1
|
Shiratori T, Koga J, Shimojima T, Ishizaka K, Nakamura A. Development of ultrafast four-dimensional precession electron diffraction. Ultramicroscopy 2024; 267:114064. [PMID: 39467400 DOI: 10.1016/j.ultramic.2024.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Ultrafast electron diffraction/microscopy technique enables us to investigate the nonequilibrium dynamics of crystal structures in the femtosecond-nanosecond time domain. However, the electron diffraction intensities are in general extremely sensitive to the excitation errors (i.e., deviation from the Bragg condition) and the dynamical effects, which had prevented us from quantitatively discussing the crystal structure dynamics particularly in thick samples. Here, we develop a four-dimensional precession electron diffraction (4D-PED) system by which time (t) and electron-incident-angle (ϕ) dependences of electron diffraction patterns (qx,qy) are recorded. Nonequilibrium crystal structure refinement on VTe2 demonstrates that the ultrafast change in the crystal structure can be quantitatively determined from 4D-PED. We further perform the analysis of the ϕ dependence, from which we can qualitatively estimate the change in the reciprocal lattice vector parallel to the optical axis. These results show the capability of the 4D-PED method for the quantitative investigation of ultrafast crystal structural dynamics.
Collapse
Affiliation(s)
- Toshiya Shiratori
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Jumpei Koga
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| | - Takahiro Shimojima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Kyoko Ishizaka
- Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Asuka Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
| |
Collapse
|
2
|
Wu J, Prasad AK, Balatsky A, Weissenrieder J. Spatiotemporal determination of photoinduced strain in a Weyl semimetal. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:054301. [PMID: 39386199 PMCID: PMC11462575 DOI: 10.1063/4.0000263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/14/2024] [Indexed: 10/12/2024]
Abstract
The application of dynamic strain holds the potential to manipulate topological invariants in topological quantum materials. This study investigates dynamic structural deformation and strain modulation in the Weyl semimetal WTe2, focusing on the microscopic regions with static strain defects. The interplay of static strain fields, at local line defects, with dynamic strain induced from photo-excited coherent acoustic phonons results in the formation of local standing waves at the defect sites. The dynamic structural distortion is precisely determined utilizing ultrafast electron microscopy with nanometer spatial and gigahertz temporal resolutions. Numerical simulations are employed to interpret the experimental results and explain the mechanism for how the local strain fields are transiently modulated through light-matter interaction. This research provides the experimental foundation for investigating predicted phenomena such as the mixed axial-torsional anomaly, acoustogalvanic effect, and axial magnetoelectric effects in Weyl semimetals, and paves the road to manipulate quantum invariants through transient strain fields in quantum materials.
Collapse
Affiliation(s)
- Jianyu Wu
- Light and Matter Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Amit Kumar Prasad
- Light and Matter Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | | | - Jonas Weissenrieder
- Light and Matter Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
3
|
Zhou F, Liu H, Zajac M, Hwangbo K, Jiang Q, Chu JH, Xu X, Arslan I, Gage TE, Wen H. Ultrafast Nanoimaging of Spin-Mediated Shear Waves in an Acoustic Cavity. NANO LETTERS 2023; 23:10213-10220. [PMID: 37910440 DOI: 10.1021/acs.nanolett.3c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Strong spin-lattice coupling in van der Waals (vdW) magnets shows potential for innovative magneto-mechanical applications. Here, nanoscale and picosecond imaging by ultrafast electron microscopy reveal heterogeneous spin-mediated coherent acoustic phonon dynamics in a thin-film cavity of the vdW antiferromagnet FePS3. The harmonics of the interlayer shear acoustic modes are observed, in which the even and odd harmonics exhibit distinct nanoscopic dynamics. Corroborated by acoustic wave simulation, the role of defects in forming even harmonics is elucidated. Above the Néel temperature (TN), the interlayer shear acoustic harmonics are suppressed, while the in-plane traveling wave is predominantly excited. The dominant acoustic dynamics shifts from the out-of-plane shear to the in-plane traveling wave across TN, demonstrating that magnetic properties can influence phonon scattering pathways. The spatiotemporally resolved structural characterization provides valuable nanoscopic insights for interlayer-shear-mode-based acoustic cavities, opening up possibilities for magneto-mechanical applications of vdW magnets.
