1
|
Yang P, Liu S, Chen Z, Liu W, Duan D, Yang Z, Yan H, Rao Z, Zhang X, Zhang R, Wang Z. Proton nanomodulators for enhanced Mn 2+-mediated chemodynamic therapy of tumors via HCO 3- regulation. J Nanobiotechnology 2024; 22:670. [PMID: 39487480 PMCID: PMC11531122 DOI: 10.1186/s12951-024-02843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/07/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Mn2+-mediated chemodynamic therapy (CDT) has been emerged as a promising cancer therapeutic modality that relies heavily on HCO3- level in the system. Although the physiological buffers (H2CO3/HCO3-) provide certain amounts of HCO3-, the acidity of the tumor microenvironment (TME) would seriously affect the HCO3- ionic equilibrium (H2CO3 ⇌ H+ + HCO3-). As a result, HCO3- level in the tumor region is actually insufficient to support effective Mn2+-mediated CDT. RESULTS In this study, a robust nanomodulator MnFe2O4@ZIF-8 (PrSMZ) with the capability of in situ self-regulation HCO3- is presented to enhance therapeutic efficacy of Mn2+-mediated CDT. Under an acidic tumor microenvironment, PrSMZ could act as a proton sponge to shift the HCO3- ionic equilibrium to the positive direction, significantly boosting the generation of the HCO3-. Most importantly, such HCO3- supply capacity of PrSMZ could be finely modulated by its ZIF-8 shell thickness, resulting in a 1000-fold increase in reactive oxygen species (ROS) generation. Enhanced ROS-dependent CDT efficacy is further amplified by a glutathione (GSH)-depletion ability and the photothermal effect inherited from the inner core MnFe2O4 of PrSMZ to exert the remarkable antitumor effect on mouse models. CONCLUSIONS This work addresses the challenge of insufficient HCO3- in the TME for Mn2+-mediated Fenton catalysts and could provide a promising strategy for designing high-performance Mn2+-mediated CDT agents to treat cancer effectively.
Collapse
Affiliation(s)
- Peng Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Shaojie Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Zhuang Chen
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Weijing Liu
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Deshang Duan
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Zuo Yang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Haohao Yan
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Zhiping Rao
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
| | - Xianghan Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China
- Guangzhou Institute of Technology, Xidian University, Guangzhou, 510555, Guangdong, P. R. China
| | - Ruili Zhang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China.
| | - Zhongliang Wang
- Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, School of Life Science and Technology, International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Ministry of Education, Xidian University, Xi'an, 710126, Shaanxi, P. R. China.
| |
Collapse
|
2
|
Feng M, Jiao Q, Ren Y, Liu X, Gao Z, Li Z, Wang Y, Zhao M, Bi L. The interaction between UBR7 and PRMT5 drives PDAC resistance to gemcitabine by regulating glycolysis and immune microenvironment. Cell Death Dis 2024; 15:758. [PMID: 39424627 PMCID: PMC11489413 DOI: 10.1038/s41419-024-07145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common malignant tumor of the digestive tract. Although gemcitabine and other therapeutic agents are effective in patients with advanced and metastatic pancreatic cancer, drug resistance has severely limited their use. However, the mechanisms of gemcitabine resistance in pancreatic cancer are poorly understood. In this study, ATAC-seq, ChIP-seq, and RNA-seq were performed to compare chromatin accessibility and gene expression in a patient-derived tumor xenograft (PDX) model of pancreatic cancer with or without gemcitabine resistance. Analyzing these sequencing data, we found a dramatic change in chromatin accessibility in the PDX model of gemcitabine-resistant tissues and identified a key gene, UBR7, which plays an important role in mediating gemcitabine resistance. Further research found that depletion of UBR7 significantly increased pancreatic carcinogenesis and the immunosuppressive microenvironment. Mechanistically, depleted UBR7 increased the stability of PRMT5, thereby promoting glycolysis in pancreatic cancer cells. Finally, an inhibitor that blocks PRMT5 (DS-437) significantly reduced gemcitabine resistance in pancreatic cancer caused by UBR7 depletion. In conclusion, our results illustrate that the UBR7-PRMT5 axis is a key metabolic regulator of PDAC and a promising target for the clinical treatment of gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Maoxiao Feng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qinlian Jiao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yidan Ren
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaoyan Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zihan Gao
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zhengjun Li
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Miaoqing Zhao
- Department of pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Lei Bi
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
3
|
Shi G, Li Z, Li N, Zhang Z, Zhang H, Yu X, He J, Hao L. Gelatin-coated glutathione depletion and oxygen generators in potentiated chemotherapy for pancreatic cancer. Int J Biol Macromol 2024; 280:135973. [PMID: 39322148 DOI: 10.1016/j.ijbiomac.2024.135973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/01/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Chemotherapy is generally acknowledged as an effective method for pancreatic cancer (PC). However, its treatment efficacy is often compromised due to inefficient drug delivery and drug resistance propensity of tumor tissues. The purpose of this study is to design and develop a novel drug delivery system (Manganese-doped mesoporous silica nanoparticles, Mn-MSN) in which paclitaxel (PTX), a conventional chemotherapeutic agent used to effectively treat pancreatic cancer clinically. Through cross-linking with glutaraldehyde, gelatin (Ge) was encapsulated on the carrier surface, endowing the nanoparticles (Ge-Mn-MSN@PTX) with excellent biocompatibility, low hemolytic activity, and enzyme-responsive degradation. Mn was added for the following purposes: (1) catalyzing hydrogen peroxide (H2O2) to generate oxygen (O2), thereby alleviating tumor hypoxia and drug resistance; (2) depleting glutathione (GSH), inducing intracellular lipid peroxidation and ferroptosis; (3) enabling real-time monitoring of the therapeutic efficacy of the nanoparticles via magnetic resonance imaging (MRI). The experimental results demonstrated that Ge-Mn-MSN@PTX has satisfactory biosafety, antitumor activity, controlled drug release as well as imaging tracking capabilities. In the SW1990 nude mice model, the Ge-Mn-MSN@PTX effectively inhibited tumor growth by suppressing the expression of the resistance protein P-glycoprotein (P-gp) and inducing ferroptosis. In conclusion, the designed gelatin-coated Mn-MSN shows potential for application in future pancreatic cancer therapy.
Collapse
Affiliation(s)
- Guangyue Shi
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Zhongtao Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Sichuan, Chengdu 610031, PR China
| | - Na Li
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Zhichen Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Hao Zhang
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Xiaoyang Yu
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Jialong He
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China
| | - Liguo Hao
- Department of Molecular Imaging, School of Medical Technology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, PR China; Department of Molecular Imaging, The First Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161041, PR China.
| |
Collapse
|
4
|
Sun D, Sun X, Zhang X, Wu J, Shi X, Sun J, Luo C, He Z, Zhang S. Emerging Chemodynamic Nanotherapeutics for Cancer Treatment. Adv Healthc Mater 2024; 13:e2400809. [PMID: 38752756 DOI: 10.1002/adhm.202400809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/09/2024] [Indexed: 05/24/2024]
Abstract
Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.
