1
|
Kempler PA, Coridan RH, Luo L. Gas Evolution in Water Electrolysis. Chem Rev 2024; 124:10964-11007. [PMID: 39259040 DOI: 10.1021/acs.chemrev.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Gas bubbles generated by the hydrogen evolution reaction and oxygen evolution reaction during water electrolysis influence the energy conversion efficiency of hydrogen production. Here, we survey what is known about the interaction of gas bubbles and electrode surfaces and the influence of gas evolution on practicable devices used for water electrolysis. We outline the physical processes occurring during the life cycle of a bubble, summarize techniques used to characterize gas evolution phenomena in situ and in practical device environments, and discuss ways that electrodes can be tailored to facilitate gas removal at high current densities. Lastly, we review efforts to model the behavior of individual gas bubbles and multiphase flows produced at gas-evolving electrodes. We conclude our review with a short summary of outstanding questions that could be answered by future efforts to characterize gas evolution in electrochemical device environments or by improved simulations of multiphase flows.
Collapse
Affiliation(s)
- Paul A Kempler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Robert H Coridan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Long Luo
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Ma C, Zhu Y, Zhang Z, Chen X, Ji Z, Zhang LN, Xu Q. Ratiometric electrochemiluminescence sensing and intracellular imaging of ClO - via resonance energy transfer. Anal Bioanal Chem 2024; 416:4691-4703. [PMID: 38512384 DOI: 10.1007/s00216-024-05236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Electrochemiluminescence resonance energy transfer (ECL-RET) is a versatile signal transduction strategy widely used in the fabrication of chem/biosensors. However, this technique has not yet been applied in visualized imaging analysis of intracellular species due to the insulating nature of the cell membrane. Here, we construct a ratiometric ECL-RET analytical method for hypochlorite ions (ClO-) by ECL luminophore, with a luminol derivative (L-012) as the donor and a fluorescence probe (fluorescein hydrazide) as the acceptor. L-012 can emit a strong blue ECL signal and fluorescein hydrazide has negligible absorbance and fluorescence signal in the absence of ClO-. Thus, the ECL-RET process is turned off at this time. In the presence of ClO-, however, the closed-loop hydrazide structure in fluorescein hydrazide is opened via specific recognition with ClO-, accompanied with intensified absorbance and fluorescence signal. Thanks to the spectral overlap between the ECL spectrum of L-012 and the absorption spectrum of fluorescein, the ECL-RET effect is gradually recovered with the addition of ClO-. Furthermore, the ECL-RET system has been successfully applied to image intracellular ClO-. Although the insulating nature of the cell itself can generate a shadow ECL pattern in the cellular region, extracellular ECL emission penetrates the cell membrane and excites intracellular fluorescein generated by the reactions between fluorescein hydrazide and ClO-. The cell imaging strategy via ECL-RET circumvents the blocking of the cell membrane and enables assays of intracellular species. The importance of the ECL-RET platform lies in calibrating the fluctuation from the external environment and improving the selectivity by using fluorescent probes. Therefore, this ratiometric ECL sensor has shown broad application prospects in the identification of targets in clinical diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| | - Yujing Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhichen Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Xuan Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Lu-Nan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, YangzhouJiangsu, 225002, China.
| |
Collapse
|
3
|
Clarke TB, Krushinski LE, Vannoy KJ, Colón-Quintana G, Roy K, Rana A, Renault C, Hill ML, Dick JE. Single Entity Electrocatalysis. Chem Rev 2024; 124:9015-9080. [PMID: 39018111 DOI: 10.1021/acs.chemrev.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
Making a measurement over millions of nanoparticles or exposed crystal facets seldom reports on reactivity of a single nanoparticle or facet, which may depart drastically from ensemble measurements. Within the past 30 years, science has moved toward studying the reactivity of single atoms, molecules, and nanoparticles, one at a time. This shift has been fueled by the realization that everything changes at the nanoscale, especially important industrially relevant properties like those important to electrocatalysis. Studying single nanoscale entities, however, is not trivial and has required the development of new measurement tools. This review explores a tale of the clever use of old and new measurement tools to study electrocatalysis at the single entity level. We explore in detail the complex interrelationship between measurement method, electrocatalytic material, and reaction of interest (e.g., carbon dioxide reduction, oxygen reduction, hydrazine oxidation, etc.). We end with our perspective on the future of single entity electrocatalysis with a key focus on what types of measurements present the greatest opportunity for fundamental discovery.
Collapse
Affiliation(s)
- Thomas B Clarke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kathryn J Vannoy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Kingshuk Roy
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Christophe Renault
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Megan L Hill
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Zhao X, Chen H, Cui Y, Zhang X, Hao R. Dual-Mode Imaging of Dynamic Interaction between Bubbles and Single Nanoplates during the Electrocatalytic Hydrogen Evolution Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400273. [PMID: 38552218 DOI: 10.1002/smll.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/20/2024] [Indexed: 08/17/2024]
Abstract
Gas bubble formation at electrochemical interfaces can significantly affect the efficiency and durability of electrocatalysts. However, obtaining comprehensive details on bubble evolution dynamics, particularly their dynamic interaction with high-performance structured electrocatalysts, poses a considerable challenge. Herein, dual-mode interference/total internal reflection fluorescence microscopy is introduced, which allows for the simultaneous capture of the evolution pathway of bubbles and the 3D motion of nanoplate electrocatalysts, providing high-resolution and accurate spatiotemporal information. During the hydrogen evolution reaction, the dynamics of hydrogen bubble generation and their interactions with single nanoplate electrocatalysts at the electrochemical interface are observed. The results unveiled that, under constant potential, bubbles initially manifest as fast-moving nanobubbles, transforming into stationary microbubbles subsequently. The morphology of stationary nanoplates regulates the trajectories of these moving nanobubbles while the pinned microbubbles induce the motion of the electrocatalysts. The dual-mode microscopy can be employed to scrutinize numerous multiphase electrochemical interactions with high spatiotemporal resolution, which can facilitate the rational design of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Houkai Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Cui
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyu Zhang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
5
|
Fang R, He H, Wang Z, Han YC, Fan FR. Rapid synthesis of high-purity molybdenum carbide with controlled crystal phases. MATERIALS HORIZONS 2024; 11:3595-3603. [PMID: 38742402 DOI: 10.1039/d4mh00225c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The synthesis of phase-pure carbide nanomaterials is crucial for understanding their structure-performance relationships, and for advancing their application in catalysis. Molybdenum carbides, in particular, have garnered increasing interest due to their Pt-like surface electronic properties and high catalytic activity. Traditional methods for synthesizing molybdenum carbide are often lengthy and energy-intensive, leading to an uncontrolled phase, low purity, and excessive carbon coverage, which hinder their catalytic performance improvement. This work introduces a novel pulsed Joule heating (PJH) technique that overcomes these limitations, enabling the controlled synthesis of high-purity molybdenum carbides (β-Mo2C, η-MoC1-x, and α-MoC1-x) within seconds by using MoOx/4-Cl-o-phenylenediamine as the hybrid precursor. The PJH method allows precise control over the diffusion of carbon species in the Mo-C system, resulting in a significantly improved phase purity of up to 96.89 wt%. Moreover, the electronic structure of platinum catalysts on molybdenum carbide was modulated through electron metal-support interaction (EMSI) between Pt and MoxC, and contributed to enhanced catalytic performance compared to carbon-supported Pt catalysts during the hydrogen evolution reaction. Overall, this work paves the way for efficient production of high-quality molybdenum carbide nanomaterials, and thus is expected to accelerate their industrial deployments in practical catalytic reactions.
