1
|
Sobhanan J, Ono K, Okamoto T, Sawada M, Weiss PS, Biju V. Photosensitizer-singlet oxygen sensor conjugated silica nanoparticles for photodynamic therapy and bioimaging. Chem Sci 2024; 15:2007-2018. [PMID: 38332815 PMCID: PMC10848760 DOI: 10.1039/d3sc03877g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/10/2023] [Indexed: 02/10/2024] Open
Abstract
Intracellular singlet oxygen (1O2) generation and detection help optimize the outcome of photodynamic therapy (PDT). Theranostics programmed for on-demand phototriggered 1O2 release and bioimaging have great potential to transform PDT. We demonstrate an ultrasensitive fluorescence turn-on sensor-sensitizer-RGD peptide-silica nanoarchitecture and its 1O2 generation-releasing-storing-sensing properties at the single-particle level or in living cells. The sensor and sensitizer in the nanoarchitecture are an aminomethyl anthracene (AMA)-coumarin dyad and a porphyrin or CdSe/ZnS quantum dots (QDs), respectively. The AMA in the dyad quantitatively quenches the fluorescence of coumarin by intramolecular electron transfer, the porphyrin or QD moiety generates 1O2, and the RGD peptide facilitates intracellular delivery. The small size, below 200 nm, as verified by scanning electron microscopy and differential light scattering measurements, of the architecture within the 1O2 diffusion length enables fast and efficient intracellular fluorescence switching by the tandem ultraviolet (UV)-visible or visible-near-infrared (NIR) photo-triggering. While the red emission and 1O2 generation by the porphyrin are continually turned on, the blue emission of coumarin is uncaged into 230-fold intensity enhancement by on-demand photo-triggering. The 1O2 production and release by the nanoarchitecture enable spectro-temporally controlled cell imaging and apoptotic cell death; the latter is verified from cytotoxic data under dark and phototriggering conditions. Furthermore, the bioimaging potential of the TCPP-based nanoarchitecture is examined in vivo in B6 mice.
Collapse
Affiliation(s)
- Jeladhara Sobhanan
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Kenji Ono
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Takuya Okamoto
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| | - Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University Nagoya 464-8601 Japan
| | - Paul S Weiss
- California NanoSystems Institute and the Departments of Chemistry and Biochemistry, Bioengineering, and Materials Science and Engineering, University of California Los Angeles CA 90095-1487 USA
| | - Vasudevanpillai Biju
- Graduate School of Environmental Science, Hokkaido University Sapporo Hokkaido 060-0810 Japan
- Research Institute for Electronic Science, Hokkaido University Sapporo Hokkaido 001-0020 Japan
| |
Collapse
|
2
|
Wang H, Lai Y, Li D, Karges J, Zhang P, Huang H. Self-Assembly of Erlotinib-Platinum(II) Complexes for Epidermal Growth Factor Receptor-Targeted Photodynamic Therapy. J Med Chem 2024; 67:1336-1346. [PMID: 38183413 DOI: 10.1021/acs.jmedchem.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
Due to cell mutation and self-adaptation, the application of clinical drugs with early epidermal growth factor receptor (EGFR)-targeted inhibitors is severely limited. To overcome this limitation, herein, the synthesis and in-depth biological evaluation of an erlotinib-platinum(II) complex as an EGFR-targeted anticancer agent is reported. The metal complex is able to self-assemble inside an aqueous solution and readily form nanostructures with strong photophysical properties. While being poorly toxic toward healthy cells and upon treatment in the dark, the compound was able to induce a cytotoxic effect in the very low micromolar range upon irradiation against EGFR overexpressing (drug resistant) human lung cancer cells as well as multicellular tumor spheroids. Mechanistic insights revealed that the compound was able to selectively degrade the EGFR using the lysosomal degradation pathway upon generation of singlet oxygen at the EGFR. We are confident that this work will open new avenues for the treatment of EGFR-overexpressing tumors.