Collapse
Affiliation(s)
- Faran Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haihua Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Marc Zajac
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kyle Hwangbo
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Qianni Jiang
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Haidan Wen
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
4
|
Zhang Y, Li J, Wang W, Tian H, Gao W, Li J, Sun S, Yang H. Simulation of ultrafast electron diffraction intensity under coherent acoustic phonons. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:064102. [PMID: 38026579 PMCID: PMC10645478 DOI: 10.1063/4.0000199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Ultrafast electron diffraction has been proven to be a powerful tool for the study of coherent acoustic phonons owing to its high sensitivity to crystal structures. However, this sensitivity leads to complicated behavior of the diffraction intensity, which complicates the analysis process of phonons, especially higher harmonics. Here, we theoretically analyze the effects of photoinduced coherent transverse and longitudinal acoustic phonons on electron diffraction to provide a guide for the exploitation and modulation of coherent phonons. The simulation of the electron diffraction was performed in 30-nm films with different optical penetration depths based on the atomic displacements obtained by solving the wave equation. The simulation results exhibit a complex relationship between the frequencies of the phonons and diffraction signals, which highly depends on the laser penetration depth, sample thickness, and temporal stress distribution. In addition, an intensity decomposition method is proposed to account for the in-phase oscillation and high harmonics caused by inhomogeneous excitation. These results can provide new perspectives and insights for a comprehensive and accurate understanding of the lattice response under coherent phonons.
Collapse
Affiliation(s)
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | | | - Jianqi Li
- Authors to whom correspondence should be addressed:; ; and
| | - Shuaishuai Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Huaixin Yang
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
5
|
Iwasaki Y, Akase Z, Shimada K, Harada K, Shindo D. Time-resolved electron holography and its application to an ionic liquid specimen. Microscopy (Oxf) 2023; 72:455-459. [PMID: 36629509 PMCID: PMC10561666 DOI: 10.1093/jmicro/dfad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/12/2023] Open
Abstract
Time-resolved electron holography was implemented in a transmission electron microscope by means of electron beam gating with a parallel-plate electrostatic deflector. Stroboscopic observations were performed by accumulating gated electron interference images while applying a periodic modulation voltage to a specimen. Electric polarization in an ionic liquid specimen was observed under applied fields. While a static electric field in the specimen was reduced by the polarization of the material, an applied field modulated at 10 kHz was not screened. This indicates that time-resolved electron holography is capable of determining the frequency limit of dynamic response of polarization in materials. Graphical Abstract.
Collapse
Affiliation(s)
- Yoh Iwasaki
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Zentaro Akase
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Keiko Shimada
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ken Harada
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Shindo
- Center for Emergent Matter Science, Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Mori S, Tanimura H, Ichitsubo T, Sutou Y. Photoinduced Nonvolatile Displacive Transformation and Optical Switching in MnTe Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42730-42736. [PMID: 37640668 DOI: 10.1021/acsami.3c07537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
MnTe is considered a promising candidate for next-generation phase change materials owing to the reversible and nonvolatile phase transformation between its α and β' phases by irradiation of a nanosecond laser or application of a pulse voltage. In this work, for a faster phase control of MnTe, the response of metastable β-MnTe thin films to femtosecond (fs) laser irradiation was investigated. Using ultrafast optical spectroscopy, we inferred transient phase transformation. Moreover, with an increase in laser-excitation fluence, a nonvolatile structural change from the β to α phase was experimentally observed by Raman spectroscopy and transmission electron microscopy without ablation damage on the sample. The observation results strongly suggest that the fs-laser-induced β → α phase transformation proceeds through the nucleation and growth mode without a large temperature increase.
