration. Understanding the intricacies of siRNA delivery mechanisms is pivotal for designing effective cancer treatments, overcoming challenges, and advancing siRNA-based therapies for various diseases, including cancer. The article provides a comprehensive review of the methods involved in siRNA transport for therapeutic applications, particularly in cancer treatment, elucidating the complex journey of siRNA molecules from extracellular space to intracellular targets. Key mechanisms such as endocytosis, receptor-mediated uptake, and membrane fusion are explored, alongside innovative delivery vehicles and technologies that enhance siRNA delivery efficiency. Moreover, the article discusses challenges and opportunities in the field, including issues related to specificity, biodistribution, immune response, and clinical translation. By comprehending the mechanisms of siRNA delivery, researchers can design and develop more effective siRNA-based therapies for various diseases, including cancer.
Collapse
Affiliation(s)
- Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University, Gorakhpur, 273007, India
| | - Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India; Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India.
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 273007, India
| | | | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia.
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK; RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE.
| |
Collapse
|
2
|
Mugundhan SL, Mohan M. Nanoscale strides: exploring innovative therapies for breast cancer treatment. RSC Adv 2024; 14:14017-14040. [PMID: 38686289 PMCID: PMC11056947 DOI: 10.1039/d4ra02639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer (BC) is a predominant malignancy in women that constitutes approximately 30% of all cancer cases and has a mortality rate of 14% in recent years. The prevailing therapies include surgery, chemotherapy, and radiotherapy, each with its own limitations and challenges. Despite oral or intravenous administration, there are numerous barriers to accessing anti-BC agents before they reach the tumor site, including physical, physiological, and biophysical barriers. The complexity of BC pathogenesis, attributed to a combination of endogenous, chronic, intrinsic, extrinsic and genetic factors, further complicates its management. Due to the limitations of existing cancer treatment approaches, there is a need to explore novel, efficacious solutions. Nanodrug delivery has emerged as a promising avenue in cancer chemotherapy, aiming to enhance drug bioavailability while mitigating adverse effects. In contrast to conventional chemotherapy, cancer nanotechnology leverages improved permeability to achieve comprehensive disruption of cancer cells. This approach also presented superior pharmacokinetic profiles. The application of nanotechnology in cancer therapeutics includes nanotechnological tools, but a comprehensive review cannot cover all facets. Thus, this review concentrates specifically on BC treatment. The focus lies in the successful implementation of systematic nanotherapeutic strategies, demonstrating their superiority over conventional methods in delivering anti-BC agents. Nanotechnology-driven drug delivery holds immense potential in treating BC. By surmounting multiple barriers and capitalizing on improved permeability, nanodrug delivery has demonstrated enhanced efficacy and reduced adverse effects compared to conventional therapies. This review highlights the significance of systematic nanotherapy approaches, emphasizing the evolving landscape of BC management.
Collapse
Affiliation(s)
- Sruthi Laakshmi Mugundhan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| | - Mothilal Mohan
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology SRM Nagar Kattankulathur 603203 Tamil Nadu India
| |
Collapse
|
3
|
Abdolvahab MH, Karimi P, Mohajeri N, Abedini M, Zare H. Targeted drug delivery using nanobodies to deliver effective molecules to breast cancer cells: the most attractive application of nanobodies. Cancer Cell Int 2024; 24:67. [PMID: 38341580 DOI: 10.1186/s12935-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Targeted drug delivery is one of the attractive ways in which cancer treatment can significantly reduce side effects. In the last two decades, the use of antibodies as a tool for accurate detection of cancer has been noted. On the other hand, the binding of drugs and carriers containing drugs to the specific antibodies of cancer cells can specifically target only these cells. However, the use of whole antibodies brings challenges, including their large size, the complexity of conjugation, the high cost of production, and the creation of immunogenic reactions in the body. The use of nanobodies, or VHHs, which are a small part of camel heavy chain antibodies, is very popular due to their small size, high craftsmanship, and low production cost. In this article, in addition to a brief overview of the structure and characteristics of nanobodies, the use of this molecule in the targeted drug delivery of breast cancer has been reviewed.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nasrin Mohajeri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Abedini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Xia Q, Liang T, Zhou Y, Liu J, Tang Y, Liu F. Recent Advances in Biomedical Nanotechnology Related to Natural Products. Curr Pharm Biotechnol 2024; 25:944-961. [PMID: 37605408 DOI: 10.2174/1389201024666230821090222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/24/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023]
Abstract
Natural product processing via nanotechnology has opened the door to innovative and significant applications in medical fields. On one hand, plants-derived bioactive ingredients such as phenols, pentacyclic triterpenes and flavonoids exhibit significant pharmacological activities, on another hand, most of them are hydrophobic in nature, posing challenges to their use. To overcome this issue, nanoencapsulation technology is employed to encapsulate these lipophilic compounds and enhance their bioavailability. In this regard, various nano-sized vehicles, including degradable functional polymer organic compounds, mesoporous silicon or carbon materials, offer superior stability and retention for bioactive ingredients against decomposition and loss during delivery as well as sustained release. On the other hand, some naturally occurring polymers, lipids and even microorganisms, which constitute a significant portion of Earth's biomass, show promising potential for biomedical applications as well. Through nano-processing, these natural products can be developed into nano-delivery systems with desirable characteristics for encapsulation a wide range of bioactive components and therapeutic agents, facilitating in vivo drug transport. Beyond the presentation of the most recent nanoencapsulation and nano-processing advancements with formulations mainly based on natural products, this review emphasizes the importance of their physicochemical properties at the nanoscale and their potential in disease therapy.
Collapse
Affiliation(s)
- Qing Xia
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Zhou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Yue Tang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
5
|
Al-Salih MYA, Pouresmaeil V, Davoodi-Dehaghani F, Haghighi HN, Tabrizi MH. Study the Anticancer Properties of Thymol-Loaded PEGylated Bovine Serum Albumin Nanoparticles Conjugated with Folic Acid. Chem Biodivers 2023; 20:e202301122. [PMID: 37823866 DOI: 10.1002/cbdv.202301122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Phenolic compounds such as Thymol have an effective role in suppressing cancer, however, their low solubility in aqueous solution has limited their use. This study aimed to prepare Thymol (TY)-loaded bovine serum albumin (BSA) nanoparticles surface-modified with polyethylene glycol (PEG) conjugated with folic acid (FA) and evaluate their inhibitory activity on cancer cells. The TY-BSA-PEG-FA was characterized using DLS, FESEM, and FTIR. The encapsulation efficiency (EE) was evaluated indirectly by using UV absorption. The antioxidant property of nanoparticles was evaluated by 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing ability of plasm (FRAP) methods. The effects of nanoparticles against cancer cells were investigated by MTT, AO/PI, flow cytometry, and real-time qPCR methods. The results showed the spherical morphology of TY-BSA-PEG-FA with an average size of 70.0 nm, a PDI of 0.32, a zeta potential of -11.3 mV, and an EE of 89.0±2.3 %. The cytotoxicity effects of nanoparticles against all cell lines were in a concentration-dependent manner. AGS gastric cancer cells were reported to be the most vulnerable to treatment, while pancreatic cancer cells (PANC-1) and normal skin cells (HFF) would be the most resistant. The SubG1 phase arrest of about 66 % occurred at 85 μg/mL. An increase in apoptotic cells in fluorescent staining, along with decreased expression of Bcl-2 and increased expression of the BAX gene demonstrated the induction of apoptosis in treated cells. The powerful inhibitory effect of nanoparticles in inhibiting ABTS free radicals (IC50 =82 μg/mL) and DPPH free radicals (IC50 =844 μg/mL) and the ability to reduce iron ions indicated the antioxidant effects of TY-BSA-PEG-FA. Based on these results, the synthesized nanoparticles may be suitable for further investigation in the treatment of cancer, notably gastric cancer.