Collapse
Affiliation(s)
- Haobing Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yidan Lai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Dan Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44780, Germany
| | - Pingyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Huaiyi Huang
- School of Pharmaceutical Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
3
|
Chen M, Zhang M, Lu X, Li Y, Lu C. Diselenium-linked dimeric prodrug nanomedicine breaking the intracellular redox balance for triple-negative breast cancer targeted therapy. Eur J Pharm Biopharm 2023; 193:16-27. [PMID: 37865134 DOI: 10.1016/j.ejpb.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Triple-negative breast cancer (TNBC) has been regarded as the strongest malignancy in cases of breast cancer with a poor prognosis. The development of effective treatment strategies for TNBC has always been an urgent and unmet need. The intracellular redox balance is essential for maintaining TNBC cell malignancy. Disrupting intracellular redox balance by enlarging reactive oxygen species (ROS) generation and facilitating glutathione (GSH) depletion to amplify intracellular oxidative stress may be an alternative strategy to eliminate TNBC cells. However, inducing ROS generation and GSH depletion concurrently may be challenging. Herein, a diselenium linked-dimeric prodrug nanomedicine FA-SeSe-NPs was developed to break the intracellular redox homeostasis for TNBC targeted therapy. The dimeric prodrug was synthesized by conjugating two cucurbitacin B (CuB) molecules via one diselenium bond, which was subsequently assembled with FA-PEG-DSPE to form the final nanomedicine FA-SeSe-NPs. Using the active targeting potential of folic acid (FA), FA-SeSe-NPs could accumulate in tumor tissue with elevated levels and then be specifically internalized by cancer cells. In the high ROS and GSH conditions of TNBC cells, the diselenium bond can specifically respond to ROS to produce selenium free radicals to increase ROS and react with GSH to generate S-Se bond to deplete GSH. The released CuB further induced ROS production in TNBC cells. The diselenium bond and CuB functioned synergistically to amplify oxidative stress to kill the TNBC cells. Here, we provide a promising strategy to disrupt the intracellular redox balance of cancer cells for effective TNBC therapy.
Collapse
Affiliation(s)
- Mie Chen
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Min Zhang
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Xun Lu
- School of Public Health Yale University, New Haven, CT 06510-3201, USA; Graduate School of Arts and Science, Columbia University, New York, NY 10027, USA
| | - Yongfei Li
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing 210029, China
| | - Cheng Lu
- Department of Mastopathy, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| |
Collapse
|
4
|
Yao M, Wang X, Huang K, Jia X, Xue J, Guo B, Chen J. Fluorescence-Reporting-Guided Tumor Acidic Environment-Activated Triple Photodynamic, Chemodynamic, and Chemotherapeutic Reactions for Efficient Hepatocellular Carcinoma Cell Ablation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5381-5391. [PMID: 35467866 DOI: 10.1021/acs.langmuir.1c03211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tumor acidic environment-activated combination therapy holds great promise to significantly decrease side effects, circumvent multiple drug resistance, and improve therapeutic outcomes for cancer treatment. Herein, Sorafenib/ZnPc(PS)4@FeIII-TA nanoparticles (SPFT) are designed with acid-environment turned-on fluorescence to report the activation of triple therapy including photodynamic, chemodynamic, and chemotherapy on hepatocellular carcinoma. The SPFT are composed of SP cores formulated via self-assembly of sorafenib and ZnPc(PS)4, with high drug loading efficiency, and FeIII-TA shells containing FeCl3 and tannic acid. Importantly, the nanoparticles suppress reactive oxygen species (ROS) generation of ZnPc(PS)4 due to their formation in nanoparticles, while assisting simultaneous uptake of the uploaded drugs in cancer cells. The tumor acidic environment initiates FeIII-TA decomposition and accelerates a chemodynamic reaction between FeII and H2O2 to generate toxic •OH. Then, the SP core is decomposed to separate ZnPc(PS)4 and sorafenib, which leads to fluorescence turning-on of ZnPc(PS)4, expedited photodynamic reactions, and burst release of sorafenib. Notably, SPFT shows low dark cytotoxicity to normal cells but exerts high potency on hepatocellular carcinoma cells under near-infrared light irradiation, which is much more potent than either sorafenib or ZnPc(PS)4 alone. This research offers a facile nanomedicine design strategy for cancer therapy.
Collapse
Affiliation(s)
- Mengyu Yao
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiaojie Wang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Xiao Jia
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China
| |
Collapse
|
5
|
Willemen NGA, Hassan S, Gurian M, Li J, Allijn IE, Shin SR, Leijten J. Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends Biotechnol 2021; 39:1144-1159. [PMID: 33602609 PMCID: PMC9078202 DOI: 10.1016/j.tibtech.2021.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the survival, function, and fate of mammalian cells. Oxygen tension controls cellular behaviour via metabolic programming, which in turn controls tissue regeneration, stem cell differentiation, drug metabolism, and numerous pathologies. Thus, oxygen-releasing biomaterials represent a novel and unique strategy to gain control over a variety of in vivo processes. Consequently, numerous oxygen-generating or carrying materials have been developed in recent years, which offer innovative solutions in the field of drug efficiency, regenerative medicine, and engineered living systems. In this review, we discuss the latest trends, highlight current challenges and solutions, and provide a future perspective on the field of oxygen-releasing materials.
