1
|
Gong Y, Wang H, Sun J. AMP-Mimetic Antimicrobial Polymer-Involved Synergic Therapy with Various Coagents for Improved Efficiency. Biomacromolecules 2024; 25:4619-4638. [PMID: 38717069 DOI: 10.1021/acs.biomac.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.
Collapse
Affiliation(s)
- Yiyu Gong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| | - Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, P. R. China
| |
Collapse
|
2
|
Liu B, Mashimo C, Nambu T, Maruyama H, Okinaga T. Transposon insertion in Rothia dentocariosa. J Oral Biosci 2024; 66:358-364. [PMID: 38641252 DOI: 10.1016/j.job.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
OBJECTIVES Rothia spp. are emerging as significant bacteria associated with oral health, with Rothia dentocariosa being one of the most prevalent species. However, there is a lack of studies examining these properties at the genetic level. This study aimed to establish a genetic modification platform for R. dentocariosa. METHODS Rothia spp. were isolated from saliva samples collected from healthy volunteers. Subsequently, R. dentocariosa strains were identified through colony morphology, species-specific polymerase chain reaction (PCR), and 16S ribosomal RNA gene sequencing. The identified strains were then transformed with plasmid pJRD215, and the most efficient strain was selected. Transposon insertion mutagenesis was performed to investigate the possibility of genetic modifications. RESULTS A strain demonstrating high transforming ability, designated as R. dentocariosa LX16, was identified. This strain underwent transposon insertion mutagenesis and was screened for 5-fluoroorotic acid-resistant transposants. The insertion sites were confirmed using arbitrary primed PCR, gene-specific PCR, and Sanger sequencing. CONCLUSION This study marks the first successful genetic modification of R. dentocariosa. Investigating R. dentocariosa at the genetic level can provide insights into its role within the oral microbiome.
Collapse
Affiliation(s)
- Boang Liu
- Department of Bacteriology, Graduate School of Dentistry, Osaka Dental University, Japan
| | - Chiho Mashimo
- Department of Bacteriology, Osaka Dental University, Japan.
| | - Takayuki Nambu
- Department of Bacteriology, Osaka Dental University, Japan
| | - Hugo Maruyama
- Department of Bacteriology, Osaka Dental University, Japan
| | | |
Collapse
|
3
|
McDonald RA, Nagy SG, Chambers M, Broberg CA, Ahonen MJR, Schoenfisch MH. Nitric oxide-releasing prodrug for the treatment of complex Mycobacterium abscessus infections. Antimicrob Agents Chemother 2024; 68:e0132723. [PMID: 38206003 PMCID: PMC10848776 DOI: 10.1128/aac.01327-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 01/12/2024] Open
Abstract
Non-tuberculosis mycobacteria (NTM) can cause severe respiratory infection in patients with underlying pulmonary conditions, and these infections are extremely difficult to treat. In this report, we evaluate a nitric oxide (NO)-releasing prodrug [methyl tris diazeniumdiolate (MD3)] against a panel of NTM clinical isolates and as a treatment for acute and chronic NTM infections in vivo. Its efficacy in inhibiting growth or killing mycobacteria was explored in vitro alongside evaluation of the impact to primary human airway epithelial tissue. Airway epithelial tissues remained viable after exposure at concentrations of MD3 needed to kill mycobacteria, with no inherent toxic effect from drug scaffold after NO liberation. Resistance studies conducted via serial passage with representative Mycobacterium abscessus isolates demonstrated no resistance to MD3. When administered directly into the lung via intra-tracheal administration in mice, MD3 demonstrated significant reduction in M. abscessus bacterial load in both acute and chronic models of M. abscessus lung infection. In summary, MD3 is a promising treatment for complex NTM pulmonary infection, specifically those caused by M. abscessus, and warrants further exploration as a therapeutic.
Collapse
Affiliation(s)
| | - Sarah G. Nagy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Chris A. Broberg
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Mark H. Schoenfisch
- Vast Therapeutics, Durham, North Carolina, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Douglass M, Ghalei S, Brisbois E, Handa H. Potent, Broad-Spectrum Antimicrobial Effects of S-Nitroso- N-acetylpenicillamine-Impregnated Nitric Oxide-Releasing Latex Urinary Catheters. ACS APPLIED BIO MATERIALS 2022; 5:700-710. [PMID: 35119808 PMCID: PMC9680922 DOI: 10.1021/acsabm.1c01130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Although numerous prevention and intervention techniques have been developed to counteract catheter-associated urinary tract infections (CAUTIs), urinary catheters remain one of the most common sources of hospital-acquired infections. Nitric oxide (NO), a gaseous free radical responsible for regulating many physiological functions in the body, has gained immense popularity due to its potent, broad-spectrum antimicrobial activity, which is capable of combating medical device-associated infections. In this work, a straightforward solvent-swelling method was used to load the NO donor S-nitroso-N-acetyl-penicillamine (SNAP) into commercial latex catheters (SNAP-UCs) for the first time. The effects of swelling catheters with different concentrations of SNAP solutions (25-125 mg/mL SNAP in tetrahydrofuran (THF)) were studied by measuring the NO release kinetics, SNAP loading, and SNAP leaching. SNAP-UCs impregnated with a 50 mg/mL SNAP-THF solution were found to maximize the amount of SNAP loaded into the latex (0.115 ± 0.009 mg SNAP/mg catheter) and showed physiological levels of NO release (>2 × 10-10 mol min-1 cm-2) over 7 days and minimal SNAP leaching (<2%). SNAP-UCs showed impressive in vitro contact-based and diffusible antimicrobial efficacy against three CAUTI-associated pathogens, reducing the viability of adhered and planktonic Escherichia coli, Proteus mirabilis, and Staphylococcus aureus by ∼98.0 to 99.1% (adhered) and 86.3-96.3% (planktonic) compared to control latex catheters. In vitro cytotoxicity against 3T3 mouse fibroblasts using a CCK-8 assay showed that SNAP-UCs were noncytotoxic (>90% viability). In summary, SNAP-UCs show stable, noncytotoxic NO release characteristics capable of potent, broad-spectrum antimicrobial activity, demonstrating great potential for reducing the devastating effects associated with CAUTIs.