Collapse
Affiliation(s)
| | - Vahid Pouresmaeil
- Department of Biochemistry, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
- Postal address, Faculty of Medicine Shahinfar, Islamic Azad University, Sarab Street, Mashhad, Iran
| | - Fatemeh Davoodi-Dehaghani
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | | |
Collapse
|
6
|
Castrignano C, Di Scipio F, Franco F, Mognetti B, Berta GN. Reviving a Classic Antigen with a Cutting-Edge Approach: Nanobodies for HER2+ Breast Cancer. Pharmaceuticals (Basel) 2023; 16:794. [PMID: 37375741 PMCID: PMC10302560 DOI: 10.3390/ph16060794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The serendipitous discovery of nanobodies (NBs) around two decades ago opened the door to new possibilities for innovative strategies, particularly in cancer treatment. These antigen-binding fragments are derived from heavy-chain-only antibodies naturally found in the serum of camelids and sharks. NBs are an appealing agent for the progress of innovative therapeutic strategies because they combine the advantageous assets of smaller molecules and conventional monoclonal antibodies (mAbs). Moreover, the possibility to produce NBs using bacterial systems reduces manufacturing expenses and speeds up the production process, making them a feasible option for the development of new bio-drugs. Several NBs have been developed over the past 10 years and are currently being tested in clinical trials for various human targets. Here, we provide an overview of the notable structural and biochemical characteristics of NBs, particularly in their application against HER2, an extracellular receptor that often gets aberrantly activated during breast cancer tumorigenesis. The focus is on the recent advancements in diagnostic and therapeutic research up to the present date.
Collapse
Affiliation(s)
- Chiara Castrignano
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Federica Di Scipio
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Francesco Franco
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| | - Barbara Mognetti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy;
| | - Giovanni Nicolao Berta
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (C.C.); (F.D.S.); (F.F.)
| |
Collapse
|
7
|
Mansoori-Kermani A, Khalighi S, Akbarzadeh I, Niavol FR, Motasadizadeh H, Mahdieh A, Jahed V, Abdinezhad M, Rahbariasr N, Hosseini M, Ahmadkhani N, Panahi B, Fatahi Y, Mozafari M, Kumar AP, Mostafavi E. Engineered hyaluronic acid-decorated niosomal nanoparticles for controlled and targeted delivery of epirubicin to treat breast cancer. Mater Today Bio 2022; 16:100349. [PMID: 35875198 PMCID: PMC9304880 DOI: 10.1016/j.mtbio.2022.100349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted drug delivery systems using nanocarriers offer a versatile platform for breast cancer treatment; however, a robust, CD44-targeted niosomal formulation has not been developed and deeply studied (both in vitro and in vivo) yet. Here, an optimized system of epirubicin (Epi)-loaded niosomal nanoparticles (Nio) coated with hyaluronic acid (HA) has been engineered for targeting breast cancer cells. The nanoformulation was first optimized (based on size, polydispersity index, and entrapment efficiency); then, we characterized the morphology, stability, and release behavior of the nanoparticles. Epirubicin release from the HA-coated system (Epi-Nio-HA) showed a 21% (acidic buffer) and 20% (neutral buffer) reduction in comparison with the non-coated group (Epi-Nio). The cytotoxicity and apoptosis results of 4T1 and SkBr3 cells showed an approximately 2-fold increase in the Epi-Nio-HA system over Epi-Nio and free epirubicin, which confirms the superiority of the engineered nanocarriers. Moreover, real-time PCR data demonstrated the down-regulation of the MMP-2, MMP-9, cyclin D, and cyclin E genes expression while caspase-3 and caspase-9 gene expression were up-regulated. Confocal microscopy and flow cytometry studies uncovered the cellular uptake mechanism of the Epi-Nio-HA system, which was CD44-mediated. Furthermore, in vivo studies indicated Epi-Nio-HA decreased mice breast tumor volume by 28% (compared to epirubicin) without side effects on the liver and kidney. Conclusively, our results indicated that the HA-functionalized niosomes provide a promising nanoplatform for efficient and targeted delivery of epirubicin to potentially treat breast cancer.
Collapse
Affiliation(s)
| | - Sadaf Khalighi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Fazeleh Ranjbar Niavol
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Athar Mahdieh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Jahed
- Rudolfs Cimdins Riga Biomaterials Innovations and Development Centre of RTU, Institute of General Chemical Engineering, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Pulka St. 3/3, Riga, LV, 1007, Latvia
| | - Masoud Abdinezhad
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Nikoo Rahbariasr
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mahshid Hosseini
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Ahmadkhani
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Behnam Panahi
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
8
|
Mesquita BS, Fens MHAM, Di Maggio A, Bosman EDC, Hennink WE, Heger M, Oliveira S. The Impact of Nanobody Density on the Targeting Efficiency of PEGylated Liposomes. Int J Mol Sci 2022; 23:ijms232314974. [PMID: 36499301 PMCID: PMC9741042 DOI: 10.3390/ijms232314974] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanoparticles (NPs) are commonly modified with tumor-targeting moieties that recognize proteins overexpressed on the extracellular membrane to increase their specific interaction with target cells. Nanobodies (Nbs), the variable domain of heavy chain-only antibodies, are a robust targeting ligand due to their small size, superior stability, and strong binding affinity. For the clinical translation of targeted Nb-NPs, it is essential to understand how the number of Nbs per NP impacts the receptor recognition on cells. To study this, Nbs targeting the hepatocyte growth factor receptor (MET-Nbs) were conjugated to PEGylated liposomes at a density from 20 to 800 per liposome and their targeting efficiency was evaluated in vitro. MET-targeted liposomes (MET-TLs) associated more profoundly with MET-expressing cells than non-targeted liposomes (NTLs). MET-TLs with approximately 150-300 Nbs per liposome exhibited the highest association and specificity towards MET-expressing cells and retained their targeting capacity when pre-incubated with proteins from different sources. Furthermore, a MET-Nb density above 300 Nbs per liposome increased the interaction of MET-TLs with phagocytic cells by 2-fold in ex vivo human blood compared to NTLs. Overall, this study demonstrates that adjusting the MET-Nb density can increase the specificity of NPs towards their intended cellular target and reduce NP interaction with phagocytic cells.
Collapse
Affiliation(s)
- Bárbara S. Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alessia Di Maggio
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Esmeralda D. C. Bosman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Michal Heger
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314041, China
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Department of Chemistry, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.H.); (S.O.)
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: (M.H.); (S.O.)