Collapse
Affiliation(s)
- Shunsuke Mori
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
| | - Hiroshi Tanimura
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tetsu Ichitsubo
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Yuji Sutou
- Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Aoba-ku, Sendai 980-8579, Japan
- WPI-Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Nakamura A, Shimojima T, Ishizaka K. Characterizing an Optically Induced Sub-micrometer Gigahertz Acoustic Wave in a Silicon Thin Plate. NANO LETTERS 2023; 23:2490-2495. [PMID: 36944354 PMCID: PMC10103304 DOI: 10.1021/acs.nanolett.2c03938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Optically induced GHz-THz guided acoustic waves have been intensively studied because of the potential to realize noninvasive and noncontact material inspection. Although the generation of photoinduced guided acoustic waves utilizing nanostructures, such as ultrathin plates, nanowires, and materials interfaces, is being established, experimental characterization of these acoustic waves in consideration of the finite size effect has been difficult due to the lack of experimental methods with nm × ps resolution. Here we experimentally observe the sub-micrometer guided acoustic waves in a nanofabricated ultrathin silicon plate by ultrafast transmission electron microscopy with nm × ps precision. We successfully characterize the excited guided acoustic wave in frequency-wavenumber space by applying Fourier-transformation analysis on the bright-field movie. These results suggest the great potential of ultrafast transmission electron microscopy to characterize the acoustic modes realized in various nanostructures.
Collapse
Affiliation(s)
- Asuka Nakamura
- RIKEN
Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | | | - Kyoko Ishizaka
- RIKEN
Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
- Quantum-Phase
Electronics Center and Department of Applied Physics, The University of Tokyo, Hongo, Tokyo 113-8656, Japan
| |
Collapse
|
8
|
Shimojima T, Nakamura A, Ishizaka K. Development of five-dimensional scanning transmission electron microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:023705. [PMID: 36859021 DOI: 10.1063/5.0106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
By combining the scanning transmission electron microscopy with the ultrafast optical pump-probe technique, we improved the time resolution by a factor of ∼1012 for the differential phase contrast and convergent-beam electron diffraction imaging. These methods provide ultrafast nanoscale movies of physical quantities in nano-materials, such as crystal lattice deformation, magnetization vector, and electric field. We demonstrate the observations of the photo-induced acoustic phonon propagation with an accuracy of 4 ps and 8 nm and the ultrafast demagnetization under zero magnetic field with 10 ns and 400 nm resolution, by utilizing these methods.
Collapse
Affiliation(s)
- T Shimojima
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - A Nakamura
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - K Ishizaka
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| |
Collapse
|
9
|
Ji S, Grånäs O, Kumar Prasad A, Weissenrieder J. Influence of strain on an ultrafast phase transition. NANOSCALE 2022; 15:304-312. [PMID: 36484465 PMCID: PMC9773179 DOI: 10.1039/d2nr03395j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The flexibility of 2D materials combined with properties highly sensitive to strain makes strain engineering a promising avenue for manipulation of both structure and function. Here we investigate the influence of strain, associated with microstructural defects, on a photo-induced structural phase transition in Td-WTe2. Above threshold photoexcitation of uniform, non-strained, samples result in an orthorhombic Td to a metastable orthorhombic 1T* phase transition facilitated by shear displacements of the WTe2 layers along the b axis of the material. In samples prepared with wrinkle defects WTe2 continue its trajectory through a secondary transition that shears the unit cell along the c axis towards a metastable monoclinic 1T' phase. The time scales and microstructural evolution associated with the transition and its subsequent recovery to the 1T* phase is followed in detail by a combination of ultrafast electron diffraction and microscopy. Our findings show how local strain fields can be employed for tailoring phase change dynamics in ultrafast optically driven processes with potential applications in phase change devices.