Collapse
Affiliation(s)
- Megan Douglass
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Elizabeth Brisbois
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering and Pharmaceutical and Biomedical Sciences Department, College of Pharmacy, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Yong HW, Kakkar A. The unexplored potential of gas‐responsive polymers in drug delivery: progress, challenges and outlook. POLYM INT 2021. [DOI: 10.1002/pi.6320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry McGill University Montréal QC Canada
| | - Ashok Kakkar
- Department of Chemistry McGill University Montréal QC Canada
| |
Collapse
|
6
|
Namivandi-Zangeneh R, Wong EHH, Boyer C. Synthetic Antimicrobial Polymers in Combination Therapy: Tackling Antibiotic Resistance. ACS Infect Dis 2021; 7:215-253. [PMID: 33433995 DOI: 10.1021/acsinfecdis.0c00635] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic resistance is a critical global healthcare issue that urgently needs new effective solutions. While small molecule antibiotics have been safeguarding us for nearly a century since the discovery of penicillin by Alexander Fleming, the emergence of a new class of antimicrobials in the form of synthetic antimicrobial polymers, which was driven by the advances in controlled polymerization techniques and the desire to mimic naturally occurring antimicrobial peptides, could play a key role in fighting multidrug resistant bacteria in the near future. By harnessing the ability to control chemical and structural properties of polymers almost at will, synthetic antimicrobial polymers can be strategically utilized in combination therapy with various antimicrobial coagents in different formats to yield more potent (synergistic) outcomes. In this review, we present a short summary of the different combination therapies involving synthetic antimicrobial polymers, focusing on their combinations with nitric oxide, antibiotics, essential oils, and metal- and carbon-based inorganics.
Collapse
Affiliation(s)
- Rashin Namivandi-Zangeneh
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Edgar H. H. Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, New South Wales 2052, Australia
| |
Collapse
|
7
|
de Farias JO, de Freitas Lima SM, Rezende TMB. Physiopathology of nitric oxide in the oral environment and its biotechnological potential for new oral treatments: a literature review. Clin Oral Investig 2020; 24:4197-4212. [PMID: 33057827 DOI: 10.1007/s00784-020-03629-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES A narrative review on the NO properties and their relationship with the oral environment describing NO's molecular origin, role, and perspectives regarding oral pathological, physiological, and regenerative processes for future applications and possible use as prevention or treatment in dentistry. MATERIALS AND METHODS Pubmed was searched using the word "nitric oxide." Reviews, clinical studies, and experimental studies were eligible for the screening process. Similar search procedures were then performed with the additional search words "conservative dentistry," "orthodontics," "endodontics," "implants," "periodontics," "oral cancer," "pulp revascularization," and "oral surgery." Furthermore, references of included articles were examined to identify further relevant articles. RESULTS There is a relationship between NO production and oral diseases such as caries, periodontal diseases, pulp inflammation, apical periodontitis, oral cancer, with implants, and orthodontics. Studies on this relationship and uses of NO, in diagnosis, prevention, and treatment, are being developed. Also, some NO and oral cavity patents have already registered. CONCLUSIONS The understanding of how NO can interfere in oral health maintenance or disease processes can contribute to elucidate the disease development and optimize treatment approaches. CLINICAL RELEVANCE NO has considerable biotechnological potential and can contribute to improving diagnostics and treating the oral environment. As a biomarker, NO has an important role in the early diagnosis of diseases. Regarding treatments, NO can possibly be used as a regulator of inflammation, anti-biofilm action, replacing antibiotics, inducing apoptosis of cancerous cells, and contributing to the angiogenesis. All these studies are initial considerations regarding the relationship between NO and dentistry.