| |
Collapse
|
9
|
Khan SU, Khan MU, Gao Y, Khan MI, Puswal SM, Zubair M, Khan MA, Farwa R, Gao S, Ali R, Hussain N. Unique therapeutic potentialities of exosomes based nanodrug carriers to target tumor microenvironment in cancer therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
10
|
Dai X, Ye Y, He F. Emerging innovations on exosome-based onco-therapeutics. Front Immunol 2022; 13:865245. [PMID: 36119094 PMCID: PMC9473149 DOI: 10.3389/fimmu.2022.865245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 07/29/2022] [Indexed: 01/30/2023] Open
Abstract
Exosomes, nano-sized extracellular vesicles for intercellular communications, are gaining rapid momentum as a novel strategy for the diagnosis and therapeutics of a spectrum of diseases including cancers. Secreted by various cell sources, exosomes pertain numerous functionalities from their parental cells and have enhanced stability that enable them with many features favorable for clinical use and commercialization. This paper focuses on the possible roles of exosomes in cancer therapeutics and reviews current exosome-based innovations toward enhanced cancer management and challenges that limit their clinical translation. Importantly, this paper casts insights on how cold atmospheric plasma, an emerging anticancer strategy, may aid in innovations on exosome-based onco-therapeutics toward improved control over cancers.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- CAPsoul Medical Biotechnology Company, Ltd., Beijing, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Yongju Ye
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| | - Fule He
- Department of Gynaecology, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- *Correspondence: Fule He, ; Yongju Ye,
| |
Collapse
|
11
|
Pandey P, Kumar Arya D, Kumar Ramar M, Chidambaram K, Rajinikanth P. Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov Today 2022; 27:2526-2540. [DOI: 10.1016/j.drudis.2022.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
12
|
Wu SY, Wu FG, Chen X. Antibody-Incorporated Nanomedicines for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109210. [PMID: 35142395 DOI: 10.1002/adma.202109210] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
Antibody-based cancer therapy, one of the most significant therapeutic strategies, has achieved considerable success and progress over the past decades. Nevertheless, obstacles including limited tumor penetration, short circulation half-lives, undesired immunogenicity, and off-target side effects remain to be overcome for the antibody-based cancer treatment. Owing to the rapid development of nanotechnology, antibody-containing nanomedicines that have been extensively explored to overcome these obstacles have already demonstrated enhanced anticancer efficacy and clinical translation potential. This review intends to offer an overview of the advancements of antibody-incorporated nanoparticulate systems in cancer treatment, together with the nontrivial challenges faced by these next-generation nanomedicines. Diverse strategies of antibody immobilization, formats of antibodies, types of cancer-associated antigens, and anticancer mechanisms of antibody-containing nanomedicines are provided and discussed in this review, with an emphasis on the latest applications. The current limitations and future research directions on antibody-containing nanomedicines are also discussed from different perspectives to provide new insights into the construction of anticancer nanomedicines.
Collapse
Affiliation(s)
- Shun-Yu Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
13
|
Butt AM, Abdullah N, Rani NNIM, Ahmad N, Amin MCIM. Endosomal Escape of Bioactives Deployed via Nanocarriers: Insights Into the Design of Polymeric Micelles. Pharm Res 2022; 39:1047-1064. [PMID: 35619043 DOI: 10.1007/s11095-022-03296-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
Abstract
Cytoplasmic delivery of bioactives requires the use of strategies such as active transport, electroporation, or the use of nanocarriers such as polymeric nanoparticles, liposomes, micelles, and dendrimers. It is essential to deliver bioactive molecules in the cytoplasm to achieve targeted effects by enabling organelle targeting. One of the biggest bottlenecks in the successful cytoplasmic delivery of bioactives through nanocarriers is their sequestration in the endosomes that leads to the degradation of drugs by progressing to lysosomes. In this review, we discussed mechanisms by which nanocarriers are endocytosed, the mechanisms of endosomal escape, and more importantly, the strategies that can be and have been employed for their escape from the endosomes are summarized. Like other nanocarriers, polymeric micelles can be designed for endosomal escape, however, a careful control is needed in their design to balance between the possible toxicity and endosomal escape efficiency. Keeping this in view, polyion complex micelles, and polymers that have the ability to escape the endosome, are fully discussed. Finally, we provided some perspectives for designing the polymeric micelles for efficient cytoplasmic delivery of bioactive agents through endosomal escape.
Collapse
Affiliation(s)
- Adeel Masood Butt
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Nabiha Abdullah
- Department of Pharmacy, Quaid-i-Azam University, 45320, Islamabad, Pakistan.,Department of Chemistry, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Perak, Malaysia.,Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72388, Aljouf, Saudi Arabia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Sitia L, Sevieri M, Signati L, Bonizzi A, Chesi A, Mainini F, Corsi F, Mazzucchelli S. HER-2-Targeted Nanoparticles for Breast Cancer Diagnosis and Treatment. Cancers (Basel) 2022; 14:2424. [PMID: 35626028 PMCID: PMC9139811 DOI: 10.3390/cancers14102424] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Human epidermal growth factor receptor-2 (HER-2) overexpressing breast cancer is a breast cancer subtype characterized by high aggressiveness, high frequency of brain metastases and poor prognosis. HER-2, a glycoprotein belonging to the ErbB receptor family, is overexpressed on the outer membrane of cancer cells and has been an important therapeutic target for the development of targeted drugs, such as the monoclonal antibodies trastuzumab and pertuzumab. These therapies have been available in clinics for more than twenty years. However, despite the initial enthusiasm, a major issue emerged limiting HER-2 targeted therapy efficacy, i.e., the evolution of drug resistance, which could be tackled by nanotechnology. The aim of this review is to provide a first critical update on the different types of HER-2-targeted nanoparticles that have been proposed in the literature in the last decade for therapeutic purposes. We focus on the different targeting strategies that have been explored, their relative outcomes and current limitations that still need to be improved. Then, we review the nanotools developed as diagnostic kits, focusing on the most recent techniques, which allow accurate quantification of HER-2 levels in tissues, with the aim of promoting more personalized medicinal approaches in patients.
Collapse
Affiliation(s)
- Leopoldo Sitia
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Marta Sevieri
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Lorena Signati
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Bonizzi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Arianna Chesi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Francesco Mainini
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| | - Fabio Corsi
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
- IRCCS Istituti Clinici Scientifici Salvatore Maugeri, 27100 Pavia, Italy
| | - Serena Mazzucchelli
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, 20157 Milano, Italy; (L.S.); (M.S.); (L.S.); (A.B.); (A.C.); (F.M.); (F.C.)
| |
Collapse
|
15
|
Picheth GF, Ganzella FADO, Filizzola JO, Canquerino YK, Cardoso GC, Collini MB, Colauto LB, Figueroa-Magalhães MC, Cavalieri EA, Klassen G. Ligand-mediated nanomedicines against breast cancer: a review. Nanomedicine (Lond) 2022; 17:645-664. [PMID: 35438008 DOI: 10.2217/nnm-2021-0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-mediated targeting represents the cutting edge in precision-guided therapy for several diseases. Surface engineering of nanomedicines with ligands exhibiting selective or tailored affinity for overexpressed biomolecules of a specific disease may increase therapeutic efficiency and reduce side effects and recurrence. This review focuses on newly developed approaches and strategies to improve treatment and overcome the mechanisms associated with breast cancer resistance.
Collapse
Affiliation(s)
- Guilherme F Picheth
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil.,School of Medicine, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | | | - João Oc Filizzola
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Yan K Canquerino
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Gabriela C Cardoso
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Michelle B Collini
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Leonardo B Colauto
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Edneia Asr Cavalieri
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
16
|
Saporin as a Commercial Reagent: Its Uses and Unexpected Impacts in the Biological Sciences—Tools from the Plant Kingdom. Toxins (Basel) 2022; 14:toxins14030184. [PMID: 35324681 PMCID: PMC8952126 DOI: 10.3390/toxins14030184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023] Open
Abstract
Saporin is a ribosome-inactivating protein that can cause inhibition of protein synthesis and causes cell death when delivered inside a cell. Development of commercial Saporin results in a technology termed ‘molecular surgery’, with Saporin as the scalpel. Its low toxicity (it has no efficient method of cell entry) and sturdy structure make Saporin a safe and simple molecule for many purposes. The most popular applications use experimental molecules that deliver Saporin via an add-on targeting molecule. These add-ons come in several forms: peptides, protein ligands, antibodies, even DNA fragments that mimic cell-binding ligands. Cells that do not express the targeted cell surface marker will not be affected. This review will highlight some newer efforts and discuss significant and unexpected impacts on science that molecular surgery has yielded over the last almost four decades. There are remarkable changes in fields such as the Neurosciences with models for Alzheimer’s Disease and epilepsy, and game-changing effects in the study of pain and itch. Many other uses are also discussed to record the wide-reaching impact of Saporin in research and drug development.
