1
|
Hadi Barhaghtalab R, Tanimowo Aiyelabegan H, Maleki H, Mirzavi F, Gholizadeh Navashenaq J, Abdi F, Ghaffari F, Vakili-Ghartavol R. Recent advances with erythrocytes as therapeutics carriers. Int J Pharm 2024; 665:124658. [PMID: 39236775 DOI: 10.1016/j.ijpharm.2024.124658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Erythrocytes have gained popularity as a natural option for in vivo drug delivery due to their advantages, which include lengthy circulation times, biocompatibility, and biodegradability. Consequently, the drug's pharmacokinetics and pharmacodynamics in red blood cells can be considerably up the dosage. Here, we provide an overview of the erythrocyte membrane's structure and discuss the characteristics of erythrocytes that influence their suitability as carrier systems. We also cover current developments in the erythrocyte-based nanocarrier, which could be used for both active and passive targeting of disease tissues, particularly those of the reticuloendothelial system (RES) and cancer tissues. We also go over the most recent discoveries about the in vivo and in vitro uses of erythrocytes for medicinal and diagnostic purposes. Moreover, the clinical relevance of erythrocytes is discussed in order to improve comprehension and enable the potential use of erythrocyte carriers in the management of various disorders.
Collapse
Affiliation(s)
| | | | - Hassan Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Fereshteh Abdi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Faezeh Ghaffari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Rocha JVR, Krause RF, Ribeiro CE, Oliveira NCDA, Ribeiro de Sousa L, Leandro Santos J, Castro SDM, Valadares MC, Cunha Xavier Pinto M, Pavam MV, Lima EM, Antônio Mendanha S, Bakuzis AF. Near Infrared Biomimetic Hybrid Magnetic Nanocarrier for MRI-Guided Thermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38973727 DOI: 10.1021/acsami.4c03434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Cell-membrane hybrid nanoparticles (NPs) are designed to improve drug delivery, thermal therapy, and immunotherapy for several diseases. Here, we report the development of distinct biomimetic magnetic nanocarriers containing magnetic nanoparticles encapsulated in vesicles and IR780 near-infrared dyes incorporated in the membranes. Distinct cell membranes are investigated, red blood cell (RBC), melanoma (B16F10), and glioblastoma (GL261). Hybrid nanocarriers containing synthetic lipids and a cell membrane are designed. The biomedical applications of several systems are compared. The inorganic nanoparticle consisted of Mn-ferrite nanoparticles with a core diameter of 15 ± 4 nm. TEM images show many multicore nanostructures (∼40 nm), which correlate with the hydrodynamic size. Ultrahigh transverse relaxivity values are reported for the magnetic NPs, 746 mM-1s-1, decreasing respectively to 445 mM-1s-1 and 278 mM-1s-1 for the B16F10 and GL261 hybrid vesicles. The ratio of relaxivities r2/r1 decreased with the higher encapsulation of NPs and increased for the biomimetic liposomes. Therapeutic temperatures are achieved by both, magnetic nanoparticle hyperthermia and photothermal therapy. Photothermal conversion efficiency ∼25-30% are reported. Cell culture revealed lower wrapping times for the biomimetic vesicles. In vivo experiments with distinct routes of nanoparticle administration were investigated. Intratumoral injection proved the nanoparticle-mediated PTT efficiency. MRI and near-infrared images showed that the nanoparticles accumulate in the tumor after intravenous or intraperitoneal administration. Both routes benefit from MRI-guided PTT and demonstrate the multimodal theranostic applications for cancer therapy.