Collapse
Affiliation(s)
- Renjie Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Haoxian He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Zhiyi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Ye-Chuang Han
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Xue JW, Xu CH, Zhao W, Chen HY, Xu JJ. Unveiling the Dynamic Electrocatalytic Activity of Online Synthesized Bimetallic Nanocatalysts via Electrochemiluminescence Microscopy. NANO LETTERS 2024; 24:4665-4671. [PMID: 38587938 DOI: 10.1021/acs.nanolett.4c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Effective bimetallic nanoelectrocatalysis demands precise control of composition, structure, and understanding catalytic mechanisms. To address these challenges, we employ a two-in-one approach, integrating online synthesis with real-time imaging of bimetallic Au@Metal core-shell nanoparticles (Au@M NPs) via electrochemiluminescence microscopy (ECLM). Within 120 s, online electrodeposition and in situ catalytic activity screening alternate. ECLM captures transient faradaic processes during potential switches, visualizes electrochemical processes in real-time, and tracks catalytic activity dynamics at the single-particle level. Analysis using ECL photon flux density eliminates size effects and yields quantitative electrocatalytic activity results. Notably, a nonlinear activity trend corresponding to the shell metal to Au surface atomic ratio is discerned, quantifying the optimal surface component ratio of Au@M NPs. This approach offers a comprehensive understanding of catalytic behavior during the deposition process with high spatiotemporal resolution, which is crucial for tailoring efficient bimetallic nanocatalysts for diverse applications.
Collapse
Affiliation(s)
- Jing-Wei Xue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cong-Hui Xu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Wei Zhao
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Saqib M, Zafar M, Halawa MI, Murtaza S, Kamal GM, Xu G. Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects. ACS MEASUREMENT SCIENCE AU 2024; 4:3-24. [PMID: 38404493 PMCID: PMC10885340 DOI: 10.1021/acsmeasuresciau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure-activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mariam Zafar
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohamed Ibrahim Halawa
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Shahzad Murtaza
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Li Y, Wan Y, Fu X, Chen J, Wu W, Feng X, Man T, Huang Y, Piao Y, Zhu L, Lei J, Deng S. Sub-Second Electrochemiluminescence Imaging Assay of SARS-CoV-2 Nucleocapsid Protein Based on Reticulation of Endo-Coreactants. Anal Chem 2024. [PMID: 38335519 DOI: 10.1021/acs.analchem.3c05388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The nonphotodriven electrochemiluminescence (ECL) imageology necessitates concentrated coreacting additives plus longtime exposures. Seeking biosafe and streamlined ensembles can help lower the bar for quality ECL bioimaging to which call the crystallized endo-coreaction in nanoreticula might provide a potent solution. Herein, an exo-coreactant-free ECL visualizer was fabricated out in one-pot, which densified the dyad triethylamine analogue: 1,4-diazabicyclo-[2.2.2]octane (DABCO) in the lamellar hive of 9,10-di(p-carboxyphenyl)anthracene (DPA)-Zn2+. This biligated non-noble metal-organic framework (m-MOF) facilitated a self-contained anodic ECL with a yield as much as 70% of Ru(bPy)32+ in blank phosphate buffered saline. Its featured two-stage emissions rendered an efficient and endurant CCD imaging at 1.0 V under mere 0.5 s swift snapshots and 0.1 s step-pulsed stimulation. Upon structural and spectral cause analyses as well as parametric set optimization, simplistic ECL-graphic immunoassay was mounted in the in situ imager to enact an ultrasensitive measurement of coronaviral N-protein in both signal-on and off modes by the privilege of straight surface amidation on m-MOFs, resulting in a wide dynamic range (10-4-10 ng/mL), a competent detection limit down to 56 fg/mL, along with nice precision and parallelism in human saliva tests. The overall work manifests a rudimentary endeavor in self-sufficient ECL visuality for brisk, biocompatible, and brilliant production of point-of-care diagnostic "Big Data".
Collapse
Affiliation(s)
- Yuansheng Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuanyu Fu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihan Wu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xuyu Feng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yaqi Huang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jianping Lei
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210003, China
| | - Shengyuan Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
9
|
Han D, Fang D, Valenti G, Paolucci F, Kanoufi F, Jiang D, Sojic N. Dynamic Mapping of Electrochemiluminescence Reactivity in Space: Application to Bead-Based Assays. Anal Chem 2023; 95:15700-15706. [PMID: 37815364 DOI: 10.1021/acs.analchem.3c02960] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
As an electrochemical technique offering an optical readout, electrochemiluminescence (ECL) evolved recently into a powerful microscopy technique with the visualization of a wide range of microscopic entities. However, the dynamic imaging of transient ECL events did not receive intensive attention due to the limited number of electrogenerated photons. Here, the reaction kinetics of the model ECL bioassay system was revealed by dynamic imaging of single [Ru(bpy)3]2+-functionalized beads in the presence of the efficient tripropylamine coreactant. The time profile behavior of ECL emission, the variations of the ECL layer thickness, and the position of maximum ECL intensity over time were investigated, which were not achieved by static imaging in previous studies. Moreover, the dynamics of the ECL emission were confronted with the simulation. The reported dynamic ECL imaging allows the investigation of the ECL kinetics and mechanisms operating in bioassays and cell microscopy.
Collapse
Affiliation(s)
- Dongni Han
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, Pessac 33607, France
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Danjun Fang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211126, China
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, Bologna 40126, Italy
| | | | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Neso Sojic
- CNRS, Bordeaux INP, ISM, UMR 5255, ENSCBP, Univ. Bordeaux, Pessac 33607, France
| |
Collapse
|
10
|
Li R, Yang G, He Y, Zhao J, Yuan R, Chen S. Coreactant-free dual-emitting conjugated polymer for ratiometric electrochemiluminescence detection of SARS-CoV-2 RdRp gene. Biosens Bioelectron 2023; 237:115539. [PMID: 37487285 DOI: 10.1016/j.bios.2023.115539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/21/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Constructing mono-luminophor-based electrochemiluminescence (ECL) ratio system is a great challenge due to the limitations of the luminescent species with dual-signal-output, luminescence efficiency and coreactant. This work developed carboxyl-functionalized poly[9,9-bis(3'-(N,N-dimethylamino) propyl)-2,7-fluorene]-alt-2,7-(9,9 dioctylfluorene)] nanoparticles(PFN NPs) as dual-emitting luminophors, which can synchronously output strong cathodic and anodic ECL signals without any exogenous coreactants. The inherent molecular structure enabled efficient intramolecular electron transfer between tertiary amine groups and backbone of PFN to generate strong cathodic and anodic ECL emission. Particularly, H+ in aqueous solution played an irreplaceable role for cathodic ECL emission. The silver nanoparticles (AgNPs) were developed as signal regulator because of their excellent hydrogen evolution reaction (HER) activity, which significantly quenched the cathodic signal while kept the anodic signal unchanged. The dual-emitting PFN NPs cleverly integrated signal regulator AgNPs and bicyclic strand displacement amplification (SDA) to construct a coreactant-free mono-luminophor-based ratiometric ECL sensing for SARS-CoV-2 RdRp gene assay. The strong dual-emitting of PFN NPs and excellent quenching effect of AgNPs on cathodic emission endowed the biosensor with a high detection sensitivity, and the detection limit was as low as 39 aM for RdRp gene. The unique dual-emitting properties of PFN NPs open up a new path to construct coreactant-free mono-luminophor-based ECL ratio platform, and excellent HER activity of AgNPs offers some new thoughts for realizing ECL signal changes.