Collapse
|
17
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
18
|
Bloch JS, Sequeira JM, Ramírez AS, Quadros EV, Locher KP. Generation of nanobodies targeting the human, transcobalamin-mediated vitamin B 12 uptake route. FASEB J 2022; 36:e22222. [PMID: 35218573 DOI: 10.1096/fj.202101376rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/04/2022] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Cellular uptake of vitamin B12 in humans is mediated by the endocytosis of the B12 carrier protein transcobalamin (TC) via its cognate cell surface receptor TCblR, encoded by the CD320 gene. Because CD320 expression is associated with the cell cycle and upregulated in highly proliferating cells including cancer cells, this uptake route is a potential target for cancer therapy. We developed and characterized four camelid nanobodies that bind holo-TC (TC in complex with B12 ) or the interface of the human holo-TC:TCblR complex with nanomolar affinities. We determined X-ray crystal structures of these nanobodies bound to holo-TC:TCblR, which enabled us to map their binding epitopes. When conjugated to the model toxin saporin, three of our nanobodies caused growth inhibition of HEK293T cells and therefore have the potential to inhibit the growth of human cancer cells. We visualized the cellular binding and endocytic uptake of the most potent nanobody (TC-Nb4) using fluorescent light microscopy. The co-crystal structure of holo-TC:TCblR with another nanobody (TC-Nb34) revealed novel features of the interface of TC and the LDLR-A1 domain of TCblR, rationalizing the decrease in the affinity of TC-B12 binding caused by the Δ88 mutation in CD320.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Jeffrey M Sequeira
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, USA
| | - Ana S Ramírez
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| | - Edward V Quadros
- Department of Medicine, SUNY-Downstate Medical Center, Brooklyn, New York, USA
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Ying M, Li Q, Wu J, Jiang Y, Xu Z, Ma M, Xu G. CuS@BSA-NB2 Nanoparticles for HER2-Targeted Photothermal Therapy. Front Pharmacol 2022; 12:779591. [PMID: 35126119 PMCID: PMC8815789 DOI: 10.3389/fphar.2021.779591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by the uncontrolled proliferation of breast epithelial cells under the action of a variety of carcinogens. Although HER2-inhibitors were currently applied for HER2-positive breast cancer patients, they didn't work for patients with resistance to HER2-targeted anti-cancer drugs. In this work, we prepared novel CuS@BSA-NB2 nanoparticles (NPs) for breast cancer photothermal therapy (PTT). The NPs had good biocompatibility due to the Bovine Serum Albumin (BSA) encapsulating and excellent targeting to HER2 because of nanobody 2 (NB2). Under 808 nm laser irradiation, CuS@BSA-NB2 NPs had high photothermal conversion efficiency and photothermal stability. Meanwhile, we constructed a stable cell line of MDA-MB-231/HER2 with a high expression of HER2 protein. Immunofluorescence and ICP-MS assays showed that CuS@BSA-NB2 NPs can be specifically enriched and be ingested in MDA-MB-231/HER2 cells. Furthermore, CuS@BSA-NB2 NPs had shown a more significant photothermal treatment effect than CuS@BSA under certain treatment conditions for MDA-MB-231/HER2. In addition, the cytotoxicity assay demonstrated that CuS@BSA-NB2 NPs had a low toxicity for MDA-MB-231/HER2 cells. The above results suggested that CuS@BSA-NB2 NPs were great photothermal therapeutic agents to reduce the malignant proliferation of breast epithelial cells and have potential for breast cancer therapy.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jingbo Wu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yihang Jiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Mingze Ma
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Wang L, Zhang G, Qin L, Ye H, Wang Y, Long B, Jiao Z. Anti-EGFR Binding Nanobody Delivery System to Improve the Diagnosis and Treatment of Solid Tumours. Recent Pat Anticancer Drug Discov 2021; 15:200-211. [PMID: 32885759 DOI: 10.2174/1574892815666200904111728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/24/2020] [Accepted: 07/26/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Epidermal Growth Factor Receptor (EGFR) and members of its homologous protein family mediate transmembrane signal transduction by binding to a specific ligand, which leads to regulated cell growth, differentiation, proliferation and metastasis. With the development and application of Genetically Engineered Antibodies (GEAs), Nanobodies (Nbs) constitute a new research hot spot in many diseases. A Nb is characterized by its low molecular weight, deep tissue penetration, good solubility and high antigen-binding affinity, the anti-EGFR Nbs are of significance for the diagnosis and treatment of EGFR-positive tumours. OBJECTIVE This review aims to provide a comprehensive overview of the information about the molecular structure of EGFR and its transmembrane signal transduction mechanism, and discuss the anti-EGFR-Nbs influence on the diagnosis and treatment of solid tumours. METHODS Data were obtained from PubMed, Embase and Web of Science. All patents are searched from the following websites: the World Intellectual Property Organization (WIPO®), the United States Patent Trademark Office (USPTO®) and Google Patents. RESULTS EGFR is a key target for regulating transmembrane signaling. The anti-EGFR-Nbs for targeted drugs could effectively improve the diagnosis and treatment of solid tumours. CONCLUSION EGFR plays a role in transmembrane signal transduction. The Nbs, especially anti- EGFR-Nbs, have shown effectiveness in the diagnosis and treatment of solid tumours. How to increase the affinity of Nb and reduce its immunogenicity remain a great challenge.
Collapse
Affiliation(s)
- Long Wang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Gengyuan Zhang
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Long Qin
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Huili Ye
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Yan Wang
- The Cuiying Center, Lanzhou University Second Hospital, Lanzhou 730000, Gansu, China
| | - Bo Long
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
21
|
Sánchez-García L, Voltà-Durán E, Parladé E, Mazzega E, Sánchez-Chardi A, Serna N, López-Laguna H, Mitstorfer M, Unzueta U, Vázquez E, Villaverde A, de Marco A. Self-Assembled Nanobodies as Selectively Targeted, Nanostructured, and Multivalent Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29406-29415. [PMID: 34129336 PMCID: PMC9262252 DOI: 10.1021/acsami.1c08092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanobodies represent valuable tools in advanced therapeutic strategies but their small size (∼2.5 × ∼ 4 nm) and limited valence for interactions might pose restrictions for in vivo applications, especially regarding their modest capacity for multivalent and cooperative interaction. In this work, modular protein constructs have been designed, in which nanobodies are fused to protein domains to provide further functionalities and to favor oligomerization into stable self-assembled nanoparticles. The nanobody specificity for their targets is maintained in such supramolecular complexes. Also, their diameter around 70 nm and multivalent interactivity should favor binding and penetrability into target cells via solvent-exposed receptor. These concepts have been supported by unrelated nanobodies directed against the ricin toxin (A3C8) and the Her2 receptor (EM1), respectively, that were modified with the addition of a reporter protein and a hexa-histidine tag at the C-terminus that promotes self-assembling. The A3C8-based nanoparticles neutralize the ricin toxin efficiently, whereas the EM1-based nanoparticles enable to selective imaging Her2-positive cells. These findings support the excellent extracellular and intracellular functionality of nanobodies organized in form of oligomeric nanoscale assemblies.