Collapse
Affiliation(s)
- Dongqi Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xuan Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jiaping Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
5
|
Ouyang B, Shan C, Shen S, Dai X, Chen Q, Su X, Cao Y, Qin X, He Y, Wang S, Xu R, Hu R, Shi L, Lu T, Yang W, Peng S, Zhang J, Wang J, Li D, Pang Z. AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer. Nat Commun 2024; 15:7560. [PMID: 39215014 PMCID: PMC11364624 DOI: 10.1038/s41467-024-51980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Due to low success rates and long cycles of traditional drug development, the clinical tendency is to apply omics techniques to reveal patient-level disease characteristics and individualized responses to treatment. However, the heterogeneous form of data and uneven distribution of targets make drug discovery and precision medicine a non-trivial task. This study takes pyroptosis therapy for triple-negative breast cancer (TNBC) as a paradigm and uses data mining of a large TNBC cohort and drug databases to establish a biofactor-regulated neural network for rapidly screening and optimizing compound pyroptosis drug pairs. Subsequently, biomimetic nanococrystals are prepared using the preferred combination of mitoxantrone and gambogic acid for rational drug delivery. The unique mechanism of obtained nanococrystals regulating pyroptosis genes through ribosomal stress and triggering pyroptosis cascade immune effects are revealed in TNBC models. In this work, a target omics-based intelligent compound drug discovery framework explores an innovative drug development paradigm, which repurposes existing drugs and enables precise treatment of refractory diseases.
Collapse
Affiliation(s)
- Boshu Ouyang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
- Department of Integrative Medicine, Huashan Hospital, Institutes of Integrative Medicine, Fudan University, Shanghai, 200040, P. R. China
| | - Caihua Shan
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Shun Shen
- Pharmacy Department & Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201399, P. R. China
| | - Xinnan Dai
- Microsoft Research Asia, Shanghai, 200232, P. R. China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xiaomin Su
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Yongbin Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Xifeng Qin
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ying He
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Siyu Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruizhe Xu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Ruining Hu
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Shanghai Cancer Center, Fudan University, Shanghai, 200438, P. R. China
| | - Tun Lu
- School of Computer Science, Fudan University, Shanghai, 200438, P. R. China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, P. R. China
| | - Shaojun Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University); Zhuhai, Guangdong, 519000, P. R. China.
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| | - Dongsheng Li
- Microsoft Research Asia, Shanghai, 200232, P. R. China.
| | - Zhiqing Pang
- Department of Pharmaceutics, School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, P. R. China.
| |
Collapse
|
6
|
Huang A, Li Q, Shi X, Gao J, Ma Y, Ding J, Hua S, Zhou W. An iron-containing nanomedicine for inducing deep tumor penetration and synergistic ferroptosis in enhanced pancreatic cancer therapy. Mater Today Bio 2024; 27:101132. [PMID: 38994471 PMCID: PMC11237974 DOI: 10.1016/j.mtbio.2024.101132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic cancer is an aggressive and challenging malignancy with limited treatment options, largely attributed to the dense tumor stroma and intrinsic drug resistance. Here, we introduce a novel iron-containing nanoparticle formulation termed PTFE, loaded with the ferroptosis inducer Erastin, to overcome these obstacles and enhance pancreatic cancer therapy. The PTFE nanoparticles were prepared through a one-step assembly process, consisting of an Erastin-loaded PLGA core stabilized by a MOF shell formed by coordination between Fe3+ and tannic acid. PTFE demonstrated a unique capability to repolarize tumor-associated macrophages (TAMs) into the M1 phenotype, leading to the regulation of dense tumor stroma by modulating the activation of tumor-associated fibroblasts (TAFs) and reducing collagen deposition. This resulted in enhanced nanoparticle accumulation and deep penetration, as confirmed by in vitro multicellular tumor spheroids and in vivo mesenchymal-rich subcutaneous pancreatic tumor models. Moreover, PTFE effectively combated tumor resistance by synergistically employing the Fe3+-induced Fenton reaction and Erastin-induced ferroptosis, thereby disrupting the redox balance. As a result, significant tumor growth inhibition was achieved in mice-bearing tumor model. Comprehensive safety evaluations demonstrated PTFE's favorable biocompatibility, highlighting its potential as a promising therapeutic platform to effectively address the formidable challenges in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Aiping Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530007, China
| | - Qingnian Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Xinyi Shi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
- Department of Pharmacy, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine (Haikou People's Hospital), Haikou, Hainan, 570208, China
| | - Junyi Gao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yiran Ma
- Hunan Prize Life Science Research Institute Co., LTD, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Surong Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
7
|
Zhang N, Jiang L, Yue Y, Zhao X, Hu Y, Shi Y, Zhao L, Deng D. Metastable FeSe 2 nanosheets as a one-for-all platform for stepwise synergistic tumor therapy. J Mater Chem B 2024; 12:6466-6479. [PMID: 38864401 DOI: 10.1039/d4tb00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The urgent need to curb the rampant rise in cancer has impelled the rapid development of nanomedicine. Under the above issue, transition metal compounds have received special attention considering their physicochemical and biochemical properties. However, how to take full advantage of the valuable characteristics of nanomaterials based on their spatial structures and chemical components for synergistic tumor therapy is a worthwhile exploration. In this work, a tailored two-dimensional (2D) FeSe2 nanosheet (NS) platform is proposed, which integrates enzyme activity and drug efficacy through the regulation of itsstability. Specifically, metastable FeSe2 NSs can serve as dual nanozymes in an intact state, depleting GSH and increasing ROS to induce oxidative stress in the tumor microenvironment (TME). With the gradual degradation of the FeSe2 in TME, its degraded products can amplify the Fenton reaction and GSH consumption, enhance the expression of inflammatory factors, and achieve effective near-infrared (NIR)-light irradiation-enhanced synergistic photothermal therapy (PTT) and chemodynamic therapy (CDT). Our exploration further confirmed such a strategy that may integrate carrier activity and drug action into a metastable nanoplatform for tumor synergistic therapy. These results prompt the consideration of the rational design of a one-for-all carrier that can exhibit multifunctional properties and nanomedicine efficacy for versatile therapeutic applications in the future.
Collapse
Affiliation(s)
- Naiyue Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liwen Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yumeng Yue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yali Shi
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Li B, Luo Y, Liu G, Gou M, Feng L, Ye X, Xu J, Fan Y, You Z. NIR-II-Absorbing NDI Polymer with Superior Penetration Depth for Enhanced Photothermal Therapy Efficiency of Hepatocellular Carcinoma. Int J Nanomedicine 2024; 19:6577-6588. [PMID: 38975319 PMCID: PMC11225993 DOI: 10.2147/ijn.s465631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/18/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction Hepatocellular carcinomas (HCC) have a high morbidity and mortality rate, and is difficult to cure and prone to recurrence when it has already developed. Therefore, early detection and efficient treatment of HCC is necessary. Methods In this study, we synthesized a novel NDI polymer with uniform size, long-term stability, and high near-infrared two-zone (NIR-II) absorption efficiency, which can greatly enhance the effect of photothermal therapy (PTT) after intravenous injection into Huh-7-tumor bearing mice. Results The in vitro and in vivo studies showed that NDI polymer exhibited excellent NIR-guided PTT treatment, and the antitumor effect was approximately 88.5%, with obvious antimetastatic effects. Conclusion This study developed an NDI polymer-mediated integrated diagnostic and therapeutic modality for NIR-II fluorescence imaging and photothermal therapy.