Collapse
Affiliation(s)
| | - Rafael Freire Krause
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
| | | | | | | | | | | | - Marize Campos Valadares
- ToxIn - Laboratory of Education and Research in In Vitro Toxicology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Mauro Cunha Xavier Pinto
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
| | - Marcilia Viana Pavam
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Eliana Martins Lima
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Sebastião Antônio Mendanha
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
- FarmaTec - Laboratory of Pharmaceutical Technology, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goianiâ, Goiás 74690-900, Brazil
- CNanoMed - Nanomedicine Integrated Research Center, Federal University of Goiás, Goianiâ, Goiás 74690-631, Brazil
| |
Collapse
|
3
|
Vinícius-Araújo M, Shrivastava N, Silva Loures G, Krause RF, Sousa MH, de Santana RC, Bakuzis AF. Integration of 3D Fluorescence Imaging and Luminescent Thermometry with Core-Shell Engineered NaYF 4:Nd 3+/Yb 3+/Ho 3+ Nanoparticles. Inorg Chem 2024; 63:1840-1852. [PMID: 38232297 DOI: 10.1021/acs.inorgchem.3c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The design of rare-earth-doped upconversion/downshifting nanoparticles (NPs) for theoretical use in nanomedicine has garnered considerable interest. Previous research has emphasized luminescent nanothermometry and photothermal therapy, while three-dimensional (3D) near-infrared (NIR) luminescent tracers have received less attention. Our study introduces Nd3+-, Yb3+-, and Ho3+-doped NaYF4 core-shell luminescent NPs as potential multiparametric nanothermometers and NIR imaging tracers. Nd3+ sensitizes at 804 nm, while Yb3+ bridges to activators Ho3+. We evaluated the photoluminescence properties of Nd3+-, Yb3+-, and Ho3+-doped core and core-shell NPs synthesized via polyol-mediated and thermal decomposition methods. The NaYF4:NdYbHo(7/15/3%)@NaYF4:Nd(15%) core-shell NPs demonstrate competitive nanothermometry capabilities. Specifically, the polyol-synthesized sample exhibits a sensitivity of 0.27% K-1 at 313 K (40 °C), whereas the thermally decomposed synthesized sample shows a significantly higher sensitivity of 0.55% K-1 at 313 K (40 °C) in the near-infrared range. Control samples indicate back energy transfer processes from both Yb and Ho to Nd, while Yb to Ho energy transfer enhances Ho3+-driven upconversion transitions in green and red wavelengths, suggesting promise for photodynamic therapy. Fluorescence molecular tomography confirms 3D NIR fluorescence nanoparticle localization in a biological media after injection, highlighting the potential of core-shell NPs as NIR luminescent tracers. The strategy's clinical impact lies in photothermal treatment planning, leveraging core-shell NPs for (pre)clinical applications, and enabling the easy addition of new functionalities through distinct ion doping.
Collapse
Affiliation(s)
| | - Navadeep Shrivastava
- Department of Chemistry, Physics and Materials Science, Fayetteville State University, Fayetteville, North Carolina 28301, United States
| | | | - Rafael Freire Krause
- Institute of Physics, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
| | | | | | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia, GO 74690-900, Brazil
- CNanoMed, Federal University of Goiás, Goiânia, GO 74690-631, Brazil
| |
Collapse
|
4
|
Chen Q, Yuan L, Chou WC, Cheng YH, He C, Monteiro-Riviere NA, Riviere JE, Lin Z. Meta-Analysis of Nanoparticle Distribution in Tumors and Major Organs in Tumor-Bearing Mice. ACS NANO 2023; 17:19810-19831. [PMID: 37812732 PMCID: PMC10604101 DOI: 10.1021/acsnano.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/24/2023] [Indexed: 10/11/2023]
Abstract
Low tumor delivery efficiency is a critical barrier in cancer nanomedicine. This study reports an updated version of "Nano-Tumor Database", which increases the number of time-dependent concentration data sets for different nanoparticles (NPs) in tumors from the previous version of 376 data sets with 1732 data points from 200 studies to the current version of 534 data sets with 2345 data points from 297 studies published from 2005 to 2021. Additionally, the current database includes 1972 data sets for five major organs (i.e., liver, spleen, lung, heart, and kidney) with a total of 8461 concentration data points. Tumor delivery and organ distribution are calculated using three pharmacokinetic parameters, including delivery efficiency, maximum concentration, and distribution coefficient. The median tumor delivery efficiency is 0.67% injected dose (ID), which is low but is consistent with previous studies. Employing the best regression model for tumor delivery efficiency, we generate hypothetical scenarios with different combinations of NP factors that may lead to a higher delivery efficiency of >3%ID, which requires further experimentation to confirm. In healthy organs, the highest NP accumulation is in the liver (10.69%ID/g), followed by the spleen 6.93%ID/g and the kidney 3.22%ID/g. Our perspective on how to facilitate NP design and clinical translation is presented. This study reports a substantially expanded "Nano-Tumor Database" and several statistical models that may help nanomedicine design in the future.