Collapse
Affiliation(s)
- Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Elisa Mazzega
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| | - Alejandro Sánchez-Chardi
- Servei
de Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Mara Mitstorfer
- University
of Natural Resources and Life Sciences, Department of Chemistry, Institute of Biochemistry, 1190 Vienna, Austria
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma̲ Claret 167, 08025 Barcelona, Spain
| | - Esther Vázquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, Barcelona 08193, Spain
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica Nova Gorica 5000, Slovenia
| |
Collapse
|
22
|
Lointier M, Dussouillez C, Glattard E, Kichler A, Bechinger B. Different Biological Activities of Histidine-Rich Peptides Are Favored by Variations in Their Design. Toxins (Basel) 2021; 13:363. [PMID: 34065185 PMCID: PMC8160934 DOI: 10.3390/toxins13050363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022] Open
Abstract
The protein transduction and antimicrobial activities of histidine-rich designer peptides were investigated as a function of their sequence and compared to gene transfection, lentivirus transduction and calcein release activities. In membrane environments, the peptides adopt helical conformations where the positioning of the histidine side chains defines a hydrophilic angle when viewed as helical wheel. The transfection of DNA correlates with calcein release in biophysical experiments, being best for small hydrophilic angles supporting a model where lysis of the endosomal membrane is the limiting factor. In contrast, antimicrobial activities show an inverse correlation suggesting that other interactions and mechanisms dominate within the bacterial system. Furthermore, other derivatives control the lentiviral transduction enhancement or the transport of proteins into the cells. Here, we tested the transport into human cell lines of luciferase (63 kDa) and the ribosome-inactivating toxin saporin (30 kDa). Notably, depending on the protein, different peptide sequences are required for the best results, suggesting that the interactions are manifold and complex. As such, designed LAH4 peptides assure a large panel of biological and biophysical activities whereby the optimal result can be tuned by the physico-chemical properties of the sequences.
Collapse
Affiliation(s)
- Morane Lointier
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
| | - Candice Dussouillez
- Laboratoire de Conception et Application de Molécules Bioactives, UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Elise Glattard
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, UMR7199 CNRS-Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France;
| | - Burkhard Bechinger
- Université de Strasbourg, CNRS, UMR7177, Institut de Chimie, 4, Rue Blaise Pascal, 67070 Strasbourg, France; (M.L.); (E.G.)
- Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
23
|
Yan Y, Cheng X, Li L, Zhang R, Zhu Y, Wu Z, Ding K. A Novel Small Molecular Antibody, HER2-Nanobody, Inhibits Tumor Proliferation in HER2-Positive Breast Cancer Cells In Vitro and In Vivo. Front Oncol 2021; 11:669393. [PMID: 34055637 PMCID: PMC8149955 DOI: 10.3389/fonc.2021.669393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao L, Chen Q, Xie S, Liu A, Yin S, Xu Z, Lu X. Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. Int J Nanomedicine 2021; 16:2337-2356. [PMID: 33790553 PMCID: PMC7997558 DOI: 10.2147/ijn.s297631] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/16/2021] [Indexed: 12/15/2022] Open
Abstract
The development of monoclonal antibody treatments for successful tumor-targeted therapies took several decades. However, the efficacy of antibody-based therapy is still confined and desperately needs further improvement. Nanobodies are the recombinant variable domains of heavy-chain-only antibodies, with many unique properties such as small size (~15kDa), excellent solubility, superior stability, ease of manufacture, quick clearance from blood, and deep tissue penetration, which gain increasing acceptance as therapeutical tools and are considered also as building blocks for chimeric antigen receptors as well as for targeted drug delivery. Thus, one of the promising novel developments that may address the deficiency of monoclonal antibody-based therapies is the utilization of nanobodies. This article provides readers the significant factors that the structural and biochemical properties of nanobodies and the research progress on nanobodies in the fields of tumor treatment, as well as their application prospect.
Collapse
Affiliation(s)
- Shuyang Sun
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ziqiang Ding
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaomei Yang
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xinyue Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Minlong Zhao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Li Gao
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qu Chen
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shenxia Xie
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Pharmacology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Aiqun Liu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Shihua Yin
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhiping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xiaoling Lu
- International Nanobody Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- School of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
25
|
Andrian T, Riera R, Pujals S, Albertazzi L. Nanoscopy for endosomal escape quantification. NANOSCALE ADVANCES 2021; 3:10-23. [PMID: 36131870 PMCID: PMC9419860 DOI: 10.1039/d0na00454e] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/26/2020] [Indexed: 05/04/2023]
Abstract
The successful cytosolic delivery of nanoparticles is hampered by their endosomal entrapment and degradation. To push forward the smart development of nanoparticles we must reliably detect and quantify their endosomal escape process. However, the current methods employed are not quantitative enough at the nanoscale to achieve this. Nanoscopy is a rapidly evolving field that has developed a diverse set of powerful techniques in the last two decades, opening the door to explore nanomedicine with an unprecedented resolution and specificity. The understanding of key steps in the drug delivery process - such as endosomal escape - would benefit greatly from the implementation of the most recent advances in microscopy. In this review, we provide the latest insights into endosomal escape of nanoparticles obtained by nanoscopy, and we discuss the features that would allow these techniques to make a great impact in the field.
Collapse
Affiliation(s)
- Teodora Andrian
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
| | - Roger Riera
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| | - Silvia Pujals
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, Universitat de Barcelona Av. Diagonal 647 08028 Barcelona Spain
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine, Institute for Bioengineering of Catalonia Barcelona Spain
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology Eindhoven Netherlands
| |
Collapse
|
26
|
Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2020; 26:1319-1329. [PMID: 33359114 DOI: 10.1016/j.drudis.2020.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Human epidermal growth factor receptor 2 (HER2), a tyrosine kinase receptor with a molecular mass of 185kDa, is overexpressed in several cancers, such as breast, gastric, ovary, prostate, and lung. HER2 is a promising target in cancer therapy because of its crucial role in cell migration, proliferation, survival, angiogenesis, and metastasis through various intracellular signaling cascades. This receptor is an ideal target for the delivery of chemotherapeutic agents because of its accessibility to the extracellular domain. In this review, we highlight different HER2-targeting strategies and various approaches for HER2-targeted delivery systems to improve outcomes for cancer therapy.
Collapse
Affiliation(s)
- Rakesh Kumar Dhritlahre
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics & Nutrition Technology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India.
| |
Collapse
|
27
|
Gierlich P, Mata AI, Donohoe C, Brito RMM, Senge MO, Gomes-da-Silva LC. Ligand-Targeted Delivery of Photosensitizers for Cancer Treatment. Molecules 2020; 25:E5317. [PMID: 33202648 PMCID: PMC7698280 DOI: 10.3390/molecules25225317] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising cancer treatment which involves a photosensitizer (PS), light at a specific wavelength for PS activation and oxygen, which combine to elicit cell death. While the illumination required to activate a PS imparts a certain amount of selectivity to PDT treatments, poor tumor accumulation and cell internalization are still inherent properties of most intravenously administered PSs. As a result, common consequences of PDT include skin photosensitivity. To overcome the mentioned issues, PSs may be tailored to specifically target overexpressed biomarkers of tumors. This active targeting can be achieved by direct conjugation of the PS to a ligand with enhanced affinity for a target overexpressed on cancer cells and/or other cells of the tumor microenvironment. Alternatively, PSs may be incorporated into ligand-targeted nanocarriers, which may also encompass multi-functionalities, including diagnosis and therapy. In this review, we highlight the major advances in active targeting of PSs, either by means of ligand-derived bioconjugates or by exploiting ligand-targeting nanocarriers.
Collapse
Affiliation(s)
- Piotr Gierlich
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Ana I. Mata
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| | - Claire Donohoe
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Rui M. M. Brito
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
- BSIM Therapeutics, Instituto Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Mathias O. Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James’s Hospital, D08W9RT Dublin, Ireland;
| | - Lígia C. Gomes-da-Silva
- CQC, Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, 3000-435 Coimbra, Portugal; (P.G.); (A.I.M.); (C.D.); (R.M.M.B.)
| |
Collapse
|
28
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
29
|
White BE, White MK, Adhvaryu H, Makhoul I, Nima ZA, Biris AS, Ali N. Nanotechnology approaches to addressing HER2-positive breast cancer. Cancer Nanotechnol 2020. [DOI: 10.1186/s12645-020-00068-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AbstractBreast cancer is a major cause of cancer-associated deaths in the United States. It was estimated that 12% of women in the U.S. will develop invasive breast cancer in their lifetime. The human epidermal growth factor receptor (HER2/neu) is a growth-promoting protein that is overexpressed in 15–20% of breast cancers (HER2-positive breast cancer). HER2-positive breast cancer generally grows and spreads more quickly than other breast cancers, but it can be targeted therapeutically. Targeting drugs have been developed with a specific design to stop the growth and even the spread of cancer. These drugs include trastuzumab (Herceptin), pertuzumab (Perjeta), ado-trastuzumab emtansine (Kadcyla, or TDM-1), fam-trastuzumab deruxtecan, lapatinib, neratinib and tucatinib. However, the need for better targeted therapy and efficacy still exists. Nanotechnology could have major advantages in terms of detection, targeting, drug delivery, and destruction of cancer cells and tumors. Although a great deal of progress has been accomplished major challenges still need to be addressed. In this review, we examine the major areas of research in the area of nanotechnology and HER2-positive breast cancer.