Collapse
Affiliation(s)
- Rongfang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Guomin Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Jinwen Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shihong Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
11
|
Xing Z, Gou X, Jiang LP, Zhu JJ, Ma C. An In Situ Investigation of the Protein Corona Formation Kinetics of Single Nanomedicine Carriers by Self-Regulated Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202308950. [PMID: 37553293 DOI: 10.1002/anie.202308950] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
Protein coronas are present extensively at the bio-nano interface due to the natural adsorption of proteins onto nanomaterials in biological fluids. Aside from the robust property of nanoparticles, the dynamics of the protein corona shell largely define their chemical identity by altering interface properties. However, the soft coronas are normally complex and rapidly changing. To real-time monitor the entire formation, we report here a self-regulated electrochemiluminescence (ECL) microscopy based on the interaction of the Ru(bpy)3 3+ with the nanoparticle surface. Thus, the heterogeneity of the protein corona is in situ observed in single nanoparticle "cores" before and after loading drugs in nanomedicine carriers. The label-free, optical stable and dynamic ECL microscopy minimize misinterpretations caused by the variation of nanoparticle size and polydispersity. Accordingly, the synergetic actions of proteins and nanoparticles properties are uncovered by chemically engineered protein corona. After comparing the protein corona formation kinetics in different complex systems and different nanomedicine carriers, the universality and accuracy of this technique were well demonstrated via the protein corona formation kinetics curves regulated by competitive adsorption of Ru(bpy)3 3+ and multiple proteins on surface of various carriers. The work is of great significance for studying bio-nano interface in drug delivery and targeted cancer treatment.
Collapse
Affiliation(s)
- Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, 225002, Yangzhou, P. R. China
| |
Collapse
|
12
|
Hwang H, Oh H, Song H. Shaping Copper Oxide Layers on Gold Nanoparticle Ensembles by Controlled Electrodeposition with Single Particle Scatterometry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301241. [PMID: 37086124 DOI: 10.1002/smll.202301241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Electrodeposition of copper on gold nanoelectrode ensembles result in the formation of uniform copper oxide layers on individual nanoparticles. A linear sweep of voltammetric change induces three distinct morphologies dependent upon particle density. Ex situ imaging and in situ scatterometry at a single-particle level identifies multi-step electrochemical growth sequences that deviated from classical nucleation and growth pathways. In addition, the study demonstrated the possibility of synthesizing sophisticated structures based on the symmetry of nanoelectrodes. This result guides the nanoscale morphology control of electrode ensembles with potential application in electrocatalysis and sensing.
Collapse
Affiliation(s)
- Hyunsik Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyuncheol Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyunjoon Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Yang X, Hang J, Qu W, Wang Y, Wang L, Zhou P, Ding H, Su B, Lei J, Guo W, Dai Z. Gold Microbeads Enabled Proximity Electrochemiluminescence for Highly Sensitive and Size-Encoded Multiplex Immunoassays. J Am Chem Soc 2023; 145:16026-16036. [PMID: 37458419 DOI: 10.1021/jacs.3c04250] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Developing highly sensitive multiplex immunoassays is urgently needed to guide medical research and improve clinical diagnosis. Here, we report the proximity electrochemiluminescence (ECL) generation enabled by gold microbeads (GMBs) for improving the detection sensitivity and multiplexing capacity of ECL immunoassays (ECLIAs). As demonstrated by microscopy and finite element simulation, GMBs can function as spherical ultramicroelectrodes for triggering ECL reactions in solutions. Employing GMBs as solid carriers in the bead-based ECLIA, the electrochemical oxidation of a coreactant can occur at both the GMB surface and the substrate electrode, allowing the coreactant radicals to diffuse only a short distance of ∼100 nm to react with ECL luminophores that are labeled on the GMB surface. The ECL generation via this proximity low oxidation potential (LOP) route results in a 21.7-fold increase in the turnover frequency of ECL generation compared with the non-conductive microbeads that rely exclusively on the conventional LOP route. Moreover, the proximity ECL generation is not restricted by the diffusion distance of short-lived coreactant radicals, which enables the simultaneous determination of multiple acute myocardial infarction biomarkers using size-encoded GMB-based multiplex ECLIAs. This work brings new insight into the understanding of ECL mechanisms and may advance the practical use of multiplex ECLIAs.
Collapse
Affiliation(s)
- Xinrui Yang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Junmeng Hang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Weiyu Qu
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yulan Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lei Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hao Ding
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Weiliang Guo
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
14
|
Zhu H, Zhou JL, Ma C, Jiang D, Cao Y, Zhu JJ. Self-Enhanced Electrochemiluminescence Imaging System Based on the Accelerated Generation of ROS under Ultrasound. Anal Chem 2023. [PMID: 37463345 DOI: 10.1021/acs.analchem.3c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Electrochemiluminescence (ECL) imaging, as an optical technology, has been developed at full tilt in the field of life science and nanomaterials. However, the relatively low ECL intensity or the high co-reactant concentration needed in the electrochemical reaction blocks its practical application. Here, we developed an ECL imaging system based on the rGO-TiO2-x composite material, where the co-reactant, reactive oxygen species (ROS), is generated in situ under the synergetic effect of of ultrasound (US) and electric irradiation. The rGO-TiO2-x composites facilitate the separation of electron (e-) and hole (h+) pairs and inhibit recombination triggered by external US irradiation due to the high electroconductivity of rGO and oxygen-deficient structures of TiO2, thus significantly boosting ROS generation. Furthermore, the increased defects on rGO accelerate the electron transfer rate, improving the electrocatalytic performance of the composite and forming more ROS. This high ultrasonic-electric synergistic efficacy is demonstrated through the enhancement of photon emission. Compared with the luminescence intensity triggered by US irradiation and electric field, an enhancement of ∼20-fold and 10-fold of the US combined with electric field-triggered emission is observed from this composite. Under the optimized conditions, using dopamine (DA) as a model target, the sensitivity of the US combined ECL strategy for detection of DA is two orders of magnitude higher than that of the ECL method. The successful detection of DA at low concentrations makes us believe that this strategy provides the possibility of applying ECL imaging for cellular single-molecule analysis and cancer therapy.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jia-Lin Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210046, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Xue JW, Xu CH, Zhao W, Chen HY, Xu JJ. Photoinduced Electrogenerated Chemiluminescence Imaging of Plasmonic Photoelectrochemistry at Single Nanocatalysts. NANO LETTERS 2023; 23:4572-4578. [PMID: 37171253 DOI: 10.1021/acs.nanolett.3c01028] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In this study, we proposed a novel imaging technique, photoinduced electrogenerated chemiluminescence microscopy (PECLM), to monitor redox reactions driven by hot carriers on single gold nanoparticles (AuNPs) on TiO2. Under laser irradiation, plasmon-generated hot carriers were separated by an electric field, leaving hot holes on the surface of AuNPs to drive ECL reactions. PECL intensity was highly sensitive to the number of hot carriers. Through quantitative image analysis, we found that PECL density on individual AuNPs decreased significantly with an increase in particle diameter, indicating that particle size has a significant impact on photoelectrochemical conversion efficiency. For the first time, we verified the feasibility of PECLM in mapping the catalytic activity of single photocatalysts. PECLM opens a new prospect for the in situ imaging of photocatalysis in a high-throughput way, which not only facilitates the optimization of plasmonic photocatalysts but also contributes to the dynamic study of photocatalytic processes on micro/nanointerfaces.