Collapse
Affiliation(s)
- Bei Li
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuting Luo
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Geng Liu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Lei Feng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xiwen Ye
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jianrong Xu
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yaotian Fan
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zhen You
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Research Center for Biliary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
9
|
Li Z, Mo F, Guo K, Ren S, Wang Y, Chen Y, Schwartz PB, Richmond N, Liu F, Ronnekleiv-Kelly SM, Hu Q. Nanodrug-bacteria conjugates-mediated oncogenic collagen depletion enhances immune checkpoint blockade therapy against pancreatic cancer. MED 2024; 5:348-367.e7. [PMID: 38521069 DOI: 10.1016/j.medj.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) cancer cells specifically produce abnormal oncogenic collagen to bind with integrin α3β1 receptor and activate the downstream focal adhesion kinase (FAK), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) signaling pathway. Collectively, this promotes immunosuppression and tumor proliferation and restricts the response rate of clinical cancer immunotherapies. METHODS Here, by leveraging the hypoxia tropism and excellent motility of the probiotic Escherichia coli strain Nissle 1917 (ECN), we developed nanodrug-bacteria conjugates to penetrate the extracellular matrix (ECM) and shuttle the surface-conjugated protein cages composed of collagenases and anti-programmed death-ligand 1 (PD-L1) antibodies to PDAC tumor parenchyma. FINDINGS We found the oncogenic collagen expression in human pancreatic cancer patients and demonstrated its interaction with integrin α3β1. We proved that reactive oxygen species (ROS) in the microenvironment of PDAC triggered collagenase release to degrade oncogenic collagen and block integrin α3β1-FAK signaling pathway, thus overcoming the immunosuppression and synergizing with anti-PD-L1 immunotherapy. CONCLUSIONS Collectively, our study highlights the significance of oncogenic collagen in PDAC immunotherapy, and consequently, we developed a therapeutic strategy that can deplete oncogenic collagen to synergize with immune checkpoint blockade for enhanced PDAC treatment efficacy. FUNDING This work was supported by the University of Wisconsin Carbone Cancer Center Research Collaborative and Pancreas Cancer Research Task Force, UWCCC Transdisciplinary Cancer Immunology-Immunotherapy Pilot Project, and the start-up package from the University of Wisconsin-Madison (to Q.H.).
Collapse
Affiliation(s)
- Zhaoting Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fanyi Mo
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kai Guo
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shuai Ren
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yixin Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Patrick B Schwartz
- Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nathaniel Richmond
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Fengyuan Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean M Ronnekleiv-Kelly
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Surgery, Division of Surgical Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
10
|
Zhang B, Huang Y, Huang Y. Advances in Nanodynamic Therapy for Cancer Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:648. [PMID: 38607182 PMCID: PMC11013863 DOI: 10.3390/nano14070648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Nanodynamic therapy (NDT) exerts its anti-tumor effect by activating nanosensitizers to generate large amounts of reactive oxygen species (ROS) in tumor cells. NDT enhances tumor-specific targeting and selectivity by leveraging the tumor microenvironment (TME) and mechanisms that boost anti-tumor immune responses. It also minimizes damage to surrounding healthy tissues and enhances cytotoxicity in tumor cells, showing promise in cancer treatment, with significant potential. This review covers the research progress in five major nanodynamic therapies: photodynamic therapy (PDT), electrodynamic therapy (EDT), sonodynamic therapy (SDT), radiodynamic therapy (RDT), and chemodynamic therapy (CDT), emphasizing the significant role of advanced nanotechnology in the development of NDT for anti-tumor purposes. The mechanisms, effects, and challenges faced by these NDTs are discussed, along with their respective solutions for enhancing anti-tumor efficacy, such as pH response, oxygen delivery, and combined immunotherapy. Finally, this review briefly addresses challenges in the clinical translation of NDT.
Collapse
Affiliation(s)
| | | | - Yong Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China; (B.Z.); (Y.H.)
| |
Collapse
|
11
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
12
|
Wu GL, Tan X, Yang Q. Recent Advances on NIR-II Light-Enhanced Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303451. [PMID: 37983596 DOI: 10.1002/adhm.202303451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Chemodynamic therapy (CDT) is a particular oncological therapeutic strategy by generates the highly toxic hydroxyl radical (•OH) from the dismutation of endogenous hydrogen peroxide (H2O2) via Fenton or Fenton-like reactions. However, single CDT therapies have been limited by unsatisfactory efficacy. Enhanced chemodynamic therapy (ECDT) triggered by near-infrared (NIR) is a novel therapeutic modality based on light energy to improve the efficiency of Fenton or Fenton-like reactions. However, the limited penetration and imaging capability of the visible (400-650 nm) and traditional NIR-I region (650-900 nm) light-amplified CDT restrict the prospects for its clinical application. Combined with the high penetration/high precision imaging characteristics of the second near-infrared (NIR-II,) nanoplatform, it is expected to kill deep tumors efficiently while imaging the treatment process in real-time, and more notably, the NIR-II region radiation with wavelengths above 1000 nm can minimize the irradiation damage to normal tissues. Such NIR-II ECDT nanoplatforms have greatly improved the effectiveness of CDT therapy and demonstrated extraordinary potential for clinical applications. Accordingly, various strategies have been explored in the past years to improve the efficiency of NIR-II Enhanced CDT. In this review, the mechanisms and strategies used to improve the performance of NIR-II-enhanced CDT are outlined.
Collapse
Affiliation(s)
- Gui-Long Wu
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Tan
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, China
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
13
|
Wu X, Li Y, Wen M, Xie Y, Zeng K, Liu YN, Chen W, Zhao Y. Nanocatalysts for modulating antitumor immunity: fabrication, mechanisms and applications. Chem Soc Rev 2024; 53:2643-2692. [PMID: 38314836 DOI: 10.1039/d3cs00673e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Immunotherapy harnesses the inherent immune system in the body to generate systemic antitumor immunity, offering a promising modality for defending against cancer. However, tumor immunosuppression and evasion seriously restrict the immune response rates in clinical settings. Catalytic nanomedicines can transform tumoral substances/metabolites into therapeutic products in situ, offering unique advantages in antitumor immunotherapy. Through catalytic reactions, both tumor eradication and immune regulation can be simultaneously achieved, favoring the development of systemic antitumor immunity. In recent years, with advancements in catalytic chemistry and nanotechnology, catalytic nanomedicines based on nanozymes, photocatalysts, sonocatalysts, Fenton catalysts, electrocatalysts, piezocatalysts, thermocatalysts and radiocatalysts have been rapidly developed with vast applications in cancer immunotherapy. This review provides an introduction to the fabrication of catalytic nanomedicines with an emphasis on their structures and engineering strategies. Furthermore, the catalytic substrates and state-of-the-art applications of nanocatalysts in cancer immunotherapy have also been outlined and discussed. The relationships between nanostructures and immune regulating performance of catalytic nanomedicines are highlighted to provide a deep understanding of their working mechanisms in the tumor microenvironment. Finally, the challenges and development trends are revealed, aiming to provide new insights for the future development of nanocatalysts in catalytic immunotherapy.