Collapse
Affiliation(s)
- Qiran Chen
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Long Yuan
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Wei-Chun Chou
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| | - Yi-Hsien Cheng
- Department
of Anatomy and Physiology, Kansas State
University, Manhattan, Kansas 66506, United States
- Institute
of Computational Comparative Medicine, Kansas
State University, Manhattan, Kansas 66506, United States
| | - Chunla He
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Department
of Biostatistics College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32608, United States
| | - Nancy A. Monteiro-Riviere
- Nanotechnology
Innovation Center of Kansas State, Kansas
State University, Manhattan, Kansas 66506, United States
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Jim E. Riviere
- Center
for Chemical Toxicology Research and Pharmacokinetics, North Carolina State University, Raleigh, North Carolina 27606, United States
- 1
Data Consortium, Kansas State University, Olathe, Kansas 66061, United States
| | - Zhoumeng Lin
- Department
of Environmental and Global Health, College of Public Health and Health
Professions, University of Florida, Gainesville, Florida 32608, United States
- Center
for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32610, United States
| |
Collapse
|
5
|
Chen M, Leng Y, He C, Li X, Zhao L, Qu Y, Wu Y. Red blood cells: a potential delivery system. J Nanobiotechnology 2023; 21:288. [PMID: 37608283 PMCID: PMC10464085 DOI: 10.1186/s12951-023-02060-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Red blood cells (RBCs) are the most abundant cells in the body, possessing unique biological and physical properties. RBCs have demonstrated outstanding potential as delivery vehicles due to their low immunogenicity, long-circulating cycle, and immune characteristics, exhibiting delivery abilities. There have been several developments in understanding the delivery system of RBCs and their derivatives, and they have been applied in various aspects of biomedicine. This article compared the various physiological and physical characteristics of RBCs, analyzed their potential advantages in delivery systems, and summarized their existing practices in biomedicine.
Collapse
Affiliation(s)
- Mengran Chen
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yamei Leng
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Chuan He
- Guang'an People's Hospital, Guang'an, 638001, Sichuan, People's Republic of China
| | - Xuefeng Li
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lei Zhao
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ying Qu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yu Wu
- Department of Hematology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
6
|
Immunogenic Cell Death Photothermally Mediated by Erythrocyte Membrane-Coated Magnetofluorescent Nanocarriers Improves Survival in Sarcoma Model. Pharmaceutics 2023; 15:pharmaceutics15030943. [PMID: 36986804 PMCID: PMC10051374 DOI: 10.3390/pharmaceutics15030943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Inducing immunogenic cell death (ICD) during cancer therapy is a major challenge that might significantly improve patient survival. The purpose of this study was to develop a theranostic nanocarrier, capable both of conveying a cytotoxic thermal dose when mediating photothermal therapy (PTT) after its intravenous delivery, and of consequently inducing ICD, improving survival. The nanocarrier consists of red blood cell membranes (RBCm) embedding the near-infrared dye IR-780 (IR) and camouflaging Mn-ferrite nanoparticles (RBCm-IR-Mn). The RBCm-IR-Mn nanocarriers were characterized by size, morphology, surface charge, magnetic, photophysical, and photothermal properties. Their photothermal conversion efficiency was found to be size- and concentration-dependent. Late apoptosis was observed as the cell death mechanism for PTT. Calreticulin and HMGB1 protein levels increased for in vitro PTT with temperature around 55 °C (ablative regime) but not for 44 °C (hyperthermia), suggesting ICD elicitation under ablation. RBCm-IR-Mn were then intravenously administered in sarcoma S180-bearing Swiss mice, and in vivo ablative PTT was performed five days later. Tumor volumes were monitored for the subsequent 120 days. RBCm-IR-Mn-mediated PTT promoted tumor regression in 11/12 animals, with an overall survival rate of 85% (11/13). Our results demonstrate that the RBCm-IR-Mn nanocarriers are great candidates for PTT-induced cancer immunotherapy.