Collapse
Affiliation(s)
- Jing-Wei Xue
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
16
|
Chen X, Liu Y, Wang B, Liu X, Lu C. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Zhao G, Du Y, Zhang N, Li C, Ma H, Wu D, Cao W, Wang Y, Wei Q. Dual-quenching mechanisms in electrochemiluminescence immunoassay based on zinc-based MOFs of ruthenium hybrid for D-dimer detection. Anal Chim Acta 2023; 1253:341076. [PMID: 36965992 DOI: 10.1016/j.aca.2023.341076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/11/2023]
Abstract
The successful application of electrochemiluminescence (ECL) in immunoassay for clinical diagnosis requires improving sensitivity and accuracy. Herein was reported an ECL analytical model based zinc-based metal-organic frameworks of ruthenium hybrid (RuZn MOFs) as the signal emitter. To enlarge the output difference, the quenching effect of three different noble metal nanoparticles included palladium seeds (Pdseeds), palladium octahedrons (Pdoct), and Pt-based palladium (Pd@Ptoct) core-shell were researched. Among them, Pd@Ptoct core-shell possessed higher activity and improved durability than Pd-only (NPs), they could load more protein macromolecules amicably and stabilized in the analysis system. Furthermore, since the charge redistribution owing to the hybridization of the Pt and Pd atoms in Pd@Ptoct, it could generate the electron flow maximumly from the emitter RuZn MOFs to Pd@Ptoct and result in the enhancement of quenching ECL. And the UV absorption of noble metal nanoparticles overlapped with the ECL emission of RuZn MOFs to varying degrees, which caused the behavior of resonance energy transfer (RET) reaction at the same time. This would greatly promote the sensitivity of this ECL system compared with the traditional single quenching mechanism. Based on this, a signal-off immunsensor was constructed to sensitive detection of D-dimer with linearity range from 0.001 to 200 ng mL-1, limit of detection (LOD) was 0.20 pg mL-1 and provide a further theoretical basis for the clinical application of ECL technology.
Collapse
Affiliation(s)
- Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chenchen Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yaoguang Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
18
|
Lu Y, Huang X, Wang S, Li B, Liu B. Nanoconfinement-Enhanced Electrochemiluminescence for in Situ Imaging of Single Biomolecules. ACS NANO 2023; 17:3809-3817. [PMID: 36800173 DOI: 10.1021/acsnano.2c11934] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Direct imaging of electrochemical reactions at the single-molecule level is of potential interest in materials, diagnostic, and catalysis applications. Electrochemiluminescence (ECL) offers the opportunity to convert redox events into photons. However, it is challenging to capture single photons emitted from a single-molecule ECL reaction at a specific location, thus limiting high-quality imaging applications. We developed the nanoreactors based on Ru(bpy)32+-doped nanoporous zeolite nanoparticles (Ru@zeolite) for direct visualization of nanoconfinement-enhanced ECL reactions. Each nanoreactor not only acts as a matrix to host Ru(bpy)32+ molecules but also provides a nanoconfined environment for the collision reactions of Ru(bpy)32+ and co-reactant radicals to realize efficient in situ ECL reactions. The nanoscale confinement resulted in enhanced ECL. Using such nanoreactors as ECL probes, a dual-signal sensing protocol for visual tracking of a single biomolecule was performed. High-resolution imaging of single membrane proteins on heterogeneous cells was effectively addressed with near-zero backgrounds. This could provide a more sensitive tool for imaging individual biomolecules and significantly advance ECL imaging in biological applications.
Collapse
Affiliation(s)
- Yanwei Lu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuedong Huang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Shurong Wang
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Laboratory of Molecular Engineering of Polymers and Institute of Biomedical Sciences, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
19
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
20
|
Yang Q, Huang X, Gao B, Gao L, Yu F, Wang F. Advances in electrochemiluminescence for single-cell analysis. Analyst 2022; 148:9-25. [PMID: 36475529 DOI: 10.1039/d2an01159j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent years have witnessed the emergence of innovative analytical methods with high sensitivity and spatiotemporal resolution that allowed qualitative and quantitative analysis to be carried out at single-cell and subcellular levels. Electrochemiluminescence (ECL) is a unique chemiluminescence of high-energy electron transfer triggered by electrical excitation. The ingenious combination of electrochemistry and chemiluminescence results in the distinct advantages of high sensitivity, a wide dynamic range and good reproducibility. Specifically, single-cell ECL (SCECL) analysis with excellent spatiotemporal resolution has emerged as a promising toolbox in bioanalysis for revealing individual cells' heterogeneity and stochastic processes. This review focuses on advances in SCECL analysis and bioimaging. The history and recent advances in ECL probes and strategies for system design are briefly reviewed. Subsequently, the latest advances in representative SCECL analysis techniques for bioassays, bioimaging and therapeutics are also highlighted. Then, the current challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Qian Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China. .,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Xiaoyu Huang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Beibei Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lu Gao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China.
| | - Fu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Li B, Huang X, Lu Y, Fan Z, Li B, Jiang D, Sojic N, Liu B. High Electrochemiluminescence from Ru(bpy) 3 2+ Embedded Metal-Organic Frameworks to Visualize Single Molecule Movement at the Cellular Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204715. [PMID: 36328787 PMCID: PMC9762315 DOI: 10.1002/advs.202204715] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Indexed: 05/04/2023]
Abstract
Direct imaging of single-molecule and its movement is of fundamental importance in biology, but challenging. Herein, aided by the nanoconfinement effect and resultant high reaction activity within metal-organic frameworks (MOFs), the designed Ru(bpy)3 2+ embedded MOF complex (RuMOFs) exhibits bright electrochemiluminescence (ECL) emission permitting high-quality imaging of ECL events at single molecule level. By labeling individual proteins of living cells with single RuMOFs, the distribution of membrane tyrosine-protein-kinase-like7 (PTK7) proteins at low-expressing cells is imaged via ECL. More importantly, the efficient capture of ECL photons generated inside the MOFs results in a stable ECL emission up to 1 h, allowing the in operando visualization of protein movements at the cellular membrane. As compared with the fluorescence observation, near-zero ECL background surrounding the target protein with the ECL emitter gives a better contrast for the dynamic imaging of discrete protein movement. This achievement of single molecule ECL dynamic imaging using RuMOFs will provide a more effective nanoemitter to observe the distribution and motion of individual proteins at living cells.
Collapse
Affiliation(s)
- Binxiao Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Xuedong Huang
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Yanwei Lu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Zihui Fan
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Bin Li
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210093China
| | - Neso Sojic
- Bordeaux INPInstitute of Molecular Science (ISM), and CNRS UMR 5255University of BordeauxPessac33607France
| | - Baohong Liu
- Department of ChemistryShanghai Stomatological HospitalState Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433China
| |
Collapse
|
22
|
Liu Y, Li B, Liu B, Zhang K. Single-Particle Optical Imaging for Ultrasensitive Bioanalysis. BIOSENSORS 2022; 12:1105. [PMID: 36551072 PMCID: PMC9775667 DOI: 10.3390/bios12121105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The quantitative detection of critical biomolecules and in particular low-abundance biomarkers in biofluids is crucial for early-stage diagnosis and management but remains a challenge largely owing to the insufficient sensitivity of existing ensemble-sensing methods. The single-particle imaging technique has emerged as an important tool to analyze ultralow-abundance biomolecules by engineering and exploiting the distinct physical and chemical property of individual luminescent particles. In this review, we focus and survey the latest advances in single-particle optical imaging (OSPI) for ultrasensitive bioanalysis pertaining to basic biological studies and clinical applications. We first introduce state-of-the-art OSPI techniques, including fluorescence, surface-enhanced Raman scattering, electrochemiluminescence, and dark-field scattering, with emphasis on the contributions of various metal and nonmetal nano-labels to the improvement of the signal-to-noise ratio. During the discussion of individual techniques, we also highlight their applications in spatial-temporal measurement of key biomarkers such as proteins, nucleic acids and extracellular vesicles with single-entity sensitivity. To that end, we discuss the current challenges and prospective trends of single-particle optical-imaging-based bioanalysis.