Collapse
Affiliation(s)
- Xianbo Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yuqing Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Mei Wen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yongting Xie
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Wansong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
14
|
Zheng C, Wang Z, Xu H, Huang H, Tao X, Hu Y, He Y, Zhang Z, Huang X. Redox-Activatable Magnetic Nanoarchitectonics for Self-Enhanced Tumor Imaging and Synergistic Photothermal-Chemodynamic Therapy. SMALL METHODS 2024; 8:e2301099. [PMID: 37890280 DOI: 10.1002/smtd.202301099] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent malignancy of the head and neck region associated with high recurrence rates and poor prognosis under current diagnostic and treatment methods. The development of nanomaterials that can improve diagnostic accuracy and therapeutic efficacy is of great importance for OSCC. In this study, a redox-activatable nanoarchitectonics is designed via the construction of dual-valence cobalt oxide (DV-CO) nanospheres, which can serve as a contrast agent for magnetic resonance (MR) imaging, and exhibit enhanced transverse and longitudinal relaxivities through the release and redox of Co3+ /Co2+ in an acidic condition with glutathione (GSH), resulting in self-enhanced T1 /T2 -weighted MR contrast. Moreover, DV-CO demonstrates properties of intracellular GSH-depletion and hydroxyl radicals (•OH) generation through a Fenton-like reaction, enabling strengthened chemodynamic (CD) effect. Additionally, DV-CO displays efficient near-infrared laser-induced photothermal (PT) effect, thereby exhibiting synergistic PT-CD therapy for suppressing OSCC tumor cells. It further investigates the tumor-specific self-enhanced MR imaging of DV-CO both in subcutaneous and orthotopic OSCC mouse models, and demonstrate the therapeutic effects of DV-CO in orthotopic OSCC mouse models. Overall, the in vitro and in vivo findings highlight the excellent theranositc potentials of DV-CO for OSCC and offer new prospects for future advancement of nanomaterials.
Collapse
Affiliation(s)
- Chongyang Zheng
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhen Wang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hongtao Xu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Hailong Huang
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Xiaofeng Tao
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Yongjie Hu
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Yue He
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Zhiyuan Zhang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| | - Xiaojuan Huang
- Department of Oral and Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
- College of Stomatology, Shanghai Jiao Tong University & National Center for Stomatology, Shanghai, 200011, P. R. China
- National Clinical Research Center for Oral Diseases & Shanghai Key Laboratory of Stomatology, Shanghai, 200011, P. R. China
- Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, P. R. China
| |
Collapse
|
15
|
Liu X, Chu Z, Chen B, Ma Y, Xu L, Qian H, Yu Y. Cancer cell membrane-coated upconversion nanoparticles/Zn xMn 1-xS core-shell nanoparticles for targeted photodynamic and chemodynamic therapy of pancreatic cancer. Mater Today Bio 2023; 22:100765. [PMID: 37636984 PMCID: PMC10457453 DOI: 10.1016/j.mtbio.2023.100765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress induced by reactive oxygen species (ROS) is promising treatment approach for pancreatic ductal adenocarcinoma (PDAC), which is typically insensitive to conventional chemotherapy. In this study, BxPC-3 pancreatic cancer cell membrane-coated upconversion nanoparticles/ZnxMn1-xS core-shell nanoparticles (abbreviated as BUC@ZMS) were developed for tumor-targeted cancer therapy via synergistically oxidative stress and overcoming glutathione (GSH) overexpression. Using a combination of photodynamic therapy (PDT) and chemodynamic therapy (CDT), the BUC@ZMS core-shell nanoparticles were able to elicit the death of pancreatic cancer cells through the high production of ROS. Additionally, the BUC@ZMS core-shell nanoparticles could deplete intracellular GSH and increase the sensitivity of tumor cells to oxidative stress. The in vivo results indicated that BUC@ZMS nanoparticles can accumulate specifically in tumor locations and suppress PDAC without generating obvious toxicity. Thus, it was determined that the as-prepared core-shell nanoparticles would be a viable treatment option for solid malignancies.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
- Department of Gastroenterology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, Anhui, 237000, PR China
| | - Zhaoyou Chu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Benjin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yue Yu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| |
Collapse
|
16
|
Chen Y, Pal S, Hu Q. Cell-based Relay Delivery Strategy in Biomedical Applications. Adv Drug Deliv Rev 2023; 198:114871. [PMID: 37196699 DOI: 10.1016/j.addr.2023.114871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 05/19/2023]
Abstract
The relay delivery strategy is a two-step targeting approach based on two distinct modules in which the first step with an initiator is to artificially create a target/environment which can be targeted by the follow-up effector. This relay delivery concept creates opportunities to amplify existing or create new targeted signals through deploying initiators to enhance the accumulation efficiency of the following effector at the disease site. As the "live" medicines, cell-based therapeutics possess inherent tissue/cell homing abilities and favorable feasibility of biological and chemical modifications, endowing them the great potential in specifically interacting with diverse biological environments. All these unique capabilities make cellular products great candidates that can serve as either initiators or effectors for relay delivery strategies. In this review, we survey recent advances in relay delivery strategies with a specific focus on the roles of various cells in developing relay delivery systems.
Collapse
Affiliation(s)
- Yu Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Samira Pal
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, United States; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
17
|
Bai Y, Wu J, Liu K, Wang X, Shang Q, Zhang H. Integrated supramolecular nanovalves for photothermal augmented chemodynamic therapy through strengthened amplification of oxidative stress. J Colloid Interface Sci 2023; 637:399-407. [PMID: 36716664 DOI: 10.1016/j.jcis.2023.01.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/03/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The amplified oxidative stress strategy has been emerged as one promising method to enhance the chemodynamic therapy (CDT) efficacy due to the H2O2 up-regulation and glutathione (GSH) down-regulation behavior in tumor cells. However, how to further achieve the satisfied CDT efficacy is still a big challenge. In this paper, the supramolecular nanovalves (SNs) with oxidative amplification agents cinnamaldehyde-(phenylboronic acid pinacol ester) conjugates (CA-BE) encapsulated inside were developed to accelerate and amplify the generation of ·OH and consumption of GSH while augmenting the CDT efficacy. SNs were obtained through ferrocene/Au modified mesoporous silica nanoparticles (MSN@Au-Fc) and active targeting β-cyclodextrin modified hyaluromic acid (HA-CD). After CD44 receptor-mediated cellular internalization, the CA-BE were released to elevate H2O2 amount and consume GSH for the desired generation of higher cytotoxic hydroxyl radicals (·OH). Moreover, the NIR-activated MSN@Au-Fc can increase the temperature for the accelerated and amplified oxidative stress. As such, the therapeutic efficacy of our synthesized CA-BE and the accompanied hyperthermia were augmented toward synergistically inhibiting tumor growth.
Collapse
Affiliation(s)
- Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jing Wu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kun Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoning Wang
- School of Pharmacy, Xi'an Medical University, Xi'an 710021, China
| | - Qingqing Shang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haitao Zhang
- School of Light Industry Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
18
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
19
|
Yang XY, Lu YF, Xu JX, Du YZ, Yu RS. Recent Advances in Well-Designed Therapeutic Nanosystems for the Pancreatic Ductal Adenocarcinoma Treatment Dilemma. Molecules 2023; 28:molecules28031506. [PMID: 36771172 PMCID: PMC9920782 DOI: 10.3390/molecules28031506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with an extremely poor prognosis and low survival rate. Due to its inconspicuous symptoms, PDAC is difficult to diagnose early. Most patients are diagnosed in the middle and late stages, losing the opportunity for surgery. Chemotherapy is the main treatment in clinical practice and improves the survival of patients to some extent. However, the improved prognosis is associated with higher side effects, and the overall prognosis is far from satisfactory. In addition to resistance to chemotherapy, PDAC is significantly resistant to targeted therapy and immunotherapy. The failure of multiple treatment modalities indicates great dilemmas in treating PDAC, including high molecular heterogeneity, high drug resistance, an immunosuppressive microenvironment, and a dense matrix. Nanomedicine shows great potential to overcome the therapeutic barriers of PDAC. Through the careful design and rational modification of nanomaterials, multifunctional intelligent nanosystems can be obtained. These nanosystems can adapt to the environment's needs and compensate for conventional treatments' shortcomings. This review is focused on recent advances in the use of well-designed nanosystems in different therapeutic modalities to overcome the PDAC treatment dilemma, including a variety of novel therapeutic modalities. Finally, these nanosystems' bottlenecks in treating PDAC and the prospect of future clinical translation are briefly discussed.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Yuan-Fei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
| | - Jian-Xia Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou 310005, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310009, China
- Correspondence: (Y.-Z.D.); (R.-S.Y.); Tel.: +86-571-88208435 (Y.-Z.D.); +86-571-87783925 (R.-S.Y.)