Collapse
|
7
|
Barcelos JM, Hayasaki TG, de Santana RC, Lima EM, Mendanha SA, Bakuzis AF. Photothermal Properties of IR-780-Based Nanoparticles Depend on Nanocarrier Design: A Comparative Study on Synthetic Liposomes and Cell Membrane and Hybrid Biomimetic Vesicles. Pharmaceutics 2023; 15:pharmaceutics15020444. [PMID: 36839765 PMCID: PMC9961772 DOI: 10.3390/pharmaceutics15020444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Biomimetic nanoparticles hold great promise for photonic-mediated nanomedicine due to the association of the biological functionality of the membrane with the physical/chemical goals of organic/inorganic structures, but studies involving fluorescent biomimetic vesicles are still scarce. The purpose of this article is to determine how photothermal therapy (PTT) with theranostic IR-780-based nanoparticles depends on the dye content, cholesterol content, lipid bilayer phase and cell membrane type. The photophysical responses of synthetic liposomes, cell membrane vesicles and hybrid nanoparticles are compared. The samples were characterized by nanoparticle tracking analysis, photoluminescence, electron spin resonance, and photothermal- and heat-mediated drug release experiments, among other techniques. The photothermal conversion efficiency (PCE) was determined using Roper's method. All samples excited at 804 nm showed three fluorescence bands, two of them independent of the IR-780 content. Samples with a fluorescence band at around 850 nm showed photobleaching (PBL). Quenching was higher in cell membrane vesicles, while cholesterol inhibited quenching in synthetic liposomes with low dye content. PTT depended on the cell membrane and was more efficient for melanoma than erythrocyte vesicles. Synthetic liposomes containing cholesterol and a high amount of IR-780 presented superior performance in PTT experiments, with a 2.4-fold PCE increase in comparison with free IR-780, no PBL and the ability to heat-trigger doxorubicin release.
Collapse
Affiliation(s)
- Júlia Muniz Barcelos
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | | | | | - Eliana Martins Lima
- Farmatec, School of Pharmacy, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
| | - Sebastião Antonio Mendanha
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- Farmatec, School of Pharmacy, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
| | - Andris Figueiroa Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
- CNanomed, Federal University of Goiás, Goiânia 74690-631, GO, Brazil
- Correspondence:
| |
Collapse
|
8
|
Coupling of cationic porphyrins on manganese ferrite nanoparticles: a potential multifunctional nanostructure for theranostics applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Sousa-Junior A, Yang CT, Korangath P, Ivkov R, Bakuzis A. A Predictive Pharmacokinetic Model for Immune Cell-Mediated Uptake and Retention of Nanoparticles in Tumors. Int J Mol Sci 2022; 23:15664. [PMID: 36555306 PMCID: PMC9779081 DOI: 10.3390/ijms232415664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A promise of cancer nanomedicine is the "targeted" delivery of therapeutic agents to tumors by the rational design of nanostructured materials. During the past several decades, a realization that in vitro and in vivo preclinical data are unreliable predictors of successful clinical translation has motivated a reexamination of this approach. Mathematical models of drug pharmacokinetics (PK) and biodistribution (BD) are essential tools for small-molecule drugs development. A key assumption underlying these models is that drug-target binding kinetics dominate blood clearance, hence recognition by host innate immune cells is not explicitly included. Nanoparticles circulating in the blood are conspicuous to phagocytes, and inevitable interactions typically trigger active biological responses to sequester and remove them from circulation. Our recent findings suggest that, instead of referring to nanoparticles as designed for active or passive "tumor targeting", we ought rather to refer to immune cells residing in the tumor microenvironment (TME) as active or passive actors in an essentially "cell-mediated tumor retention" process that competes with active removal by other phagocytes. Indeed, following intravenous injection, nanoparticles induce changes in the immune compartment of the TME because of nanoparticle uptake, irrespective of the nature of tumor targeting moieties. In this study, we propose a 6-compartment PK model as an initial mathematical framework for modeling this tumor-associated immune cell-mediated retention. Published in vivo PK and BD results obtained with bionized nanoferrite® (BNF®) nanoparticles were combined with results from in vitro internalization experiments with murine macrophages to guide simulations. As a preliminary approximation, we assumed that tumor-associated macrophages (TAMs) are solely responsible for active retention in the TME. We model the TAM approximation by relating in vitro macrophage uptake to an effective macrophage avidity term for the BNF® nanoparticles under consideration.