Collapse
Affiliation(s)
- Yujie Liu
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Binxiao Li
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, State Key Lab of Molecular Engineering of Polymers, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Kun Zhang
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
23
|
Ma C, Xing Z, Gou X, Jiang LP, Zhu JJ. A temperature-tuned electrochemiluminescence layer for reversibly imaging cell topography. Chem Sci 2022; 13:13938-13947. [PMID: 36544730 PMCID: PMC9710227 DOI: 10.1039/d2sc04944a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Investigating electrochemiluminescence (ECL) scenarios under different temperatures is important to expand its imaging scope near an electrode surface. Here, we develop a temperature-tuned ECL layer by recording the evolution of shadow regions of adherent cells. Finite element simulation and experimental results demonstrate that the thickness of the ECL layer (TEL) is reversibly regulated by electrode temperature (T e), so that single cell topography at different heights is imaged. The TEL in two ECL routes shows different regulation ranges with elevated T e, thus providing a flexible approach to adjust the imaging scope within specific heights. In addition, a heated electrode significantly improves the image quality of cell adhesion in heterogeneous electrochemical rate-determined situations. Thus, the contrast in cell regions shows a reversible response to T e. This work provides a new approach to regulate the TEL and is promising for monitoring transient heat generation from biological entities.
Collapse
Affiliation(s)
- Cheng Ma
- School of Chemistry and Chemical Engineering, Yangzhou UniversityYangzhou 225002P. R. China,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Zejing Xing
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210023P. R. China
| |
Collapse
|
24
|
Yang X, Li K, Wang G, Li X, Zhou P, Ding S, Lyu Z, Chang Y, Zhou Y, Zhu W. 2D Catalysts for CO
2
Photoreduction: Discussing Structure Efficiency Strategies and Prospects for Scaled Production Based on Current Progress. Chemistry 2022; 28:e202201881. [DOI: 10.1002/chem.202201881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaohan Yang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Kai Li
- School of Science Wuhan University of Science and Technology Wuhan 430065 P. R. China
| | - Guangtao Wang
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Xiang Li
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Pengyu Zhou
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Zhaoyuan Lyu
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Yu‐Chung Chang
- School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse State Key Laboratory of Analytical Chemistry for Life Science the Frontiers Science Center for Critical Earth Material Cycling School of the Environment School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
25
|
Ma H, Yi M, Messinger M, Wang G. Kinetics-Based Ratiometric Electrochemiluminescence Analysis for Signal Specificity: Case Studies of Piperazine Drug Discrimination with Au Nanoclusters. Anal Chem 2022; 94:11760-11766. [PMID: 35973062 DOI: 10.1021/acs.analchem.2c01489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A multi-parameter calibration and analysis strategy has been developed based on the kinetics of charge transfer reactions. Absolute and ratiometric electrochemiluminescence signals are elucidated from single measurements for the detection of hydroxyzine and cetirizine as prototype drugs which greatly enhance the near-infrared electrochemiluminescence from atomically precise Au22 nanoclusters stabilized with lipoic acid ligands on ITO electrodes. The signal-on sensing mechanism eliminates the need for recognition elements and highly excess co-reactants in conventional electrochemiluminescence practice. The rates of sequential charge transfer reactions render specificity in electrochemiluminescence intensity and kinetics toward the target molecular/electronic structures and are conveniently controlled/optimized by operation parameters. Signal kinetic profiles, in stark contrast to steady-state or single-point recordings, not only improve the signal/noise ratio but also offer greater resolving power to differentiate analogue species and nonspecific interference. The fundamental kinetics-based ratiometric concept/strategy is not limited to a specific luminophore or a co-reactant and is thus generalizable. The case studies successfully detect and discriminate drug compounds at sub-nanomolar physiological ranges, with efficacy validated using synthetic urine toward point-of-care applications in therapeutic/abuse drug monitoring.
Collapse
Affiliation(s)
- Hedi Ma
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Meijun Yi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Messinger
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Gangli Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
26
|
Wang JG, Zhang L, Xie J, Weizmann Y, Li D, Li J. Single Particle Hopping as an Indicator for Evaluating Electrocatalysts. NANO LETTERS 2022; 22:5495-5502. [PMID: 35727011 DOI: 10.1021/acs.nanolett.2c01631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The design and screening of electrocatalysts for gas evolution reactions suffer from little understanding of multiphase processes at the electrode-electrolyte interface. Due to the complexity of the multiphase interface, it is still a great challenge to capture gas evolution dynamics under operando conditions to precisely portray the intrinsic catalytic performance of the interface. Here, we establish a single particle imaging method to real-time monitor a potential-dependent vertical motion or hopping of electrocatalysts induced by electrogenerated gas nanobubbles. The hopping feature of a single particle is closely correlated with intrinsic activities of electrocatalysts and thus is developed as an indicator to evaluate gas evolution performance of various electrocatalysts. This optical indicator diminishes interference from heterogeneous morphologies, non-Faradaic processes, and parasitic side reactions that are unavoidable in conventional electrochemical measurements, therefore enabling precise evaluation and high-throughput screening of catalysts for gas evolution systems.
Collapse
Affiliation(s)
- Jun-Gang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jing Xie
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yossi Weizmann
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| | - Jinghong Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 10084, China
| |
Collapse
|
27
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
28
|
Cong S, Jiang Z, Zhang R, Lv H, Guo J, Zhang L, Lu X. Polymer Carbon Nanodots: A Novel Electrochemiluminophore for Dual Mode Detection of Ferric Ions. Anal Chem 2022; 94:6695-6702. [PMID: 35483019 DOI: 10.1021/acs.analchem.1c05408] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of simple and effective dual-mode analytical methods plays crucial regulatory roles in the discrimination of relevant target species, because of their built-in cross reference correction and high accuracy. In this work, a novel polymer carbon nanodots (PCNDs) prepared from a facile one-pot hydrothermal procedure using readily available l-tryptophan and l-phenylalanine as precursors, showed excellent aqueous solubility and blue fluorescence property with a high quantum yield of 29%. Moreover, the PCNDs was demonstrated to be a robust luminophore with electrochemiluminescence (ECL) efficiency of 43% was achieved by using K2S2O8 as a coreactant. The spooling ECL spectroscopy was employed to take insight into excited states responsible for the potential-dependent ECL emissions. Most importantly, when introduced into construction of the fluorescence and ECL dual mode sensing platform, for the first time, the PCNDs displayed prominent performance for the detection of ferric ions (Fe3+). The ferric ions could be quantified ranging from micromolar to millimolar with a detection limit of 0.22 and 5.3 μM, respectively. Such a dual-functional sensing platform also exhibits excellent selectivity, reproducibility and stability. Results from this work indicate that PCNDs showing great promise as a bright luminophore for the fabrication of low-cost, high-performance dual-signal readout platforms for ferric ions determination.