| |
Collapse
|
20
|
Su Y, Jin G, Zhou H, Yang Z, Wang L, Mei Z, Jin Q, Lv S, Chen X. Development of stimuli responsive polymeric nanomedicines modulating tumor microenvironment for improved cancer therapy. MEDICAL REVIEW (2021) 2023; 3:4-30. [PMID: 37724108 PMCID: PMC10471091 DOI: 10.1515/mr-2022-0048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/16/2023] [Indexed: 09/20/2023]
Abstract
The complexity of the tumor microenvironment (TME) severely hinders the therapeutic effects of various cancer treatment modalities. The TME differs from normal tissues owing to the presence of hypoxia, low pH, and immune-suppressive characteristics. Modulation of the TME to reverse tumor growth equilibrium is considered an effective way to treat tumors. Recently, polymeric nanomedicines have been widely used in cancer therapy, because their synthesis can be controlled and they are highly modifiable, and have demonstrated great potential to remodel the TME. In this review, we outline the application of various stimuli responsive polymeric nanomedicines to modulate the TME, aiming to provide insights for the design of the next generation of polymeric nanomedicines and promote the development of polymeric nanomedicines for cancer therapy.
Collapse
Affiliation(s)
- Yuanzhen Su
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Guanyu Jin
- School of Materials Science and Engineering, Peking University, Beijing, China
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Huicong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zhaofan Yang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Lanqing Wang
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Zi Mei
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
- School of Materials Science and Engineering, Peking University, Beijing, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
21
|
Tanaka HY, Nakazawa T, Enomoto A, Masamune A, Kano MR. Therapeutic Strategies to Overcome Fibrotic Barriers to Nanomedicine in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2023; 15:cancers15030724. [PMID: 36765684 PMCID: PMC9913712 DOI: 10.3390/cancers15030724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Pancreatic cancer is notorious for its dismal prognosis. The enhanced permeability and retention (EPR) effect theory posits that nanomedicines (therapeutics in the size range of approximately 10-200 nm) selectively accumulate in tumors. Nanomedicine has thus been suggested to be the "magic bullet"-both effective and safe-to treat pancreatic cancer. However, the densely fibrotic tumor microenvironment of pancreatic cancer impedes nanomedicine delivery. The EPR effect is thus insufficient to achieve a significant therapeutic effect. Intratumoral fibrosis is chiefly driven by aberrantly activated fibroblasts and the extracellular matrix (ECM) components secreted. Fibroblast and ECM abnormalities offer various potential targets for therapeutic intervention. In this review, we detail the diverse strategies being tested to overcome the fibrotic barriers to nanomedicine in pancreatic cancer. Strategies that target the fibrotic tissue/process are discussed first, which are followed by strategies to optimize nanomedicine design. We provide an overview of how a deeper understanding, increasingly at single-cell resolution, of fibroblast biology is revealing the complex role of the fibrotic stroma in pancreatic cancer pathogenesis and consider the therapeutic implications. Finally, we discuss critical gaps in our understanding and how we might better formulate strategies to successfully overcome the fibrotic barriers in pancreatic cancer.
Collapse
Affiliation(s)
- Hiroyoshi Y. Tanaka
- Department of Pharmaceutical Biomedicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Takuya Nakazawa
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya-shi 466-8550, Aichi, Japan
| | - Atsushi Masamune
- Division of Gastroenterology, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai-shi 980-8574, Miyagi, Japan
| | - Mitsunobu R. Kano
- Department of Pharmaceutical Biomedicine, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-shi 700-8530, Okayama, Japan
- Correspondence:
| |
Collapse
|
22
|
Yin Z, Zhang Z, Gao D, Luo G, Ma T, Wang Y, Lu L, Gao X. Stepwise Coordination-Driven Metal-Phenolic Nanoparticle as a Neuroprotection Enhancer for Alzheimer's Disease Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:524-540. [PMID: 36542560 DOI: 10.1021/acsami.2c18060] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Current therapeutic strategies for Alzheimer's disease (AD) mainly focus on inhibition of aberrant amyloid-β peptide (Aβ) aggregation. However, these strategies cannot repair the side symptoms (e.g., high neuronal oxidative stress) triggered by Aβ accumulation and thus show limited effects on suppressing Aβ-induced neuronal apoptosis. Herein, we develop a stepwise metal-phenolic coordination approach for the rational design of a neuroprotection enhancer, K8@Fe-Rh/Pda NPs, in which rhein and polydopamine are effectively coupled to enhance the treatment of AD in APPswe/PSEN1dE9 transgenic (APP/PS1) mice. We discover that the polydopamine inhibits the aggregation of Aβ oligomers, and rhein helps repair damage to neurons triggered by Aβ aggregation. Based on molecular docking, we demonstrate that the polydopamine has a strong interaction with Aβ monomers/fibrils through its multiple recognition sites (e.g., catechol groups, imine groups, and indolic/catecholic π-systems), thereby reducing Aβ burden. Further investigation of the antioxidant mechanisms suggests that K8@Fe-Rh/Pda NPs promote the mitochondrial biogenesis via activating the sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor gamma coactivator 1-alpha pathway. This finally inhibits neuronal apoptosis. Moreover, an intravenous injection of these nanoparticles potently improves the cognitive function in APP/PS1 mice without adverse effects. Overall, our work provides a promising approach to develop advanced nanomaterials for multi-target treatment of AD.