Collapse
Affiliation(s)
- Niels G A Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jinghang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA; School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Iris E Allijn
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
6
|
Yuan M, Liang S, Zhou Y, Xiao X, Liu B, Yang C, Ma P, Cheng Z, Lin J. A Robust Oxygen-Carrying Hemoglobin-Based Natural Sonosensitizer for Sonodynamic Cancer Therapy. NANO LETTERS 2021; 21:6042-6050. [PMID: 34254814 DOI: 10.1021/acs.nanolett.1c01220] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The development of novel sonosensitizers with outstanding reactive oxygen (ROS) generation capacity and great biocompatibility poses a significant challenge for the clinical practice of sonodynamic therapy (SDT). In this work, hemoglobin (Hb) with natural metalloporphyrin was first shown to possess great potential as a sonosensitizer. Compared with traditional organic sonosensitizers, Hb had satisfactory sono-sensitizing efficiency because four the porphyrin molecules were separated by four polypeptide chains. This effectively avoided the problem of low ROS quantum yield caused by the stacking of hydrophobic porphyrins. Meanwhile, Hb is an efficient and safe oxygen carrier that may release O2 at hypoxic tumors site, which improved tumor oxygenation and subsequently enhanced SDT efficacy. Therefore, Hb was integrated with zeolitic imidazolate framework 8 (ZIF-8) to form a nanoplatform that demonstrated a potent suppression effect on deep-seated tumors under ultrasound irradiation.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Shuang Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ying Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiao Xiao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Bin Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Yuan G, Yao M, Lv H, Jia X, Chen J, Xue J. Novel Targeted Photosensitizer as an Immunomodulator for Highly Efficient Therapy of T-Cell Acute Lymphoblastic Leukemia. J Med Chem 2020; 63:15655-15667. [PMID: 33300796 DOI: 10.1021/acs.jmedchem.0c01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dasatinib is a kinase-targeted drug used in the treatment of leukemia. Regrettably, it remains far from optimal medicine due to insurmountable drug resistance and side effects. Photodynamic therapy (PDT) has proven that it can induce systemic immune responses. However, conventional photosensitizers as immunomodulators produce anticancer immunities, which are inadequate to eliminate residual cancer cells. Herein, a novel compound 4 was synthesized and investigated, which introduces dasatinib and zinc(II) phthalocyanine as the targeting and photodynamic moiety, respectively. Compound 4 exhibits a high affinity to CCRF-CEM cells/tumor tissues, which overexpress lymphocyte-specific protein tyrosine kinase (LCK), and preferential elimination from the body. Meanwhile, compound 4 shows excellent photocytotoxicity and tumor regression. Significantly, compound 4-induced PDT can obviously enhance immune responses, resulting in the production of more immune cells. We believe that the proposed manner is a potential strategy for the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Gankun Yuan
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Mengyu Yao
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Huihui Lv
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Xiao Jia
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, 2 Xueyuan Road, University Town, Fuzhou 350116, Fujian, P. R. China
| |
Collapse
|
8
|
Cheng C, Sui B, Wang M, Hu X, Shi S, Xu P. Carrier-Free Nanoassembly of Curcumin-Erlotinib Conjugate for Cancer Targeted Therapy. Adv Healthc Mater 2020; 9:e2001128. [PMID: 32893507 PMCID: PMC7593849 DOI: 10.1002/adhm.202001128] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Indexed: 12/30/2022]
Abstract
Anticancer drug-loaded nanoparticles have been explored extensively to decrease side effects while improving their therapeutic efficacy. However, due to the low drug loading content, premature drug release, nonstandardized carrier structure, and difficulty in predicting the fate of the carrier, only a few nanomedicines have been approved for clincial use. Herein, a carrier-free nanoparticle based on the self-assembly of the curcumin-erlotinib conjugate (EPC) is developed. The EPC nanoassembly exhibits more potent cell killing, better antimigration, and anti-invasion effects for BxPC-3 pancreatic cancer cells than the combination of free curcumin and erlotinib. Furthermore, benefiting from both passive and active tumor targeting effect, EPC nanoassembly can effectively accumulate in the tumor tissue in a xenograft pancreatic tumor mouse model. Consequently, EPC effectively reduces the growth of pancreatic tumors and extends the median survival time of the tumor-bearing mice from 22 to 68 days. In addition, no systemic toxicity is detected in the mice receiving EPC treatment. Attributed to the uniformity of the curcumin-erlotinib conjugate and easiness of scaling up, it is expected that the EPC can be translated into a powerful tool in fighting against pancreatic cancer and other epidermal growth factor receptor positive cancers.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Binglin Sui