Collapse
Affiliation(s)
- Ailton Sousa-Junior
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- FarmaTec—Laboratório de Tecnologia Farmacêutica, Universidade Federal de Goiás, Goiânia 74690-631, GO, Brazil
| | - Chun-Ting Yang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Preethi Korangath
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andris Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia 74690-900, GO, Brazil
- CNanoMed, Universidade Federal de Goiás, Goiânia 74690-631, GO, Brazil
| |
Collapse
|
10
|
de Oliveira JV, Oliveira da Rocha MC, de Sousa-Junior AA, Rodrigues MC, Farias GR, da Silva PB, Bao SN, Bakuzis AF, Azevedo RB, Morais PC, Muehlmann LA, Figueiró Longo JP. Tumor vascular heterogeneity and the impact of subtumoral nanoemulsion biodistribution. Nanomedicine (Lond) 2022; 17:2073-2088. [PMID: 36853205 DOI: 10.2217/nnm-2022-0176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Aim: Investigate the heterogeneous tumor tissue organization and examine how this condition can interfere with the passive delivery of a lipid nanoemulsion in two breast cancer preclinical models (4T1 and Ehrlich). Materials & methods: The authors used in vivo image techniques to follow the nanoemulsion biodistribution and microtomography, as well as traditional histopathology and electron microscopy to evaluate the tumor structural characteristics. Results & conclusion: Lipid nanoemulsion was delivered to the tumor, vascular organization depends upon the subtumoral localization and this heterogeneous organization promotes a nanoemulsion biodistribution to the highly vascular peripherical region. Also, the results are presented with a comprehensive mathematical model, describing the differential biodistribution in two different breast cancer models, the 4T1 and Ehrlich models.
Collapse
Affiliation(s)
| | | | | | - Mosar Corrêa Rodrigues
- Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Gabriel Ribeiro Farias
- Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Sônia Nair Bao
- Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | | | - Ricardo Bentes Azevedo
- Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Paulo César Morais
- Institute of Physics, University of Brasília, Brasília, DF, 70910-900, Brazil
- Biotechnology & Genomic Sciences, Catholic University of Brasília, Brasília, DF, 70790-160, Brazil
| | | | | |
Collapse
|
11
|
Soares GA, Pereira GM, Romualdo GR, Biasotti GGA, Stoppa EG, Bakuzis AF, Baffa O, Barbisan LF, Miranda JRA. Biodistribution Profile of Magnetic Nanoparticles in Cirrhosis-Associated Hepatocarcinogenesis in Rats by AC Biosusceptometry. Pharmaceutics 2022; 14:pharmaceutics14091907. [PMID: 36145654 PMCID: PMC9504370 DOI: 10.3390/pharmaceutics14091907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Since magnetic nanoparticles (MNPs) have been used as multifunctional probes to diagnose and treat liver diseases in recent years, this study aimed to assess how the condition of cirrhosis-associated hepatocarcinogenesis alters the biodistribution of hepatic MNPs. Using a real-time image acquisition approach, the distribution profile of MNPs after intravenous administration was monitored using an AC biosusceptometry (ACB) assay. We assessed the biodistribution profile based on the ACB images obtained through selected regions of interest (ROIs) in the heart and liver position according to the anatomical references previously selected. The signals obtained allowed for the quantification of pharmacokinetic parameters, indicating that the uptake of hepatic MNPs is compromised during liver cirrhosis, since scar tissue reduces blood flow through the liver and slows its processing function. Since liver monocytes/macrophages remained constant during the cirrhotic stage, the increased intrahepatic vascular resistance associated with impaired hepatic sinusoidal circulation was considered the potential reason for the change in the distribution of MNPs.