Collapse
Affiliation(s)
- Shaozheng Ji
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
- Ultrafast Electron Microscopy Laboratory, The MOE Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin 300071, China
| | - Oscar Grånäs
- Materials Theory, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Amit Kumar Prasad
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Jonas Weissenrieder
- Materials and Nano Physics, School of Engineering Sciences, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| |
Collapse
|
10
|
Honda A, Yamane K, Iwasa K, Oka K, Toda Y, Morita R. Ultrafast beam pattern modulation by superposition of chirped optical vortex pulses. Sci Rep 2022; 12:14991. [PMID: 36056048 PMCID: PMC9440229 DOI: 10.1038/s41598-022-18145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
As an extension of pulse shaping techniques using the space–time coupling of ultrashort pulses or chirped pulses, we demonstrated the ultrafast beam pattern modulation by the superposition of chirped optical vortex pulses with orthogonal spatial modes. The stable and robust modulations with a modulation frequency of sub-THz were carried out by using the precise phase control technique of the constituent pulses in both the spatial and time/frequency domains. The performed modulations were ultrafast ring-shaped optical lattice modulation with 2, 4 and 6 petals, and beam pattern modulations in the radial direction. The simple linear fringe modulation was also demonstrated with chirped spatially Gaussian pulses. While the input pulse energy of the pulses to be modulated was 360 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ, the output pulse energy of the modulated pulses was 115 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\upmu $$\end{document}μJ with the conversion efficiency of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}∼ 32%. Demonstrating the superposition of orthogonal spatial modes in several ways, this ultrafast beam pattern modulation technique with high intensity can be applicable to the spatially coherent excitation of quasi-particles or collective excitation of charge and spin with dynamic degrees of freedom. Furthermore, we analyzed the Poynting vector and OAM of the composed chirped OV pulses. Although the ring-shaped optical lattice composed of OV pulse with topological charges of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\pm \, \ell $$\end{document}±ℓ is rotated in a sub-THz frequency, the net orbital angular momentum (OAM) averaged over one optical period is found to be negligible. Hence, it is necessary to require careful attention to the application of the OAM transfer interaction with matter by employing such rotating ring-shaped optical lattices.
Collapse
Affiliation(s)
- Asami Honda
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Keisaku Yamane
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan.
| | - Kohei Iwasa
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Kazuhiko Oka
- Faculty of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Yasunori Toda
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan
| | - Ryuji Morita
- Department of Applied Physics, Hokkaido University, Kita-13, Nishi-8, Kita-ku, Sapporo, 060-8628, Japan.
| |
Collapse
|
11
|
Nakamura A, Shimojima T, Ishizaka K. Visualizing optically-induced strains by five-dimensional ultrafast electron microscopy. Faraday Discuss 2022; 237:27-39. [PMID: 35661182 DOI: 10.1039/d2fd00062h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrafast optical control of strain is crucial for the future development of nanometric acoustic devices. Although ultrafast electron microscopy has played an important role in the visualization of strain dynamics in the GHz frequency region, quantitative strain evaluation with nm × ps spatio-temporal resolution is still challenging. Five-dimensional scanning transmission electron microscopy (5D-STEM) is a powerful technique that measures time-dependent diffraction or deflection of the electron beam at the respective two-dimensional sample positions in real space. In this paper, we demonstrate that convergent beam electron diffraction (CBED) measurements using 5D-STEM are capable of quantitative time-dependent strain mapping in the nm × ps scale. We observe the generation and propagation of acoustic waves in a nanofabricated silicon thin plate of 100 nm thickness. The polarization and amplitude of the acoustic waves propagating in the silicon plate are quantitatively determined from the CBED analysis. Further Fourier-transformation analysis reveals the strain distribution in the momentum-frequency space, which gives the dispersion relation in arbitrary directions along the plate. Versatility of 5D-STEM-CBED analysis enables quantitative strain mapping even in complex nanofabricated samples, as demonstrated in this study.
Collapse
Affiliation(s)
- A Nakamura
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
| | - T Shimojima
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
| | - K Ishizaka
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan. .,Quantum-Phase Electronics Center and Department of Applied Physics, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| |
Collapse
|
12
|
Curtis WA, Flannigan DJ. Toward Å-fs-meV resolution in electron microscopy: systematic simulation of the temporal spread of single-electron packets. Phys Chem Chem Phys 2021; 23:23544-23553. [PMID: 34648611 DOI: 10.1039/d1cp03518e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Though efforts to improve the temporal resolution of transmission electron microscopes (TEMs) have waxed and waned for decades, with relatively recent advances routinely reaching sub-picosecond scales, fundamental and practical challenges have hindered the advance of combined Å-fs-meV resolutions, particularly for core-loss spectroscopy and real-space imaging. This is due in no small part to the complexity of the approach required to access timescales upon which electrons, atoms, molecules, and materials first begin to respond and transform - attoseconds to picoseconds. Here we present part of a larger effort devoted to systematically mapping the instrument parameter space of a TEM modified to reach ultrafast timescales. With General Particle Tracer, we studied the statistical temporal distributions of single-electron packets as a function of various fs pulsed-laser parameters and electron-gun configurations and fields for the exact architecture and dimensions of a Thermo Fisher Tecnai Femto ultrafast electron microscope. We focused on easily-adjustable parameters, such as laser pulse duration, laser spot size, photon energy, Wehnelt aperture diameter, and photocathode size. In addition to establishing trends and dispersion behaviors, we identify regimes within which packet duration can be 100s of fs and approach the 300 fs laser limit employed here. Overall, the results provide a detailed picture of the temporal behavior of single-electron packets in the Tecnai Femto gun region, forming the initial contribution of a larger effort.