Collapse
Affiliation(s)
- Shanshan Cong
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ziyu Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiping Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
29
|
Zheng J, Zhang J, Zhang L, Zhang W, Wang X, Cui Z, Song H, Liang Z, Du L. Ultrafast Carbothermal Shock Constructing Ni 3Fe 1-xCr x Intermetallic Integrated Electrodes for Efficient and Durable Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19524-19533. [PMID: 35465674 DOI: 10.1021/acsami.2c02559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of the electrocatalyst-integrated electrodes with HER/OER bifunctional activity is desirable to reduce the cost and simplify the system of the practical water electrolyzers. Herein, we construct a new type of Ni3Fe1-xCrx (0 ≤ x < 0.3) intermetallic integrated electrodes for overall water splitting via an ultrafast carbothermal shock method. The obtained Ni3Fe0.9Cr0.1/CACC electrode exhibits the optimum performance among all developed electrocatalyst electrodes in this work, and the overpotential is merely 239 mV for OER and 128 mV for HER at 10 mA cm-2. In addition, the Ni3Fe0.9Cr0.1/CACC electrode shows excellent durability during both OER and HER stability tests at a high current density of 100 mA cm-2. An electrolyzer, which was assembled with Ni3Fe0.9Cr0.1/CACC electrodes as both the anode and cathode, operates with a low cell voltage of 1.59 V at 10 mA cm-2. It has been found that the impressive OER activity of Ni3Fe0.9Cr0.1 nanoparticles (NPs) can be ascribed to the stimulative formation of the OER-active Ni3+/Fe3+ species by the substituted Cr, while the enhanced HER activity is caused by the Cr substitution, which decreases the water dissociation energy barrier. This work provides an ultrafast and facile strategy to develop electrocatalyst-integrated electrodes with low cost and impressive HER/OER bifunctional performance for overall water splitting.
Collapse
Affiliation(s)
- Jiafen Zheng
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
30
|
Chen MM, Xu CH, Zhao W, Chen HY, Xu JJ. Single Cell Imaging of Electrochemiluminescence-Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202117401. [PMID: 35165987 DOI: 10.1002/anie.202117401] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 01/06/2023]
Abstract
We report a photodynamic therapy driven by electrochemiluminescence (ECL). The luminescence generated by Ru(bpy)3 2+ and co-reactant tripropylamine (TPA) pair acts as both optical readout for ECL imaging, and light source for the excitation of photosensitizer to produce reactive oxygen species (ROS) in photodynamic therapy (PDT) system. The ECL-driven PDT (ECL-PDT) relies on the effective energy transfer from ECL emission to photosensitizer chlorin e6 (Ce6), which sensitizes the surrounding O2 into ROS. The dynamic process of gradual morphological changes, the variation of cell-matrix adhesions, as well as the increase of cell membrane permeability in the process of ECL-PDT were monitored under ECL microscopy (ECLM) with good spatiotemporal resolution. Combining real-time imaging with ECL-PDT, this new strategy provides not only new insights into dynamic cellular processes, but also promising potential of ECL in clinical applications.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single-Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022; 61:e202200187. [PMID: 35084097 DOI: 10.1002/anie.202200187] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/31/2022]
Abstract
Classical electrochemical characterization tools cannot avoid averaging between the active reaction sites and their support, thus obscuring their intrinsic roles. Single-molecule electrochemical techniques are thus in high demand. Here, we demonstrate super-resolution imaging of Ru(bpy)3 2+ based reactions on Au plates using single-molecule electrochemiluminescence microscopy. By converting electrochemical signals into optical signals, we manage to achieve the ultimate sensitivity of single-entity chemistry, that is directly resolving the single photons from individual electrochemical reactions. High spatial resolution, up to 37 nm, further enables mapping Au chemical activity and the reaction kinetics. The spatiotemporally resolved dynamic structure-activity relationship on Au plates shows that the restructuring of catalysts plays an important role in determining the reactivity. Our approach may lead to gaining new insights towards evaluating and designing electrocatalytic systems.
Collapse
Affiliation(s)
- Jinrun Dong
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Ziqing Zhang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
32
|
Chen M, Xu C, Zhao W, Chen H, Xu J. Single Cell Imaging of Electrochemiluminescence‐Driven Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming‐Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Cong‐Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jing‐Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
33
|
Dong J, Xu Y, Zhang Z, Feng J. Operando Imaging of Chemical Activity on Gold Plates with Single‐Molecule Electrochemiluminescence Microscopy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinrun Dong
- Zhejiang University Department of Chemistry CHINA
| | - Yang Xu
- Zhejiang University Department of Chemistry CHINA
| | - Ziqing Zhang
- Zhejiang University Department of Chemistry CHINA
| | | |
Collapse
|
34
|
Development of Ru(bpy)32+ electrochemiluminescence sensor for highly sensitive detection of carcinogenic and mutagenic hexamethylphosphoramide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Rebeccani S, Zanut A, Santo CI, Valenti G, Paolucci F. A Guide Inside Electrochemiluminescent Microscopy Mechanisms for Analytical Performance Improvement. Anal Chem 2021; 94:336-348. [PMID: 34908412 PMCID: PMC8756390 DOI: 10.1021/acs.analchem.1c05065] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sara Rebeccani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Alessandra Zanut
- Tandon School of Engineering, New York University, Brooklyn, New York 11201, United States
| | - Claudio Ignazio Santo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Giovanni Valenti
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| | - Francesco Paolucci
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna 40127, Italy
| |
Collapse
|
36
|
Zhu H, Jin R, Chang YC, Zhu JJ, Jiang D, Lin Y, Zhu W. Understanding the Synergistic Oxidation in Dichalcogenides through Electrochemiluminescence Blinking at Millisecond Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105039. [PMID: 34561901 DOI: 10.1002/adma.202105039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/08/2021] [Indexed: 05/28/2023]
Abstract
The oxidation of transition metal dichalcogenides (TMDCs) has been extensively studied and applied in electronics, optics, and energy sources because of its tunable structure and performance. However, due to the lack of appropriate technology, dynamically observe the oxidation process remains an arduous task. Herein, the synergistic oxidation between edge and basal plane in molybdenum disulfide (MoS2 ) is observed through electrogenerated chemiluminescence (ECL) blinking with a millisecond resolution. In addition, the ECL method provides a simple, convenient, and quick way to judge structural changes. The transient elevation of the ECL intensity proved the intermittent doping of oxygen at MoS2 , which generates O-atom active sites. High ECL intensity enhanced from the produced hydroperoxide intermediates eases the monitoring of MoS2 particles. Further study shows that the formation of sulfur vacancies at MoS2 , by the edge activation of hydrogen peroxide and the migration of oxygen to the basal plane, is more conducive to oxygen doping that favors the formation of MoOMo as new active sites to induce bursts. The revealing of sulfur vacancy-governed blinking from MoS2 indicates a complex interaction between oxygen and MoS2 . The same phenomenon is observed on tungsten disulfide (WS2 ), which provides new information about the oxidation feature of 2D dichalcogenides.