Collapse
|
30
|
Goswami R, Jeon T, Nagaraj H, Zhai S, Rotello VM. Accessing Intracellular Targets through Nanocarrier-Mediated Cytosolic Protein Delivery. Trends Pharmacol Sci 2020; 41:743-754. [PMID: 32891429 PMCID: PMC7502523 DOI: 10.1016/j.tips.2020.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022]
Abstract
Protein-based therapeutics have unique therapeutic potential due to their specificity, potency, and low toxicity. The vast majority of intracellular applications of proteins require access to the cytosol. Direct entry to the cytosol is challenging due to the impermeability of the cell membrane to proteins. As a result, multiple strategies have focused on endocytic uptake of proteins. Endosomally entrapped cargo, however, can have very low escape efficiency, with protein degradation occurring in acidic endolysosomal compartments. In this review, we briefly discuss endosomal escape strategies and review the strategy of cell membrane fusion, a recent strategy for direct delivery of proteins into the cell cytoplasm.
Collapse
Affiliation(s)
- Ritabrita Goswami
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Taewon Jeon
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA; Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Harini Nagaraj
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA
| | - Shumei Zhai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
31
|
Zhou C, Xia Y, Wei Y, Cheng L, Wei J, Guo B, Meng F, Cao S, van Hest JCM, Zhong Z. GE11 peptide-installed chimaeric polymersomes tailor-made for high-efficiency EGFR-targeted protein therapy of orthotopic hepatocellular carcinoma. Acta Biomater 2020; 113:512-521. [PMID: 32562803 DOI: 10.1016/j.actbio.2020.06.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a leading malignancy with a high mortality and little improvement in treatments. Protein drugs though known for their extraordinary potency and specificity have rarely been investigated for HCC therapy owing to lack of appropriate delivery systems. Here, we designed GE11 peptide-installed chimaeric polymersomes (GE11-CPs) for high-efficiency EGFR-targeted protein therapy of orthotopic SMMC-7721 HCC-bearing nude mice. GE11-CPs were assembled from poly(ethylene glycol)-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate)-b-poly(aspartic acid) (PEG-P(TMC-DTC)-PAsp) and GE11-functionalized PEG-P(TMC-DTC), which allowed efficient loading and protection of proteins in the watery interior and fine-tuning of GE11 densities at the surface. CPs with short PAsp segments (degree of polymerization (DP) = 5, 10 and 15) exhibited a protein loading efficiency of 60%-72% and glutathione-responsive protein release. Saporin-loaded GE11-CPs had a size of 36 - 62 nm depending on GE11 densities and DP of PAsp. Notably, GE11-CPs with 10% GE11 revealed greatly enhanced uptake in SMMC-7721 cells, boosting the anticancer potency of saporin for over 3-folds compared with non-targeted control (half-maximal inhibitory concentration (IC50) = 11.0 versus 36.3 nM). The biodistribution studies using Cy5-labeled cytochrome C as a model protein demonstrated about 3-fold higher accumulation of GE11-CPs formulation than CPs counterpart in both subcutaneous and orthotopic SMMC-7721 tumor models. Notably, saporin-loaded GE11-CPs revealed low toxicity, effective tumor inhibition and significant improvement of survival rate compared with PBS and non-targeted groups (median survival time: 99 versus 37 and 42 days). EGFR-targeted chimaeric polymersomes carrying proteins appear an interesting HCC treatment modality.
Collapse
Affiliation(s)
- Cheng Zhou
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yifeng Xia
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Liang Cheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, PR China.
| | - Jingjing Wei
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| | - Shoupeng Cao
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology, P.O. Box 513 (STO 3.31), 5600MB Eindhoven, the Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
32
|
Abstract
Breast cancer (BC) is one of the most common lethal diseases found in women; in which shortcomings of currently used treatment procedures and efficiency to target disease contribute to the increment in mortality. Despite other factors, exosomes, a major class of EVs (extracellular vesicles) also play a regulatory role in normal physiological processes and have a major function in proliferation, metastases, and resistance in BC. Interestingly, despite their role in the progression of BC, exosomes also showed their importance as a drug carrier in the targeted drug delivery. The present review aims to shed light on the role of exosomes as a potential nano-therapeutic vehicle in the targeted drug delivery for BC. Information for this review was searched from PubMed and Google Scholar mostly during the year 2019-2020 by using appropriate keywords. The exosomes have been efficiently used in cancer therapeutics where these nano vehicles having specific markers help in efficient targeted delivery of therapeutics including proteins, nucleic acid, and anti-cancer drugs to BC cells. The properties of exosomes as an efficient delivery system can be explored in the future and holds the potential to be used in other forms of cancer as well.
Collapse
Affiliation(s)
- Mohd Mughees
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Krishna Kumar
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard , New Delhi, India
| |
Collapse
|
33
|
Fletcher NL, Kempe K, Thurecht KJ. Next-Generation Polymeric Nanomedicines for Oncology: Perspectives and Future Directions. Macromol Rapid Commun 2020; 41:e2000319. [PMID: 32767396 DOI: 10.1002/marc.202000319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Precision polymers as advanced nanomedicines represent an appealing approach for the treatment of otherwise untreatable malignancies. By taking advantage of unique nanomaterial properties and implementing judicious design strategies, polymeric nanomedicines are able to be produced that overcome many barriers to effective treatment. Current key research focus areas anticipated to produce the greatest impact in polymer applications in nanomedicine for oncology include new strategies to achieve "active" targeting, polymeric pro-drug activation, and combinatorial polymer drug delivery approaches in combination with enhanced understanding of complex bio-nano interactions. These approaches, both in isolation or combination, form the next generation of precision nanomedicines with significant anticipated future health outcomes. Of necessity, these approaches will combine an intimate understanding of biological interactions with advanced materials design. This perspectives piece aims to highlight emerging opportunities that promise to be game changers in the nanomedicine oncology field. Discussed herein are current and next generation polymeric nanomedicines with a focus towards structures that are, or could, undergo clinical translation as well as highlight key advances in the field.
Collapse
Affiliation(s)
- Nicholas L Fletcher
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Kristian Kempe
- Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science & Technology, and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI) and Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, St. Lucia, QLD, 4072, Australia
| |
Collapse
|
34
|
Yang EY, Shah K. Nanobodies: Next Generation of Cancer Diagnostics and Therapeutics. Front Oncol 2020; 10:1182. [PMID: 32793488 PMCID: PMC7390931 DOI: 10.3389/fonc.2020.01182] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022] Open
Abstract
The development of targeted medicine has greatly expanded treatment options and spurred new research avenues in cancer therapeutics, with monoclonal antibodies (mAbs) emerging as a prevalent treatment in recent years. With mixed clinical success, mAbs still hold significant shortcomings, as they possess limited tumor penetration, high manufacturing costs, and the potential to develop therapeutic resistance. However, the recent discovery of “nanobodies,” the smallest-known functional antibody fragment, has demonstrated significant translational potential in preclinical and clinical studies. This review highlights their various applications in cancer and analyzes their trajectory toward their translation into the clinic.