Collapse
Affiliation(s)
- Wyatt A Curtis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA.
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
13
|
Brune V, Grosch M, Weißing R, Hartl F, Frank M, Mishra S, Mathur S. Influence of the choice of precursors on the synthesis of two-dimensional transition metal dichalcogenides. Dalton Trans 2021; 50:12365-12385. [PMID: 34318836 DOI: 10.1039/d1dt01397a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interest in transition metal dichalcogenides (TMDCs; MEy/2; M = transition metal; E = chalcogenide, y = valence of the metal) has grown exponentially across various science and engineering disciplines due to their unique structural chemistry manifested in a two-dimensional lattice that results in extraordinary electronic and transport properties desired for applications in sensors, energy storage and optoelectronic devices. Since the properties of TMDCs can be tailored by changing the stacking sequence of 2D monolayers with similar or dis-similar materials, a number of synthetic routes essentially based on the disintegration of bulk (e.g., chemical exfoliation) or the integration of atomic constituents (e.g., vapor phase growth) have been explored. Despite a large body of data available on the chemical synthesis of TMDCs, experimental strategies with high repeatability of control over film thickness, phase and compositional purity remain elusive, which calls for innovative synthetic concepts offering, for instance, self-limited growth in the z-direction and homogeneous lateral topography. This review summarizes the recent conceptual advancements in the growth of layered van der Waals TMDCs from both mixtures of metal and chalcogen sources (multi-source precursors; MSPs) and from molecular compounds containing metals and chalcogens in one starting material (single-source precursor; SSPs). The critical evaluation of the strengths, limitations and opportunities of MSP and SSP approaches is provided as a guideline for the fabrication of TMDCs from commercial and customized molecular precursors. For example, alternative synthetic pathways using tailored molecular precursors circumvent the challenges of differential nucleation and crystal growth kinetics that are invariably associated with conventional gas phase chemical vapor transport (CVT) and chemical vapor deposition (CVD) of a mixture of components. The aspects of achieving high compositional purity and alternatives to minimize competing reactions or side products are discussed in the context of efficient chemical synthesis of TMDCs. Moreover, a critical analysis of the potential opportunities and existing bottlenecks in the synthesis of TMDCs and their intrinsic properties is provided.
Collapse
Affiliation(s)
- Veronika Brune
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Matthias Grosch
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - René Weißing
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Fabian Hartl
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Michael Frank
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Shashank Mishra
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, IRCELYON, 2 avenue Albert Einstein, 69626 Villeurbanne, France.
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| |
Collapse
|
14
|
Reisbick SA, Zhang Y, Chen J, Engen PE, Flannigan DJ. Coherent Phonon Disruption and Lock-In during a Photoinduced Charge-Density-Wave Phase Transition. J Phys Chem Lett 2021; 12:6439-6447. [PMID: 34236194 DOI: 10.1021/acs.jpclett.1c01673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ultrafast manipulation of phase domains in quantum materials is a promising approach to unraveling and harnessing interwoven charge and lattice degrees of freedom. Here we find evidence for coupling of displacively excited coherent acoustic phonons (CAPs) and periodic lattice distortions (PLDs) in the intensely studied charge-density-wave material, 1T-TaS2, using 4D ultrafast electron microscopy (UEM). Initial photoinduced Bragg-peak dynamics reveal partial CAP coherence and localized c-axis dilations. Weak, partially coherent dynamics give way to higher-amplitude, increasingly coherent oscillations, the transition period of which matches that of photoinduced incommensurate domain growth and stabilization from the nearly-commensurate phase. With UEM imaging, it is found that phonon wave trains emerge from linear defects 100 ps after photoexcitation. The CAPs consist of coupled longitudinal and transverse character and propagate at anomalously high velocities along wave vectors independent from PLDs, instead being dictated by defect orientation. Such behaviors illustrate a means to control phases in quantum materials using defect-engineered coherent-phonon seeding.