Collapse
Affiliation(s)
- Zhihui Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Zhixin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Demin Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Tao Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing100078, China
| | - Ying Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, China
| | - Xiaoyan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing102488, China
| |
Collapse
|
23
|
Cao T, Liu Y, Jia Q, Wang X, Zhang S, Yu K, Zhou J. Rare earth fluorescent nanoprobes with minimal side effects enable tumor microenvironment activation for chemotherapy. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Li J, Tian H, Zhu F, Jiang S, He M, Li Y, Luo Q, Sun W, Liu X, Wang P. Amorphous Ultra-Small Fe-Based Nanocluster Engineered and ICG Loaded Organo-Mesoporous Silica for GSH Depletion and Photothermal-Chemodynamic Synergistic Therapy. Adv Healthc Mater 2022; 11:e2201986. [PMID: 36106722 DOI: 10.1002/adhm.202201986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/10/2022] [Indexed: 01/28/2023]
Abstract
Intracellular oxidative amplification can effectively destroy tumor cells. Additionally, Fe-mediated Fenton reaction often converts cytoplasm H2 O2 to generate extensive hypertoxic hydroxyl radical (• OH), leading to irreversible mitochondrion damage for tumor celleradication, which is widely famous as tumor chemodynamic therapy (CDT). Unfortunately, intracellular overexpressed glutathione (GSH) always efficiently scavenges • OH, resulting in the significantly reduced CDT effect. To overcome this shortcoming and improve the oxidative stress in cytoplasm, Fe3 O4 ultrasmall nanoparticle encapsulated and ICG loaded organo-mesoporous silica nanovehicles (omSN@Fe-ICG) are constructed to perform both photothermal and GSH depletion to enhance the Fenton-like CDT, by realizing intracellular oxidative stress amplification. After this nanoagents are internalized, the tetrasulfide bonds in the dendritic mesoporous framework can be decomposed with GSH to amplify the toxic ROS neration by selectively converting H2 O2 to hydroxyl radicals through the released Fe-based nanogranules. Furthermore, the NIR laser-induced hyperthermia can further improve the Fenton reaction rate that simultaneously destroyed the mitochondria. As a result, the GSH depletion and photothermal assisted CDT can remarkably improve the tumor eradication efficacy.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Haina Tian
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province, Xiamen University, Xiamen, 361005, P. R. China
| | - Fukai Zhu
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Suhua Jiang
- Collaborative Innovation Center of Mushroom Health Industry, Minnan Normal University, Zhangzhou, Fujian, 363000, P. R. China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Yang Li
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Qiang Luo
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian, 116024, P. R. China
| | - Xiaolong Liu
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Peiyuan Wang
- School of Rare earths, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.,Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341000, P. R. China.,Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
25
|
Zhang Z, Pan Y, Cun JE, Li J, Guo Z, Pan Q, Gao W, Pu Y, Luo K, He B. A reactive oxygen species-replenishing coordination polymer nanomedicine disrupts redox homeostasis and induces concurrent apoptosis-ferroptosis for combinational cancer therapy. Acta Biomater 2022; 151:480-490. [PMID: 35926781 DOI: 10.1016/j.actbio.2022.07.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS) are important signal molecules and imbalanced ROS level could lead to cell death. Elevated ROS levels in tumor tissues offer an opportunity to design ROS-responsive drug delivery systems (DDSs) or ROS-based cancer therapy such as chemodynamic therapy. However, their anticancer efficacies are hampered by the ROS-consuming nature of these DDSs as well as the high concentration of reductive agents like glutathione (GSH). Here we developed a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde (CA)-based ROS-replenishing organic ligand (TCA). TCA can ROS-responsively release CA to supplement intracellular ROS and deplete GSH by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitated efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo study revealed that ROS-replenishing PCFD exhibited much better anticancer effect than ROS-consuming control nanoparticle PAFD. The ingenious ROS-replenishing strategy could be expanded to construct versatile ROS-responsive DDSs and ROS-based nanomedicines with potentiated anticancer activity. STATEMENT OF SIGNIFICANCE: We develop a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde-based reactive oxygen species (ROS)-replenishing organic ligand. This functional ligand can ROS-responsively release cinnamaldehyde to supplement intracellular H2O2 and deplete glutathione (GSH) by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitates efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo study reveal that ROS-replenishing PCFD exhibit much better anticancer effect than ROS consuming counterpart. This study provides a facile and straightforward strategy to design ROS amplifying nanoplatforms for cancer treatment.
Collapse
Affiliation(s)
- Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
26
|
Sun K, Yu J, Hu J, Chen J, Song J, Chen Z, Cai Z, Lu Z, Zhang L, Wang Z. Salicylic acid-based hypoxia-responsive chemodynamic nanomedicines boost antitumor immunotherapy by modulating immunosuppressive tumor microenvironment. Acta Biomater 2022; 148:230-243. [PMID: 35724919 DOI: 10.1016/j.actbio.2022.06.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/05/2022] [Accepted: 06/12/2022] [Indexed: 11/19/2022]
Abstract
The delivery of salicylic acid or its derivatives to tumor tissue in the form of nanomedicine is critical for the studies on their potential synergistic mechanism in tumor therapy and chemoprevention considering the dangerous bleeding in the high-dose oral administration. To deepen the understanding of their role in adjusting immunosuppressive tumor microenvironment (ITM), herein, we firstly developed a hypoxia-sensitive Fe-5,5'-azosalicylic acid nanoscale coordination polymer nanomedicines (FeNCPs) via a "old drugs new tricks" strategy for synergistic chemodynamic therapy (CDT) and remodulation of ITM to elevate antitumor immunotherapy effect. PEGylated FeNCPs could be reductively cleaved to release 5-aminosalicylic acid (5-ASA) and ferric ions by azo-reductase under hypoxic conditions, which could induce tumor cell death by Fenton reaction-catalysis enhanced CDT and 5-ASA-converted carboxylquinone to promote the production of •OH. Meanwhile, cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin E2 (PGE2), as immune negative regulatory molecules, can promote tumor progression and immune tolerance. The released 5-ASA as a COX inhibitor could suppress the expression of PGE2, and Fe3+ was employed to reeducate M2-like tumor-associated macrophages (TAMs) to M1-like phenotype, which could initiate antitumor immune response to reach better antitumor immunotherapy. This work broadens the application of salicylic acid derivatives in antitumor immunotherapy, and provides a new strategy for their "old drugs new tricks". STATEMENT OF SIGNIFICANCE: Cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin E2 (PGE2), as immune negative regulatory molecules, facilitate the differentiation of immune cells into immunosuppressive cells to build the immunosuppressive tumor microenvironment, which can promote tumor progression and immune tolerance. Thus, down-regulation of COX-2/PGE2 expression may be a key approach to tumor treatments. Meanwhile, as a class of inhibitors of COX-2/PGE2, the potential mechanism of aspirin or 5-aminosalicylic acid has been a mystery in tumor therapy and chemoprevention. To expand the application of aspirin family nanomedicine in biomedicine, herein, we firstly developed a hypoxia-sensitive Fe-5,5'-azosalicylic acid nanoscale coordination polymer nanomedicines via a "old drugs new tricks" strategy for synergistic chemodynamic therapy and remodulation of immunosuppressive tumor microenvironment to elevate antitumor immunotherapy effect.
Collapse
Affiliation(s)
- Kai Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiaying Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jia Song
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhixin Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhuoxuan Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Liming Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, PR China
| | - Zhifei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
27
|
Yu P, Li Y, Sun H, Ke X, Xing J, Zhao Y, Xu X, Qin M, Xie J, Li J. Cartilage-Inspired Hydrogel with Mechanical Adaptability, Controllable Lubrication, and Inflammation Regulation Abilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27360-27370. [PMID: 35658410 DOI: 10.1021/acsami.2c04609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cartilage is a key component in joints because of its load-bearing and lubricating abilities. However, osteoarthritis often leads to afunction of load-bearing/lubrication and occurrence of inflammation with overexpressed reactive oxygen species (ROS) and nitric oxide (NO). To address these issues, we fabricated a novel polyanionic hydrogel with abundant carboxylates/sulfonates ("CS" hydrogel), inspired by normal cartilage rich in anionic hyaluronate/sulfonate glycosaminoglycan/lubricin, and crosslinked it tightly by Fe3+ ("CS-Fe" hydrogel). The "CS-Fe" hydrogel displayed mechanical adaptability and shear resistance. A low coefficient of friction (∼0.02) appeared when a loose hydrogel layer was generated because of the photoreduction of Fe3+ to Fe2+ by UV irradiation. This biocompatible "CS-Fe" hydrogel suppressed the overexpressed hydroxyl radical (·OH) and NO in macrophages and protected chondrocytes/fibroblasts from aggressive inflammation. Moreover, the layered "CS-Fe" hydrogel avoided cell death of chondrocytes in sliding tests. The results demonstrate that this cartilage-inspired hydrogel is a promising candidate material in cartilage tissue engineering to especially address inflammation.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Hui Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jiaqi Xing
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yiran Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Meng Qin
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
28
|
Ruan S, Huang Y, He M, Gao H. Advanced Biomaterials for Cell-Specific Modulation and Restore of Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200027. [PMID: 35343112 PMCID: PMC9165523 DOI: 10.1002/advs.202200027] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/18/2022] [Indexed: 05/09/2023]
Abstract
The past decade has witnessed the explosive development of cancer immunotherapies. Nevertheless, low immunogenicity, limited specificity, poor delivery efficiency, and off-target side effects remain to be the major limitations for broad implementation of cancer immunotherapies to patient bedside. Encouragingly, advanced biomaterials offering cell-specific modulation of immunological cues bring new solutions for improving the therapeutic efficacy while relieving side effect risks. In this review, focus is given on how functional biomaterials can enable cell-specific modulation of cancer immunotherapy within the cancer-immune cycle, with particular emphasis on antigen-presenting cells (APCs), T cells, and tumor microenvironment (TME)-resident cells. By reviewing the current progress in biomaterial-based cancer immunotherapy, here the aim is to provide a better understanding of biomaterials' role in targeting modulation of antitumor immunity step-by-step and guidelines for rationally developing targeting biomaterials for more personalized cancer immunotherapy. Moreover, the current challenge and future perspective regarding the potential application and clinical translation will also be discussed.