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Mingming Wang
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Xiangxiang Hu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Shanshan Shi
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| | - Peisheng Xu
- Department of Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter, Columbia, SC 29208, United States
| |
Collapse
|
9
|
Li Y, Liu Y, Du B, Cheng G. Reshaping Tumor Blood Vessels to Enhance Drug Penetration with a Multistrategy Synergistic Nanosystem. Mol Pharm 2020; 17:3151-3164. [PMID: 32787273 DOI: 10.1021/acs.molpharmaceut.0c00077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ying Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Du
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Genyang Cheng
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Huang K, Huo B, Li D, Xue J, Chen J. Enhanced Efficacy of Gefitinib in Drug-Sensitive and Drug-Resistant Cancer Cell Lines after Arming with a Singlet Oxygen Releasing Moiety. ChemMedChem 2020; 15:794-798. [PMID: 32162481 DOI: 10.1002/cmdc.202000036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/05/2020] [Indexed: 12/24/2022]
Abstract
Attractive results have been achieved with small-molecule target-based drugs in the anticancer field; however, enhancing their treatment effect and solving the problem of drug resistance remain key concerns worldwide. Inspired by the specific affinity of gefitinib for tumour cells and the strong oxidation capacity of singlet oxygen, we combined a chemically generated singlet oxygen moiety with the small-molecule targeted drug gefitinib to improve its anticancer effect. We designed and synthesised a novel compound (Y5-1), in which a small-molecule targeted therapy agent (gefitinib) and a singlet oxygen (provided by an in vitro photodynamic reaction) thermally controlled releasing moiety are covalently conjugated. We demonstrated that the introduction of the singlet oxygen thermally controlled releasing moiety enhanced the anticancer activities of gefitinib. The results of this study are expected to provide a novel strategy to enhance the effect of chemotherapy drugs on drug-resistant cell lines.
Collapse
Affiliation(s)
- Kunshan Huang
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Beibei Huo
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Dongyao Li
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Jinping Xue
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| | - Juanjuan Chen
- National and Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, P. R. China
| |
Collapse
|
11
|
Wu Z, Liao X, Yuan L, Wang Y, Zheng Y, Zuo J, Pan Y. Visible‐Light‐Mediated Click Chemistry for Highly Regioselective Azide–Alkyne Cycloaddition by a Photoredox Electron‐Transfer Strategy. Chemistry 2020; 26:5694-5700. [DOI: 10.1002/chem.202000252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Zheng‐Guang Wu
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Xiang‐Ji Liao
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Li Yuan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Yi Wang
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - You‐Xuan Zheng
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Jing‐Lin Zuo
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| | - Yi Pan
- State Key Laboratory of Coordination ChemistryCollaborative Innovation Center of Advanced Microstructures InstitutionSchool of Chemistry and Chemical EngineeringNanjing University Nanjing 210023 P.R. China
| |
Collapse
|
12
|
Zhou Z, Han H, Chen Z, Gao R, Liu Z, Su J, Xin N, Yang X, Gan L. Concise Synthesis of Open‐Cage Fullerenes for Oxygen Delivery. Angew Chem Int Ed Engl 2019; 58:17690-17694. [DOI: 10.1002/anie.201911631] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zishuo Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Hongfei Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zijing Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Rui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jie Su
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Nana Xin
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiaobing Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 China
| |
Collapse
|
13
|
Zhou Z, Han H, Chen Z, Gao R, Liu Z, Su J, Xin N, Yang X, Gan L. Concise Synthesis of Open‐Cage Fullerenes for Oxygen Delivery. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zishuo Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Hongfei Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zijing Chen
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Rui Gao
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zhen Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Jie Su
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Nana Xin
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiaobing Yang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Liangbing Gan
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of EducationCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic Chemistry Shanghai 200032 China
| |
Collapse
|