Collapse
Affiliation(s)
- Guilherme A. Soares
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
- Correspondence:
| | - Gabriele M. Pereira
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Guilherme R. Romualdo
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-689, SP, Brazil
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Gabriel G. A. Biasotti
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Erick G. Stoppa
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Andris F. Bakuzis
- Institute of Physics, Federal University of Goiás, Goiânia 74690-900, GO, Brazil
| | - Oswaldo Baffa
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-900, SP, Brazil
| | - Luis F. Barbisan
- Department of Strucutral and Functional Biology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| | - Jose R. A. Miranda
- Department of Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University—UNESP, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
12
|
Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opin Drug Deliv 2022; 19:965-984. [PMID: 35917435 DOI: 10.1080/17425247.2022.2108786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Red blood cell (or erythrocyte) membrane-camouflaged nanoparticles (RBC-NPs) not only have a superior circulation life and do not induce accelerated blood clearance, but also possess special functions, which offers great potential in cancer therapy. AREAS COVERED This review focuses on the recent advances of RBC-NPs for delivering various agents to treat cancers in light of their vital role in improving drug delivery. Meanwhile, the construction and in vivo behavior of RBC-NPs are discussed to provide an in-depth understanding of the basis of RBC-NPs for improved cancer drug delivery. EXPERT OPINION Although RBC-NPs are quite prospective in delivering anti-cancer therapeutics, they are still in their infancy stage and many challenges need to be overcome for successful translation into the clinic. The preparation and modification of RBC membranes, the optimization of coating methods, the scale-up production and the quality control of RBC-NPs, and the drug loading and release should be carefully considered in the clinical translation of RBC-NPs for cancer therapy.
Collapse
Affiliation(s)
- Siyu Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Yiwei Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Kai Jin
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| | - Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430022, China
| | - Shaojun Peng
- Zhuhai Institute of Translational Medicine, Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong 519000, China
| | - Amit Kumar Nayak
- Department of Pharmaceutics, Seemanta Institute of Pharmaceutical Sciences, Mayurbhanj-757086, Odisha, India
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai, 201203, China
| |
Collapse
|
13
|
Castelló CM, de Carvalho MT, Bakuzis AF, Fonseca SG, Miguel MP. Local tumour nanoparticle thermal therapy: A promising immunomodulatory treatment for canine cancer. Vet Comp Oncol 2022; 20:752-766. [PMID: 35698822 DOI: 10.1111/vco.12842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Distinct thermal therapies have been used for cancer therapy. For hyperthermia (HT) treatment the tumour tissue is heated to temperatures between 39 and 45°C, while during ablation (AB) temperatures above 50°C are achieved. HT is commonly used in combination with different treatment modalities, such as radiotherapy and chemotherapy, for better clinical outcomes. In contrast, AB is usually used as a single modality for direct tumour cell killing. Both thermal therapies have been shown to result in cytotoxicity as well as immune response stimulation. Immunogenic responses encompass the innate and adaptive immune systems and involve the activation of macrophages, dendritic cells, natural killer cells and T cells. Several heat technologies are used, but great interest arises from nanotechnology-based thermal therapies. Spontaneous tumours in dogs can be a model for cancer immunotherapies with several advantages. In addition, veterinary oncology represents a growing market with an important demand for new therapies. In this review, we will focus on nanoparticle-mediated thermal-induced immunogenic effects, the beneficial potential of integrating thermal nanomedicine with immunotherapies and the results of published works with thermotherapies for cancer using dogs with spontaneous tumours, highlighting the works that evaluated the effect on the immune system in order to show dogs with spontaneous cancer as a good model for evaluated the immunomodulatory effect of nanoparticle-mediated thermal therapies.
Collapse
Affiliation(s)
- Carla Martí Castelló
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Mara Taís de Carvalho
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Simone Gonçalves Fonseca
- Setor de Imunologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| | - Marina Pacheco Miguel
- Programa de pós-graduação em Ciência Animal, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, Goiânia, Brazil.,Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
14
|
Cintra ER, Hayasaki TG, Sousa-Junior AA, Silva ACG, Valadares MC, Bakuzis AF, Mendanha SA, Lima EM. Folate-Targeted PEGylated Magnetoliposomes for Hyperthermia-Mediated Controlled Release of Doxorubicin. Front Pharmacol 2022; 13:854430. [PMID: 35387345 PMCID: PMC8978894 DOI: 10.3389/fphar.2022.854430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent commonly used for the treatment of solid tumors. However, the cardiotoxicity associated with its prolonged use prevents further adherence and therapeutic efficacy. By encapsulating DOX within a PEGylated liposome, Doxil® considerably decreased DOX cardiotoxicity. By using thermally sensitive lysolipids in its bilayer composition, ThermoDox® implemented a heat-induced controlled release of DOX. However, both ThermoDox® and Doxil® rely on their passive retention in tumors, depending on their half-lives in blood. Moreover, ThermoDox® ordinarily depend on invasive radiofrequency-generating metallic probes for local heating. In this study, we prepare, characterize, and evaluate the antitumoral capabilities of DOX-loaded folate-targeted PEGylated magnetoliposomes (DFPML). Unlike ThermoDox®, DOX delivery via DFPML is mediated by the heat released through dynamic hysteresis losses from magnetothermal converting systems composed by MnFe2O4 nanoparticles (NPs) under AC magnetic field excitation—a non-invasive technique designated magnetic hyperthermia (MHT). Moreover, DFPML dismisses the use of thermally sensitive lysolipids, allowing the use of simpler and cheaper alternative lipids. MnFe2O4 NPs and DFPML are fully characterized in terms of their size, morphology, polydispersion, magnetic, and magnetothermal properties. About 50% of the DOX load is released from DFPML after 30 min under MHT conditions. Being folate-targeted, in vitro DFPML antitumoral activity is higher (IC50 ≈ 1 μg/ml) for folate receptor-overexpressing B16F10 murine melanoma cells, compared to MCF7 human breast adenocarcinoma cells (IC50 ≈ 4 μg/ml). Taken together, our results indicate that DFPML are strong candidates for folate-targeted anticancer therapies based on DOX controlled release.