Collapse
Affiliation(s)
- Hui Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Rong Jin
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yu-Chung Chang
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Jun-Jie Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Dechen Jiang
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Wenlei Zhu
- School of the Environment, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
37
|
Chen MM, Xu CH, Zhao W, Chen HY, Xu JJ. Super-Resolution Electrogenerated Chemiluminescence Microscopy for Single-Nanocatalyst Imaging. J Am Chem Soc 2021; 143:18511-18518. [PMID: 34699210 DOI: 10.1021/jacs.1c07827] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electrogenerated chemiluminescence microscopy (ECLM) provides a real-time imaging approach to visualize the surface-dependent catalytic activity of nanocatalysts, which helps to rationalize the design of catalysts. In this study, we first propose super-resolution ECLM that could measure the facet- and site-specific activities of a single nanoparticle with nanometer resolution. The stochastic nature of the ECL emission makes the generation of photons obey Poisson statistics, which fits the requirement of super-resolution radial fluctuation (SRRF). By processing an SRRF algorithm, the spatial resolution of ECL images achieved ca. 100 nm, providing more abundant details on electrocatalytic reactivities at the subparticle level. Beyond conventional wide-field ECL imaging, super-resolution ECLM provided the spatial distribution of catalytic activities at a Au nanorod and nanoplate with scales of a few hundred nanometers. It helped uncover the facet- and defect-dependent surface activity, as well as the dynamic fluctuation of reactivity patterns on single nanoparticles. The super-resolution ECLM provides high spatiotemporal resolution, which shows great potential in the field of catalysis, biological imaging, and single-entity analysis.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Cong-Hui Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
38
|
Hesari M, Ma H, Ding Z. Monitoring single Au 38 nanocluster reactions via electrochemiluminescence. Chem Sci 2021; 12:14540-14545. [PMID: 34881005 PMCID: PMC8580063 DOI: 10.1039/d1sc04018a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of an ultramicroelectrode (UME). The statistical analyses of individual reactions confirm stochastic single ones influenced by the applied potential.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
39
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
40
|
Liu Y, Lu X, Peng Y, Chen Q. Electrochemical Visualization of Gas Bubbles on Superaerophobic Electrodes Using Scanning Electrochemical Cell Microscopy. Anal Chem 2021; 93:12337-12345. [PMID: 34460230 DOI: 10.1021/acs.analchem.1c02099] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic gas evolution reactions, where gaseous molecules are electrogenerated by reduction or oxidation of a species, play a central role in many energy conversion systems. Superaerophobic electrodes, usually constructed by their surface microstructures, have demonstrated excellent performance for electrochemical gas evolution reactions due to their bubble-repellent properties. Understanding and quantification of the gas bubble behavior including nucleation and dynamics on such microstructured electrodes is an important but underexplored issue. In this study, we reported a scanning electrochemical cell microscopy (SECCM) investigation of individual gas bubble nucleation and dynamics on nanoscale electrodes. A classic Pt film and a nonconventional transition-metal dichalcogenide MoS2 film with different surface topologies were employed as model substrates for both H2 and N2 bubble electrochemical studies. Interestingly, the nanostructured catalyst surface exhibit significantly less supersaturation for gas bubble nucleation and a notable increase of bubble detachment compared to its flat counterpart. Electrochemical mapping results reveal that there is no clear correlation between bubble nucleation and hydrogen evolution reaction (HER) activity, regardless of local electrode surface microstructures. Our results also indicate that while the hydrophobicity of the nanostructured MoS2 surface promotes bubble nucleation, it has little effect on bubble dynamics. This work introduces a new method for nanobubble electrochemistry on broadly interesting catalysts and suggests that the deliberate microstructure on a catalyst surface is a promising strategy for improving electrocatalytic gas evolution both in terms of bubble nucleation and elimination.
Collapse
Affiliation(s)
- Yulong Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoxi Lu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qianjin Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
41
|
Xu C, Li J, Kitte SA, Qi G, Li H, Jin Y. Light Scattering and Luminophore Enrichment-Enhanced Electrochemiluminescence by a 2D Porous Ru@SiO 2 Nanoparticle Membrane and Its Application in Ultrasensitive Detection of Prostate-Specific Antigen. Anal Chem 2021; 93:11641-11647. [PMID: 34378929 DOI: 10.1021/acs.analchem.1c02708] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemiluminescence (ECL) by virtue of its controllability and versatility has emerged as a significant tool in bioassay, but how to integrate it with other (nano)materials and further break the limit of sensitivity for ultrasensitive detection still possess tremendous potential. Herein, a close-packed Ru@SiO2 NP nanomembrane that serves as an enhanced substrate and luminophore enricher simultaneously was constructed by the liquid-liquid interface self-assembly method and applied for ECL-enhanced bioassay. The developed ECL electrode obtained ∼600-fold enhancement on ECL intensity compared with the bare ITO electrode and ∼21-fold enhancement compared with the SiO2 NP nanomembrane electrode due to the dramatic light scattering of the 2D SiO2 NPs and the enrichment of Ru(bpy)32+ molecules on the surface of the Ru@SiO2 NP nanomembrane electrode. Based on the fascinating Ru@SiO2 NP nanomembrane platform, we further constructed a label-free immunosensor for the detection of prostate-specific antigen (PSA). The as-fabricated Ru@SiO2-nanomembrane ECL immunosensor exhibited good stability and performed ultrasensitive detection with an utmost low detection limit of 0.169 fg·mL-1 (signal/noise = 3). Our work puts forward an effective solution benefiting for further improving ECL performance for ultrasensitive bioassays.
Collapse
Affiliation(s)
- Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
42
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021; 60:18742-18749. [PMID: 34115447 DOI: 10.1002/anie.202105867] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Mitochondria are the subcellular bioenergetic organelles. The analysis of their morphology and topology is essential to provide useful information on their activity and metabolism. Herein, we report a label-free shadow electrochemiluminescence (ECL) microscopy based on the spatial confinement of the ECL-emitting reactive layer to image single living mitochondria deposited on the electrode surface. The ECL mechanism of the freely-diffusing [Ru(bpy)3 ]2+ dye with the sacrificial tri-n-propylamine coreactant restrains the light-emitting region to a micrometric thickness allowing to visualize individual mitochondria with a remarkable sharp negative optical contrast. The imaging approach named "shadow ECL" (SECL) reflects the negative imprint of the local diffusional hindrance of the ECL reagents by each mitochondrion. The statistical analysis of the colocalization of the shadow ECL spots with the functional mitochondria revealed by classical fluorescent biomarkers, MitoTracker Deep Red and the endogenous intramitochondrial NADH, validates the reported methodology. The versatility and extreme sensitivity of the approach are further demonstrated by visualizing single mitochondria, which remain hardly detectable with the usual biomarkers. Finally, by alleviating problems of photobleaching and phototoxicity associated with conventional microscopy methods, SECL microscopy should find promising applications in the imaging of subcellular structures.