Collapse
Affiliation(s)
- Shaobo Ruan
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary ScienceBeijing Institute of TechnologyBeijing100081China
| | - Mei He
- College of PharmacyUniversity of FloridaGainesvilleFL32610USA
| | - Huile Gao
- West China School of PharmacySichuan UniversityChengdu610041China
| |
Collapse
|
29
|
Feng Y, Liu Y, Ma X, Xu L, Ding D, Chen L, Wang Z, Qin R, Sun W, Chen H. Intracellular marriage of bicarbonate and Mn ions as "immune ion reactors" to regulate redox homeostasis and enhanced antitumor immune responses. J Nanobiotechnology 2022; 20:193. [PMID: 35440088 PMCID: PMC9020034 DOI: 10.1186/s12951-022-01404-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
Background Different from Fe ions in Fenton reaction, Mn ions can function both as catalyst for chemodynamic therapy and immune adjuvant for antitumor immune responses. In Mn-mediated Fenton-like reaction, bicarbonate (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}HCO3-), as the most important component to amplify therapeutic effects, must be present, however, intracellular \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}HCO3- is strictly limited because of the tight control by live cells. Results Herein, Stimuli-responsive manganese carbonate-indocyanine green complexes (MnCO3-ICG) were designed for intracellular marriage of bicarbonate and Mn ions as “immune ion reactors” to regulate intracellular redox homeostasis and antitumor immune responses. Under the tumor acidic environment, the biodegradable complex can release “ion reactors” of Mn2+ and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}HCO3-, and ICG in the cytoplasm. The suddenly increased \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}HCO3- in situ inside the cells regulate intracellular pH, and accelerate the generation of hydroxyl radicals for the oxidative stress damage of tumors cells because \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{HCO}}_{3}^{ - }$$\end{document}HCO3- play a critical role to catalyze Mn-mediated Fenton-like reaction. Investigations in vitro and in vivo prove that the both CDT and phototherapy combined with Mn2+-enhanced immunotherapy effectively suppress tumor growth and realize complete tumor elimination. Conclusions The combination therapy strategy with the help of novel immune adjuvants would produce an enhanced immune response, and be used for the treatment of deep tumors in situ. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01404-x.
Collapse
Affiliation(s)
- Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yaqing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lihua Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dandan Ding
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lei Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zongzhang Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ruixue Qin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenjing Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongmin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
30
|
Zhang J, Yin Y, Zhang J, Zhang J, Su W, Ma H, Jia F, Zhao G, Wang H. Suppression of Energy Metabolism in Cancer Cells with Nutrient-Sensing Nanodrugs. NANO LETTERS 2022; 22:2514-2520. [PMID: 35285648 DOI: 10.1021/acs.nanolett.2c00356] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Uncontrolled growth of tumor cells is highly dependent on the energy metabolism. Fasting-mimicking diet (FMD) is a low-calorie, low-protein, low-sugar diet representing a promising strategy for cancer treatment. However, triglyceride stored in adipose tissue is hydrolyzed into free fatty acids and glycerol for energy supply during FMD treatment. Herein, we design a nutrient-sensing nanodrug, VFETX, which is self-assembled with vitamin B1 (VB1), ferrous ions, and etomoxir (ETX). FMD treatment upregulate the expression of VB1 transporters on tumor cells, thereby increasing cellular uptake and tumor accumulation of VFETX. Importantly, treatments of VFETX and FMD synergistically inhibit the energy metabolism in tumor cells and subsequently markedly enhance cytotoxicity of ETX. As a result, VFETX nanodrugs efficiently inhibit the growth of two tumor models in vivo without obvious side effects. This study demonstrates the potential of FMD-assisted nutrient-sensing nanodrugs for cancer therapy.
Collapse
Affiliation(s)
- Jiayi Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jie Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jingran Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Wen Su
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Haixia Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fuhao Jia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjiu Zhao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - Hai Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
32
|
Bai Y, Zhao J, Zhang L, Wang S, Hua J, Zhao S, Liang H. A Smart Near-Infrared Carbon Dot-Metal Organic Framework Assemblies for Tumor Microenvironment-Activated Cancer Imaging and Chemodynamic-Photothermal Combined Therapy. Adv Healthc Mater 2022; 11:e2102759. [PMID: 35170255 DOI: 10.1002/adhm.202102759] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/28/2022] [Indexed: 01/12/2023]
Abstract
Tumor microenvironment (TME)-activated cancer imaging and therapy is a key to achieving accurate diagnosis and treatment of cancer and reducing the side effects. Herein, smart near-infrared carbon dot-metal organic framework MIL-100 (Fe) assemblies are constructed to achieve TME-activated cancer imaging and chemodynamic-photothermal combined therapy. First, a near-infrared emission carbon dot (RCDs) is developed using glutathione (GSH) as the precursor. Then, the RCDs@MIL-100 self-assemblies are obtained using RCDs, FeCl3 , and trimesic acid solutions as raw materials. After the RCDs@MIL-100 enters the TME, a high concentration of GSH reduces Fe3+ to Fe2+ and drains the GSH, triggering the collapse of RCDs@MIL-100 skeleton and the release of RCDs and Fe2+ , at which time the RCDs fluorescence is restored and in an "on" state to illuminate the tumor cells, which achieved cancer imaging. The released Fe2+ reacts with H2 O2 in the TME to form highly reactive hydroxyl radicals (•OH) by Fenton reaction, which achieves the chemodynamic therapy of tumors. Thus, efficient synergistic chemodynamic-photothermal dual mode therapy is achieved under fluorescence imaging guidance with TME response.