Collapse
Affiliation(s)
- Emílio R Cintra
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Tacio G Hayasaki
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Ailton A Sousa-Junior
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Artur C G Silva
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Marize C Valadares
- Toxin-Laboratory of Education and Research in In Vitro Toxicology, School of Pharmacy, Federal University of Goias, Goiania, Brazil
| | - Andris F Bakuzis
- Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Sebastião A Mendanha
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,Physics Institute, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| | - Eliana M Lima
- FarmaTec-Laboratory of Pharmaceutical Technology, School of Pharmacy, Federal University of Goias, Goiania, Brazil.,CNanoMed-Nanomedicine Integrated Research Center, Federal University of Goias, Goiania, Brazil
| |
Collapse
|
15
|
Harvell-Smith S, Tung LD, Thanh NTK. Magnetic particle imaging: tracer development and the biomedical applications of a radiation-free, sensitive, and quantitative imaging modality. NANOSCALE 2022; 14:3658-3697. [PMID: 35080544 DOI: 10.1039/d1nr05670k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Magnetic particle imaging (MPI) is an emerging tracer-based modality that enables real-time three-dimensional imaging of the non-linear magnetisation produced by superparamagnetic iron oxide nanoparticles (SPIONs), in the presence of an external oscillating magnetic field. As a technique, it produces highly sensitive radiation-free tomographic images with absolute quantitation. Coupled with a high contrast, as well as zero signal attenuation at-depth, there are essentially no limitations to where that can be imaged within the body. These characteristics enable various biomedical applications of clinical interest. In the opening sections of this review, the principles of image generation are introduced, along with a detailed comparison of the fundamental properties of this technique with other common imaging modalities. The main feature is a presentation on the up-to-date literature for the development of SPIONs tailored for improved imaging performance, and developments in the current and promising biomedical applications of this emerging technique, with a specific focus on theranostics, cell tracking and perfusion imaging. Finally, we will discuss recent progress in the clinical translation of MPI. As signal detection in MPI is almost entirely dependent on the properties of the SPION employed, this work emphasises the importance of tailoring the synthetic process to produce SPIONs demonstrating specific properties and how this impacts imaging in particular applications and MPI's overall performance.
Collapse
Affiliation(s)
- Stanley Harvell-Smith
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Le Duc Tung
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, University College London, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
16
|
Du Y, Wang S, Zhang M, Chen B, Shen Y. Cells-Based Drug Delivery for Cancer Applications. NANOSCALE RESEARCH LETTERS 2021; 16:139. [PMID: 34478000 PMCID: PMC8417195 DOI: 10.1186/s11671-021-03588-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/03/2021] [Indexed: 05/04/2023]
Abstract
The application of cells as carriers to encapsulate chemotherapy drugs is of great significance in antitumor therapy. The advantages of reducing systemic toxicity, enhancing targeting and enhancing the penetrability of drugs to tumor cells make it have great potential for clinical application in the future. Many studies and advances have been made in the encapsulation of drugs by using erythrocytes, white blood cells, platelets, immune cells and even tumor cells. The results showed that the antitumor effect of cell encapsulation chemotherapy drugs was better than that of single chemotherapy drugs. In recent years, the application of cell-based vectors in cancer has become diversified. Both chemotherapeutic drugs and photosensitizers can be encapsulated, so as to achieve multiple antitumor effects of chemotherapy, photothermal therapy and photodynamic therapy. A variety of ways of coordinated treatment can produce ideal results even in the face of multidrug-resistant and metastatic tumors. However, it is regrettable that this technology is only used in vitro for the time being. Standard answers have not yet been obtained for the preservation of drug-loaded cells and the safe way of infusion into human body. Therefore, the successful application of drug delivery technology in clinical still faces many challenges in the future. In this paper, we discuss the latest development of different cell-derived drug delivery systems and the challenges it will face in the future.