Collapse
Affiliation(s)
- Jade Ormondes de Farias
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil.,Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n-Asa Norte, Brasília, DF, Brazil
| | - Stella Maris de Freitas Lima
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil.,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil
| | - Taia Maria Berto Rezende
- Curso de Odontologia, Universidade Católica de Brasília, QS 07 Lote 01, Brasília, DF, Brazil. .,Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916N - Módulo B Avenida W5-Campus II -Modulo C, room C-221, Asa Norte, Brasília, DF, 70.790-160, Brazil. .,Pós-graduação em Ciências da Saúde, Faculdade de Ciências de Saúde, Universidade de Brasília, Campus Darcy Ribeiro s/n-Asa Norte, Brasília, DF, Brazil.
| |
Collapse
|
8
|
Feura ES, Yang L, Schoenfisch MH. Antibacterial activity of nitric oxide-releasing carboxymethylcellulose against periodontal pathogens. J Biomed Mater Res A 2020; 109:713-721. [PMID: 32654391 DOI: 10.1002/jbm.a.37056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
The prevalence of periodontal disease poses a significant global health burden. Treatments for these diseases, primarily focused on removal and eradication of dental plaque biofilms, are challenging due to limited access to periodontal pockets where these oral pathogens reside. Herein, we report on the development and characterization of nitric oxide (NO)-releasing carboxymethylcellulose (CMC) derivatives and evaluate their in vitro bactericidal efficacy against planktonic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, two prominent periodontopathogens. Bactericidal exposure assays revealed that three of the synthesized NO-releasing polymers were capable of reducing bacterial viability of both species by 99.9% in 2 hr at concentrations of 4 mg ml-1 or lower, reflecting NO's potent and rapid bactericidal action. The NO-releasing CMCs elicited minimal toxicity to human gingival fibroblasts at their bactericidal concentrations following 24-hr exposure.
Collapse
Affiliation(s)
- Evan S Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Yang L, Teles F, Gong W, Dua SA, Martin L, Schoenfisch MH. Antibacterial action of nitric oxide-releasing hyperbranched polymers against ex vivo dental biofilms. Dent Mater 2020; 36:635-644. [PMID: 32299667 PMCID: PMC7233373 DOI: 10.1016/j.dental.2020.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/12/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES This study investigates the antibiofilm action of nitric oxide (NO)-releasing hyperbranched polymers against ex vivo multispecies periodontal biofilms. METHODS The antibiofilm efficacy of NO-releasing hyperbranched polymers was evaluated as a function of NO-release properties, polymer concentrations, and oxygen levels in the exposure media. 16s rRNA sequencing technique was employed to evaluate the impact of NO-releasing hyperbranched polymers on the microbial composition of the biofilms. RESULTS The addition of NO release significantly improved the antibiofilm action of the hyperbranched polymers, with NO-releasing hyperbranched polyamidoamines of largest NO payloads being more effective than hyperbranched polykanamycins. Furthermore, the NO-releasing hyperbranched polymers reduced the biofilm metabolic activity in a dose-dependent manner, killing biofilm-detached bacteria under both aerobic and anaerobic conditions, with greater antimicrobial efficacy observed under aerobic conditions. SIGNIFICANCE These results demonstrate for the first time the potential therapeutic utility of NO-releasing hyperbranched polymers for treating multispecies dental biofilms.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Flavia Teles
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Weida Gong
- Department of Marine Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Shawn A Dua
- School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Lynn Martin
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
10
|
Rong F, Tang Y, Wang T, Feng T, Song J, Li P, Huang W. Nitric Oxide-Releasing Polymeric Materials for Antimicrobial Applications: A Review. Antioxidants (Basel) 2019; 8:E556. [PMID: 31731704 PMCID: PMC6912614 DOI: 10.3390/antiox8110556] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/07/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Polymeric materials releasing nitric oxide have attracted significant attention for therapeutic use in recent years. As one of the gaseous signaling agents in eukaryotic cells, endogenously generated nitric oxide (NO) is also capable of regulating the behavior of bacteria as well as biofilm formation in many metabolic pathways. To overcome the drawbacks caused by the radical nature of NO, synthetic or natural polymers bearing NO releasing moiety have been prepared as nano-sized materials, coatings, and hydrogels. To successfully design these materials, the amount of NO released within a certain duration, the targeted pathogens and the trigger mechanisms upon external stimulation with light, temperature, and chemicals should be taken into consideration. Meanwhile, NO donors like S-nitrosothiols (RSNOs) and N-diazeniumdiolates (NONOates) have been widely utilized for developing antimicrobial polymeric agents through polymer-NO donor conjugation or physical encapsulation. In addition, antimicrobial materials with visible light responsive NO donor are also reported as strong and physiological friendly tools for rapid bacterial clearance. This review highlights approaches to delivery NO from different types of polymeric materials for combating diseases caused by pathogenic bacteria, which hopefully can inspire researchers facing common challenges in the coming 'post-antibiotic' era.
Collapse
Affiliation(s)
- Fan Rong
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Yizhang Tang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- Department of Applied Chemistry, School of Natural and Applied Science, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tengjiao Wang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Tao Feng
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Jiang Song
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
- School of Electronics & Information, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Peng Li
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| | - Wei Huang
- Xi’an Institute of Flexible Electronics & Xi’an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, Shaanxi, China
| |
Collapse
|