Collapse
Affiliation(s)
- Emily Y Yang
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Departments of Neurosurgery, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, United States
| |
Collapse
|
35
|
Strategies for Precise Engineering and Conjugation of Antibody Targeted-nanoparticles for Cancer Therapy. Curr Med Sci 2020; 40:463-473. [DOI: 10.1007/s11596-020-2200-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Indexed: 12/16/2022]
|
36
|
Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. NANOMATERIALS 2020; 10:nano10071353. [PMID: 32664364 PMCID: PMC7407316 DOI: 10.3390/nano10071353] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Since αvβ3 integrin is a key component of angiogenesis in health and disease, Arg-Gly-Asp (RGD) peptide-functionalized nanocarriers have been investigated as vehicles for targeted delivery of drugs to the αvβ3 integrin-overexpressing neovasculature of tumors. In this work, PEGylated nanoparticles (NPs) based on poly(lactic-co-glycolic acid) (PLGA) functionalized with cyclic-RGD (cRGD), were evaluated as nanocarriers for the targeting of angiogenic endothelium. For this purpose, NPs (~300 nm) functionalized with cRGD with different surface densities were prepared by maleimide-thiol chemistry and their interactions with human umbilical vein endothelial cells (HUVECs) were evaluated under different conditions using flow cytometry and microscopy. The cell association of cRGD-NPs under static conditions was time-, concentration- and cRGD density-dependent. The interactions between HUVECs and cRGD-NPs dispersed in cell culture medium under flow conditions were also time- and cRGD density-dependent. When washed red blood cells (RBCs) were added to the medium, a 3 to 8-fold increase in NPs association to HUVECs was observed. Moreover, experiments conducted under flow in the presence of RBC at physiologic hematocrit and shear rate, are a step forward in the prediction of in vivo cell–particle association. This approach has the potential to assist development and high-throughput screening of new endothelium-targeted nanocarriers.
Collapse
|
37
|
Yu X, Xu Q, Wu Y, Jiang H, Wei W, Zulipikaer A, Guo Y, Jirimutu, Chen J. Nanobodies derived from Camelids represent versatile biomolecules for biomedical applications. Biomater Sci 2020; 8:3559-3573. [PMID: 32490444 DOI: 10.1039/d0bm00574f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanobodies are antigen binding variable domains of heavy-chain antibodies without light-chains, and these biomolecules occur naturally in the serum of Camelidae species. Nanobodies have a compact structure and low molecular weight when compared with antibodies, and are the smallest active antigen-binding fragments. Because of their remarkable stability and manipulable characteristics, nanobodies have been incorporated into biomaterials and used as molecular recognition and tracing agents, drug delivery systems, molecular imaging tools and disease therapeutics. This review summarizes recent progress in this field focusing on nanobodies as versatile biomolecules for biomedical applications.
Collapse
Affiliation(s)
- Xinyu Yu
- Center for Global Health, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lin Y, Chen Z, Hu C, Chen ZS, Zhang L. Recent progress in antitumor functions of the intracellular antibodies. Drug Discov Today 2020; 25:1109-1120. [DOI: 10.1016/j.drudis.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
39
|
Liu Y, Scrivano L, Peterson JD, Fens MHAM, Hernández IB, Mesquita B, Toraño JS, Hennink WE, van Nostrum CF, Oliveira S. EGFR-Targeted Nanobody Functionalized Polymeric Micelles Loaded with mTHPC for Selective Photodynamic Therapy. Mol Pharm 2020; 17:1276-1292. [PMID: 32142290 PMCID: PMC7140040 DOI: 10.1021/acs.molpharmaceut.9b01280] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
meta-Tetra(hydroxyphenyl)chlorin
(mTHPC) is one
of the most potent second-generation photosensitizers, clinically
used for photodynamic therapy (PDT) of head and neck squamous cell
carcinomas. However, improvements are still required concerning its
present formulation (i.e., Foscan, a solution of mTHPC in ethanol/propylene
glycol (40:60 w/w)), as mTHPC has the tendency to aggregate in aqueous
media, e.g., biological fluids, and it has limited tumor specificity.
In the present study, polymeric micelles with three different diameters
(17, 24, and 45 nm) based on benzyl-poly(ε-caprolactone)-b-poly(ethylene glycol) (PCLn-PEG; n = 9, 15, or 23) were prepared with mTHPC
loadings ranging from 0.5 to 10 wt % using a film-hydration method
as advanced nanoformulations for this photosensitizer. To favor the
uptake of the micelles by cancer cells that overexpress the epidermal
growth factor receptor (EGFR), the micelles were decorated with an
EGFR-targeted nanobody (named EGa1) through maleimide-thiol chemistry.
The enhanced binding of the EGFR-targeted micelles at 4 °C to
EGFR-overexpressing A431 cells, compared to low-EGFR-expressing HeLa
cells, confirmed the specificity of the micelles. In addition, an
enhanced uptake of mTHPC-loaded micelles by A431 cells was observed
when these were decorated with the EGa1 nanobody, compared to nontargeted
micelles. Both binding and uptake of targeted micelles were blocked
by an excess of free EGa1 nanobody, demonstrating that these processes
occur through EGFR. In line with this, mTHPC loaded in EGa1-conjugated
PCL23-PEG (EGa1-P23) micelles demonstrated 4
times higher photocytotoxicity on A431 cells, compared to micelles
lacking the nanobody. Importantly, EGa1-P23 micelles also
showed selective PDT against A431 cells compared to the low-EGFR-expressing
HeLa cells. Finally, an in vivo pharmacokinetic study
shows that after intravenous injection, mTHPC incorporated in the
P23 micelles displayed prolonged blood circulation kinetics,
compared to free mTHPC, independently of the presence of EGa1. Thus,
these results make these micelles a promising nanomedicine formulation
for selective therapy.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Luca Scrivano
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Julia Denise Peterson
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Marcel H A M Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Irati Beltrán Hernández
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands.,Division of Cell Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Bárbara Mesquita
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Javier Sastre Toraño
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CS Utrecht, The Netherlands.,Division of Cell Biology, Department of Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
40
|
Bloise N, Massironi A, Della Pina C, Alongi J, Siciliani S, Manfredi A, Biggiogera M, Rossi M, Ferruti P, Ranucci E, Visai L. Extra-Small Gold Nanospheres Decorated With a Thiol Functionalized Biodegradable and Biocompatible Linear Polyamidoamine as Nanovectors of Anticancer Molecules. Front Bioeng Biotechnol 2020; 8:132. [PMID: 32195232 PMCID: PMC7065572 DOI: 10.3389/fbioe.2020.00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/10/2020] [Indexed: 12/29/2022] Open
Abstract
Gold nanoparticles are elective candidate for cancer therapy. Current efforts are devoted to developing innovative methods for their synthesis. Besides, understanding their interaction with cells have become increasingly important for their clinical application. This work aims to describe a simple approach for the synthesis of extra-small gold nanoparticles for breast cancer therapy. In brief, a biocompatible and biodegradable polyamidoamine (named AGMA1-SH), bearing 20%, on a molar basis, thiol-functionalized repeat units, is employed to stabilize and coat extra-small gold nanospheres of different sizes (2.5, 3.5, and 5 nm in gold core), and to generate a nanoplatform for the link with Trastuzumab monoclonal antibody for HER2-positive breast cancer targeting. Dynamic light scattering, transmission electron microscopy, ultraviolet visible spectroscopy, X-ray powder diffraction, circular dichroism, protein quantification assays are used for the characterization. The targeting properties of the nanosystems are explored to achieve enhanced and selective uptake of AGMA1-SH-gold nanoparticles by in vitro studies against HER-2 overexpressing cells, SKBR-3 and compared to HER-2 low expressing cells, MCF-7, and normal fibroblast cell line, NIH-3T3. In vitro physicochemical characterization demonstrates that gold nanoparticles modified with AGMA1-SH are more stable in aqueous solution than the unmodified ones. Additionally, the greater gold nanoparticles size (5-nm) is associated with a higher stability and conjugation efficiency with Trastuzumab, which retains its folding and anticancer activity after the conjugation. In particular, the larger Trastuzumab functionalized nanoparticles displays the highest efficacy (via the pro-apoptotic protein increase, anti-apoptotic components decrease, survival-proliferation pathways downregulation) and internalization (via the activation of the classical clathrin-mediated endocytosis) in HER-2 overexpressing SKBR-3 cells, without eliciting significant effects on the other cell lines. The use of biocompatible AGMA1-SH for producing covalently stabilized gold nanoparticles to achieve selective targeting, cytotoxicity and uptake is completely novel, offering an important advancement for developing new anticancer conjugated-gold nanoparticles.