Collapse
Affiliation(s)
- Ying Du
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Shujun Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Meilin Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, School of Medicine, Southeast University, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| | - Yanfei Shen
- Department of Chemistry and Chemical Engineering, Southeast University School of Medicine, Ding JiaQiao Street 87, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
17
|
Rodrigues HF, Capistrano G, Bakuzis AF. In vivo magnetic nanoparticle hyperthermia: a review on preclinical studies, low-field nano-heaters, noninvasive thermometry and computer simulations for treatment planning. Int J Hyperthermia 2021; 37:76-99. [PMID: 33426989 DOI: 10.1080/02656736.2020.1800831] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticle hyperthermia (MNH) is a promising nanotechnology-based cancer thermal therapy that has been approved for clinical use, together with radiation therapy, for treating brain tumors. Almost ten years after approval, few new clinical applications had appeared, perhaps because it cannot benefit from the gold standard noninvasive MRI thermometry technique, since static magnetic fields inhibit heat generation. This might limit its clinical use, in particular as a single therapeutic modality. In this article, we review the in vivo MNH preclinical studies, discussing results of the last two decades with emphasis on safety as a clinical criteria, the need for low-field nano-heaters and noninvasive thermal dosimetry, and the state of the art of computational modeling for treatment planning using MNH. Limitations to more effective clinical use are discussed, together with suggestions for future directions, such as the development of ultrasound-based, computed tomography-based or magnetic nanoparticle-based thermometry to achieve greater impact on clinical translation of MNH.
Collapse
Affiliation(s)
- Harley F Rodrigues
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Curso de Licenciatura em Física, Instituto Federal de Goiás, Goiânia, Brasil
| | - Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil.,Campus Fronteira Oeste, Instituto Federal de Mato Grosso, Pontes e Lacerda, Brasil
| | - Andris F Bakuzis
- Instituto de Física, Universidade Federal de Goiás, Goiânia, Brasil
| |
Collapse
|
18
|
Capistrano G, Sousa-Junior AA, Silva RA, Mello-Andrade F, Cintra ER, Santos S, Nunes AD, Lima RM, Zufelato N, Oliveira AS, Pereira M, Castro CH, Lima EM, Cardoso CG, Silveira-Lacerda E, Mendanha SA, Bakuzis AF. IR-780-Albumin-Based Nanocarriers Promote Tumor Regression Not Only from Phototherapy but Also by a Nonirradiation Mechanism. ACS Biomater Sci Eng 2020; 6:4523-4538. [DOI: 10.1021/acsbiomaterials.0c00164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Gustavo Capistrano
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | | | - Roosevelt A. Silva
- Nucleo Colaborativo de BioSistemas, Universidade Federal de Goiás, 75804-020 Jataí−GO, Brasil
| | - Francyelli Mello-Andrade
- Departamento de Química, Instituto Federal de Educação, Ciência e Tecnologia de Goiás, 74055-110 Goiânia−GO, Brasil
| | - Emilio R. Cintra
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Sônia Santos
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Allancer D. Nunes
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Raisa M. Lima
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Nicholas Zufelato
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| | - André S. Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Maristela Pereira
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Carlos H. Castro
- Instituto de Ciências Biológicas, Laboratório Integrado de Fisiopatologia Cardiovascular e Neurológica, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | - Eliana M. Lima
- Faculdade de Farmácia, Universidade Federal de Goiás, 74605-220 Goiânia−GO, Brasil
| | - Clever G. Cardoso
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, 74001-970 Goiânia−GO, Brasil
| | | | | | - Andris F. Bakuzis
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia−GO, Brasil
| |
Collapse
|