Collapse
Affiliation(s)
- Spencer A Reisbick
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Yichao Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jialiang Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Paige E Engen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - David J Flannigan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Nakamura A, Shimojima T, Ishizaka K. Finite-element simulation of photoinduced strain dynamics in silicon thin plates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024103. [PMID: 33907699 PMCID: PMC8051961 DOI: 10.1063/4.0000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 11/14/2022]
Abstract
In this paper, we investigate the femtosecond-optical-pulse-induced strain dynamics in relatively thin (100 nm) and thick (10 000 nm) silicon plates based on finite-element simulations. In the thin sample, almost spatially homogeneous excitation by the optical pulse predominantly generates a standing wave of the lowest-order acoustic resonance mode along the out-of-plane direction. At the same time, laterally propagating plate waves are emitted at the sample edge through the open edge deformation. Fourier transformation analysis reveals that the plate waves in the thin sample are mainly composed of two symmetric Lamb waves, reflecting the spatially uniform photoexcitation. In the thick sample, on the other hand, only the near surface region is photo-excited and thus a strain pulse that propagates along the out-of-plane direction is generated, accompanying the laterally propagating pulse-like strain dynamics through the edge deformation. These lateral strain pulses consist of multiple Lamb waves, including asymmetric and higher-order symmetric modes. Our simulations quantitatively demonstrate the out-of-plane and in-plane photoinduced strain dynamics in realistic silicon plates, ranging from the plate wave form to pulse trains, depending on material parameters such as sample thickness, optical penetration depth, and sound velocity.
Collapse
Affiliation(s)
- A. Nakamura
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - T. Shimojima
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
16
|
Mitsuishi N, Sugita Y, Bahramy MS, Kamitani M, Sonobe T, Sakano M, Shimojima T, Takahashi H, Sakai H, Horiba K, Kumigashira H, Taguchi K, Miyamoto K, Okuda T, Ishiwata S, Motome Y, Ishizaka K. Switching of band inversion and topological surface states by charge density wave. Nat Commun 2020; 11:2466. [PMID: 32424170 PMCID: PMC7235022 DOI: 10.1038/s41467-020-16290-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/25/2020] [Indexed: 11/10/2022] Open
Abstract
Topologically nontrivial materials host protected edge states associated with the bulk band inversion through the bulk-edge correspondence. Manipulating such edge states is highly desired for developing new functions and devices practically using their dissipation-less nature and spin-momentum locking. Here we introduce a transition-metal dichalcogenide VTe2, that hosts a charge density wave (CDW) coupled with the band inversion involving V3d and Te5p orbitals. Spin- and angle-resolved photoemission spectroscopy with first-principles calculations reveal the huge anisotropic modification of the bulk electronic structure by the CDW formation, accompanying the selective disappearance of Dirac-type spin-polarized topological surface states that exist in the normal state. Thorough three dimensional investigation of bulk states indicates that the corresponding band inversion at the Brillouin zone boundary dissolves upon the CDW formation, by transforming into anomalous flat bands. Our finding provides a new insight to the topological manipulation of matters by utilizing CDWs' flexible characters to external stimuli.
Collapse
Affiliation(s)
- N Mitsuishi
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan
| | - Y Sugita
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
| | - M S Bahramy
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - M Kamitani
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan
| | - T Sonobe
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan
| | - M Sakano
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan
| | - T Shimojima
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan
| | - H Takahashi
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - H Sakai
- Department of Physics, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - K Horiba
- Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - H Kumigashira
- Condensed Matter Research Center and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan
| | - K Taguchi
- Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
| | - K Miyamoto
- Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
| | - T Okuda
- Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan
| | - S Ishiwata
- Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, 560-8531, Japan
| | - Y Motome
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan
| | - K Ishizaka
- Department of Applied Physics, The University of Tokyo, Tokyo, 113-8656, Japan.
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, Wako, 113-8656, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
| |
Collapse
|