Collapse
Affiliation(s)
- Nora Bloise
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| | - Alessio Massironi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Pisa, Italy
| | - Cristina Della Pina
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Stella Siciliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Rossi
- Dipartimento di Chimica, Università degli Studi di Milano e CNR-ISTM, Milan, Italy
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | | | - Livia Visai
- Department of Molecular Medicine (DMM), Biochemistry Unit, Center for Health Technologies (CHT), UdR INSTM University of Pavia, Pavia, Italy.,Department of Occupational Medicine, Toxicology and Environmental Risks, Istituti Clinici Scientifici Maugeri S.p.A, IRCCS, Pavia, Italy
| |
Collapse
|
41
|
Photochemical Internalization for Intracellular Drug Delivery. From Basic Mechanisms to Clinical Research. J Clin Med 2020; 9:jcm9020528. [PMID: 32075165 PMCID: PMC7073817 DOI: 10.3390/jcm9020528] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Photochemical internalisation (PCI) is a unique intervention which involves the release of endocytosed macromolecules into the cytoplasmic matrix. PCI is based on the use of photosensitizers placed in endocytic vesicles that, following light activation, lead to rupture of the endocytic vesicles and the release of the macromolecules into the cytoplasmic matrix. This technology has been shown to improve the biological activity of a number of macromolecules that do not readily penetrate the plasma membrane, including type I ribosome-inactivating proteins (RIPs), gene-encoding plasmids, adenovirus and oligonucleotides and certain chemotherapeutics, such as bleomycin. This new intervention has also been found appealing for intracellular delivery of drugs incorporated into nanocarriers and for cancer vaccination. PCI is currently being evaluated in clinical trials. Data from the first-in-human phase I clinical trial as well as an update on the development of the PCI technology towards clinical practice is presented here.
Collapse
|
42
|
Photochemical Internalization: Light Paves Way for New Cancer Chemotherapies and Vaccines. Cancers (Basel) 2020; 12:cancers12010165. [PMID: 31936595 PMCID: PMC7016662 DOI: 10.3390/cancers12010165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Photochemical internalization (PCI) is a further development of photodynamic therapy (PDT). In this report, we describe PCI as a potential tool for cellular internalization of chemotherapeutic agents or antigens and systematically review the ongoing research. Eighteen published papers described the pre-clinical and clinical developments of PCI-mediated delivery of chemotherapeutic agents or antigens. The studies were screened against pre-defined eligibility criteria. Pre-clinical studies suggest that PCI can be effectively used to deliver chemotherapeutic agents to the cytosol of tumor cells and, thereby, improve treatment efficacy. One Phase-I clinical trial has been conducted, and it demonstrated that PCI-mediated bleomycin treatment was safe and identified tolerable doses of the photosensitizer disulfonated tetraphenyl chlorin (TPCS2a). Likewise, PCI was pre-clinically shown to mediate major histocompatibility complex (MHC) class I antigen presentation and generation of tumor-specific cytotoxic CD8+ T-lymphocytes (CTL) and cancer remission. A first clinical Phase I trial with the photosensitizer TPCS2a combined with human papilloma virus antigen (HPV) was recently completed and results are expected in 2020. Hence, photosensitizers and light can be used to mediate cytosolic delivery of endocytosed chemotherapeutics or antigens. While the therapeutic potential in cancer has been clearly demonstrated pre-clinically, further clinical trials are needed to reveal the true translational potential of PCI in humans.
Collapse
|
43
|
Polymeric micelles with aggregation-induced emission based on microbial ε-polylysine for doxorubicin delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
45
|
Rajitha B, Malla RR, Vadde R, Kasa P, Prasad GLV, Farran B, Kumari S, Pavitra E, Kamal MA, Raju GSR, Peela S, Nagaraju GP. Horizons of nanotechnology applications in female specific cancers. Semin Cancer Biol 2019; 69:376-390. [PMID: 31301361 DOI: 10.1016/j.semcancer.2019.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/23/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022]
Abstract
Female-specific cancers are the most common cancers in women worldwide. Early detection methods remain unavailable for most of these cancers, signifying that most of them are diagnosed at later stages. Furthermore, current treatment options for most female-specific cancers are surgery, radiation and chemotherapy. Although important milestones in molecularly targeted approaches have been achieved lately, current therapeutic strategies for female-specific cancers remain limited, ineffective and plagued by the emergence of chemoresistance, which aggravates prognosis. Recently, the application of nanotechnology to the medical field has allowed the development of novel nano-based approaches for the management and treatment of cancers, including female-specific cancers. These approaches promise to improve patient survival rates by reducing side effects, enabling selective delivery of drugs to tumor tissues and enhancing the uptake of therapeutic compounds, thus increasing anti-tumor activity. In this review, we focus on the application of nano-based technologies to the design of novel and innovative diagnostic and therapeutic strategies in the context of female-specific cancers, highlighting their potential uses and limitations.
Collapse
Affiliation(s)
- Balney Rajitha
- Department of Pathology, WellStar Hospital, Marietta, GA, 30060, USA
| | - Rama Rao Malla
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, AP, 516003, India
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, TS, 500004, India
| | | | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Seema Kumari
- Department of Biochemistry, GITAM Institute of Science, GITAM University, Visakhapatnam, AP, 530045, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon 22212, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sujatha Peela
- Department of Biotechnology, Dr. B.R. Ambedkar University, Srikakulam, AP, 532410, India
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
46
|
Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se 2 micelles for doxorubicin delivery. Int J Pharm 2019; 567:118486. [PMID: 31260783 DOI: 10.1016/j.ijpharm.2019.118486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive polymeric nanostructures have emerged as potential drug carriers for cancer therapy. Herein, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se2 from mPEG-PLGA and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. Due to its amphiphilic nature, Bi(mPEG-PLGA)-Se2 self-assembled in to stable micelles in aqueous solution with a hydrodynamic size of 123.9 ± 0.85 nm. The Bi(mPEG-PLGA)-Se2 micelles exhibited DOX-loading content (DLC) of 6.61 wt% and encapsulation efficiency (EE) of 54.9%. The DOX-loaded Bi(mPEG-PLGA)-Se2 micelles released 73.94% and 69.54% of their cargo within 72 h upon treatment with 6 mM GSH and 0.1% H2O2, respectively, at pH 7.4 and 37 °C. The MTT assay results demonstrated that Bi(mPEG-PLGA)-Se2 was devoid of any inherent toxicity and the DOX-loaded micelles showed pronounced antitumor activities against HeLa cells, 44.46% of cells were viable at maximum dose of 7.5 µg/mL. The cellular uptake experiment further confirmed the internalization of DOX-loaded Bi(mPEG-PLGA)-Se2 micelles and endowed redox stimuli triggered drug release in cytosol and nuclei of cancer cells. Overall, the results suggested that the smart, biocompatible Bi(mPEG-PLGA)-Se2 copolymer could serve as potential drug delivery biomaterial for the controlled release of hydrophobic drugs in cancer cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Ging-Ho Hsiue
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.
| |
Collapse
|