Collapse
Affiliation(s)
- Yumeng Ma
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Camille Colin
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Julie Descamps
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Stéphane Arbault
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Present address: Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| |
Collapse
|
43
|
Liu JL, Zhang JQ, Zhou Y, Xiao DR, Zhuo Y, Chai YQ, Yuan R. Crystallization-Induced Enhanced Electrochemiluminescence from Tetraphenyl Alkene Nanocrystals for Ultrasensitive Sensing. Anal Chem 2021; 93:10890-10897. [PMID: 34313108 DOI: 10.1021/acs.analchem.1c01258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic materials with diverse structures and brilliant glowing colors have been attracting extensive attention in optical electronic devices and electrochemiluminescence (ECL) fields and are currently faced with the issue of low ECL efficiency. Herein, a series of tetraphenyl alkene nanocrystals (TPA NCs) with an ordered molecular structure were synthesized to explore regularities in the crystallization-induced enhanced (CIE) ECL emission effects by altering the number and position of vinyl on the backbone of TPA molecules. Among those TPA NCs, tetraphenyl-1,3-butadiene (TPB) NCs exhibit the brightest ECL emission via a coreactant pathway, with the relative ECL efficiency of up to 31.53% versus the standard [Ru(bpy)3]2+/TEA system, which is thousands of times higher than that of free TPB molecules. The high ECL efficiency of TPB NCs originates from the effective electron transfer of unique J-aggregates on the a axis of the nanocrystals to notably promote radiative transition and the restriction on the free rotation of TPB molecules to further suppress the nonradiative transition, which has exhibited great potential in ultrasensitive biosensing, efficient light-emitting devices, and clear ECL imaging fields. As a proof of concept, since dopamine (DA) can form benzoquinone species by electrochemical oxidation to realize intermediate radical quenching and excited-state quenching on the TPB NCs/TEA system, the TPB NCs with the CIE ECL effect are used to construct an ultrasensitive ECL-sensing platform for the determination of DA with a lower detection limit of 3.1 nM.
Collapse
Affiliation(s)
- Jia-Li Liu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jia-Qi Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Dong-Rong Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
44
|
Ma Y, Colin C, Descamps J, Arbault S, Sojic N. Shadow Electrochemiluminescence Microscopy of Single Mitochondria. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yumeng Ma
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Camille Colin
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Julie Descamps
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| | - Stéphane Arbault
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
- Present address: Univ. Bordeaux CNRS Bordeaux INP CBMN UMR 5248 Allée Geoffroy Saint Hilaire 33600 Pessac France
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM UMR CNRS 5255 33607 Pessac France
| |
Collapse
|
45
|
Qiao Y, Chen C, Liu Y, Liu Y, Dong Q, Yao Y, Wang X, Shao Y, Wang C, Hu L. Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. NANO LETTERS 2021; 21:4517-4523. [PMID: 34018760 DOI: 10.1021/acs.nanolett.0c03620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The conventional thermal treatment systems typically feature low ramping/cooling rates, which lead to steep thermal gradients that generate inefficient, nonuniform reaction conditions and result in nanoparticle aggregation. Herein, we demonstrate a continuous fly-through material synthesis approach using a novel high-temperature reactor design based on the emerging thermal-shock technology. By facing two sheets of carbon paper with a small distance apart (1-3 mm), uniform and ultrahigh temperatures can be reached up to 3200 K within 50 ms by simply applying a voltage of 15 V. The raw materials can be continuously fed through the device, allowing the final products to be rapidly collected. As a proof-of-concept demonstration, we synthesized Pt nanocatalysts (∼4 nm) anchored on carbon black via this reactor at ∼1400 K. Furthermore, we find it features excellent electrocatalytic activities toward methanol oxidation reaction. This work offers a highly efficient platform for nanomaterials synthesis at high temperatures.
Collapse
Affiliation(s)
- Yun Qiao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yang Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yifan Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qi Dong
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xizheng Wang
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yuyan Shao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Chao Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
46
|
Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci 2021; 12:5720-5736. [PMID: 34168801 PMCID: PMC8179668 DOI: 10.1039/d0sc07085h] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| |
Collapse
|
47
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dongni Han
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Bertrand Goudeau
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
| | - Dragan Manojlovic
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210093 China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease Collaborative Innovation Center for Cardiovascular Disease Translational Medicine Nanjing Medical University Nanjing Jiangsu 211126 China
| | - Neso Sojic
- University of Bordeaux Bordeaux INP ISM, UMR CNRS 5255 33607 Pessac France
- Department of Chemistry South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
48
|
Han D, Goudeau B, Manojlovic D, Jiang D, Fang D, Sojic N. Electrochemiluminescence Loss in Photobleaching. Angew Chem Int Ed Engl 2021; 60:7686-7690. [PMID: 33410245 DOI: 10.1002/anie.202015030] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/04/2020] [Indexed: 12/11/2022]
Abstract
The effects of photobleaching on electrochemiluminescence (ECL) was investigated for the first time. The plasma membrane of Chinese Hamster Ovary (CHO) cells was labeled with a [Ru(bpy)3 ]2+ derivative. Selected regions of the fixed cells were photobleached using the confocal mode with sequential stepwise illumination or cumulatively and they were imaged by both ECL and photoluminescence (PL). ECL was generated with a model sacrificial coreactant, tri-n-propylamine. ECL microscopy of the photobleached regions shows lower ECL emission. We demonstrate a linear correlation between the ECL decrease and the PL loss due to the photobleaching of the labels immobilized on the CHO membranes. The presented strategy provides valuable information on the fundamentals of the ECL excited state and opens new opportunities for exploring cellular membranes by combining ECL microscopy with photobleaching techniques such as fluorescence recovery after photobleaching (FRAP) or fluorescence loss in photobleaching (FLIP) methods.
Collapse
Affiliation(s)
- Dongni Han
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Bertrand Goudeau
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France
| | - Dragan Manojlovic
- Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Danjun Fang
- School of Pharmacy and Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211126, China
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255, 33607, Pessac, France.,Department of Chemistry, South Ural State University, Chelyabinsk, 454080, Russian Federation
| |
Collapse
|
49
|
Zhu H, Jiang D, Zhu JJ. High-resolution imaging of catalytic activity of a single graphene sheet using electrochemiluminescence microscopy. Chem Sci 2021; 12:4794-4799. [PMID: 34163732 PMCID: PMC8179586 DOI: 10.1039/d0sc06967a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
Here, the electrocatalytic activity of a single graphene sheet is mapped using electrochemiluminescence (ECL) microscopy with a nanometer resolution. The achievement of this high-spatial imaging relies on the varied adsorption of hydrogen peroxide at different sites on the graphene surface, leading to unsynchronized ECL emission. By shortening the exposure time to 0.2 ms, scattered ECL spots are observed in the ECL image that are not overlaid with the spots in the consecutive images. Accordingly, after stacking all the images into a graph, the ECL intensity of each pixel could be used to reflect the electrocatalytic features of the graphene surface with a resolution of 400 nm. This novel ECL method efficiently avoids the long-standing problem of classic ECL microscopy regarding the overlap of ECL emissions from adjacent regions and enables the nanometer spatial resolution of ECL microscopy for the first time.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
50
|
Zhang S, Liu Y. Recent Progress of Novel Electrochemiluminescence Nanoprobes and Their Analytical Applications. Front Chem 2021; 8:626243. [PMID: 33634074 PMCID: PMC7900533 DOI: 10.3389/fchem.2020.626243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/21/2020] [Indexed: 11/13/2022] Open
Abstract
High-performance nanomaterials have been seen as a new generation of electrochemiluminescence (ECL) probes or emitters for their finely tunable structure and concomitant remarkable properties, guaranteeing the prospective applications in the analysis and diagnosis devices with superior performances. The structure-activity relationships of ECL nanoprobes in nanoscale are presenting milestone in understanding of the ECL microscopic behaviors and mechanisms, and guide the exploitation of novel ECL probes. In this mini-review, we summarized the recent development of novel ECL probes based on the nanomaterials. The mechanism and relationships between their structure as well as the active sites and functionality were revealed. In addition, the design and regulation of the ECL nanoprobes were emphasized for the biosensing and imaging application. Finally, the potential prospect of the ECL nanoprobes, design, and their applications were discussed.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, China
| | - Yang Liu
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Tsinghua University, Beijing, China
| |
Collapse
|