Collapse
Affiliation(s)
- Yulong Bai
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Jingjin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Liangliang Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Shulong Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Jing Hua
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Science Guangxi Normal University Guilin 541004 China
| |
Collapse
|
33
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
34
|
Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. Adv Drug Deliv Rev 2022; 180:114031. [PMID: 34736985 DOI: 10.1016/j.addr.2021.114031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/07/2021] [Accepted: 10/27/2021] [Indexed: 12/14/2022]
Abstract
Dynamic drug delivery systems (DDSs) have the ability of transforming their morphology and functionality in response to the biological microenvironments at the disease site and/or external stimuli, show spatio-temporally controllable drug delivery, and enhance the treatment efficacy. Due to the large surface area and modification flexibility, two-dimensional (2D) inorganic nanomaterials are being increasingly exploited for developing intelligent DDSs for biomedical applications. In this review, we summarize the engineering methodologies used to construct transformable 2D DDSs, including changing compositions, creating defects, and surface dot-coating with polymers, biomolecules, or nanodots. Then we present and discuss dynamic inorganic 2D DDSs whose transformation is driven by the diseased characteristics, such as pH gradient, redox, hypoxia, and enzyme in the tumor microenvironment as well as the external stimuli including light, magnetism, and ultrasound. Finally, the limitations and challenges of current transformable inorganic DDSs for clinical translation and their in vivo safety assessment are discussed.
Collapse
|
35
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Nanomedicine in Pancreatic Cancer: Current Status and Future Opportunities for Overcoming Therapy Resistance. Cancers (Basel) 2021; 13:cancers13246175. [PMID: 34944794 PMCID: PMC8699181 DOI: 10.3390/cancers13246175] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Despite access to a vast arsenal of anticancer agents, many fail to realise their full therapeutic potential in clinical practice. One key determinant of this is the evolution of multifaceted resistance mechanisms within the tumour that may either pre-exist or develop during the course of therapy. This is particularly evident in pancreatic cancer, where limited responses to treatment underlie dismal survival rates, highlighting the urgent need for new therapeutic approaches. Here, we discuss the major features of pancreatic tumours that contribute to therapy resistance, and how they may be alleviated through exploitation of the mounting and exciting promise of nanomedicines; a unique collection of nanoscale platforms with tunable and multifunctional capabilities that have already elicited a widespread impact on cancer management. Abstract The development of drug resistance remains one of the greatest clinical oncology challenges that can radically dampen the prospect of achieving complete and durable tumour control. Efforts to mitigate drug resistance are therefore of utmost importance, and nanotechnology is rapidly emerging for its potential to overcome such issues. Studies have showcased the ability of nanomedicines to bypass drug efflux pumps, counteract immune suppression, serve as radioenhancers, correct metabolic disturbances and elicit numerous other effects that collectively alleviate various mechanisms of tumour resistance. Much of this progress can be attributed to the remarkable benefits that nanoparticles offer as drug delivery vehicles, such as improvements in pharmacokinetics, protection against degradation and spatiotemporally controlled release kinetics. These attributes provide scope for precision targeting of drugs to tumours that can enhance sensitivity to treatment and have formed the basis for the successful clinical translation of multiple nanoformulations to date. In this review, we focus on the longstanding reputation of pancreatic cancer as one of the most difficult-to-treat malignancies where resistance plays a dominant role in therapy failure. We outline the mechanisms that contribute to the treatment-refractory nature of these tumours, and how they may be effectively addressed by harnessing the unique capabilities of nanomedicines. Moreover, we include a brief perspective on the likely future direction of nanotechnology in pancreatic cancer, discussing how efforts to develop multidrug formulations will guide the field further towards a therapeutic solution for these highly intractable tumours.
Collapse
|
37
|
Zhou Y, Fan S, Feng L, Huang X, Chen X. Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic-Synergized Multimodal Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104223. [PMID: 34580933 DOI: 10.1002/adma.202104223] [Citation(s) in RCA: 208] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Indexed: 05/20/2023]
Abstract
Chemodynamic therapy (CDT) uses the tumor microenvironment-assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)-based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT-based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT-based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.
Collapse
Affiliation(s)
- Yaofeng Zhou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Siyu Fan
- School of Qianhu, Nanchang University, Nanchang, 330047, P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, 330047, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
38
|
Efficient nano-enabled therapy for gastrointestinal cancer using silicasome delivery technology. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1126-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
Liu P, Peng Y, Ding J, Zhou W. Fenton Metal Nanomedicines for Imaging-guided Combinatorial Chemodynamic Therapy against Cancer. Asian J Pharm Sci 2021; 17:177-192. [PMID: 35582641 PMCID: PMC9091802 DOI: 10.1016/j.ajps.2021.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/28/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Chemodynamic therapy (CDT) is considered as a promising modality for selective cancer therapy, which is realized via Fenton reaction-mediated decomposition of endogenous H2O2 to produce toxic hydroxyl radical (•OH) for tumor ablation. While extensive efforts have been made to develop CDT-based therapeutics, their in vivo efficacy is usually unsatisfactory due to poor catalytic activity limited by tumor microenvironment, such as anti-oxidative systems, insufficient H2O2, and mild acidity. To mitigate these issues, we have witnessed a surge in the development of CDT-based combinatorial nanomedicines with complementary or synergistic mechanisms for enhanced tumor therapy. By virtue of their bio-imaging capabilities, Fenton metal nanomedicines (FMNs) are equipped with intrinsic properties of imaging-guided tumor therapies. In this critical review, we summarize recent progress of this field, focusing on FMNs for imaging-guided combinatorial tumor therapy. First, various Fenton metals with inherent catalytic performances and imaging properties, including Fe, Cu and Mn, were introduced to illustrate their possible applications for tumor theranostics. Then, CDT-based combinatorial systems were reviewed by incorporating many other treatment means, including chemotherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), starvation therapy and immunotherapy. Next, various imaging approaches based on Fenton metals were presented in detail. Finally, challenges are discussed, and future prospects are speculated in the field to pave way for future developments.
Collapse
|
40
|
Liu Y, Yao M, Han W, Zhang H, Zhang S. Construction of a Single-Atom Nanozyme for Enhanced Chemodynamic Therapy and Chemotherapy. Chemistry 2021; 27:13418-13425. [PMID: 34263950 DOI: 10.1002/chem.202102016] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Indexed: 12/22/2022]
Abstract
To fulfill the demand of precision and personalized medicine, single-atom catalysts (SACs) have emerged as a frontier in biomedical fields due to enzyme-mimic catalysis. Herein, we present a biocompatible and versatile nanoagent consisting of single-atom iron-containing nanoparticles (SAF NPs), DOX and A549 cell membrane (CM). The designed porous iron-based SACs originally served as a drug-carrying nanoplatform to release DOX selectively in a tumor microenvironment (TME) for chemotherapy (CT) due to their high loading capacity (155 %) for DOX; this signifies that SACs are promising candidates for universal cargo delivery. Besides, the designed single-atom nanoagent can perform like peroxidase, which effectively triggers an in situ tumor-specific Fenton reaction to generate abundant toxic hydroxyl radicals (⋅OH) selectively in the acidic TME for chemodynamic therapy (CDT). With the combination of CDT and CT, the constructed SAF NPs@DOX@CM nanoagent demonstrates better in vivo therapeutic performance than single-pathway therapy. In the meantime, after modification with CM, SAF NPs@DOX@CM can achieve homologous binding to target tumor tissues and avoid early clearance. This study presents a type of multifunctional SACs for enhanced cancer treatment via the capacity of a drug carrier combined with the enzymatic therapies of single-atom catalytic sites.
Collapse
Affiliation(s)
- Yong Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Mei Yao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Wenxiu Han
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Huairong Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
41
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
42
|
Zhao M, Zhang N, Yang R, Chen D, Zhao Y. Which is Better for Nanomedicines: Nanocatalysts or Single-Atom Catalysts? Adv Healthc Mater 2021; 10:e2001897. [PMID: 33326185 DOI: 10.1002/adhm.202001897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Indexed: 12/24/2022]
Abstract
With the rapid advancements in nanotechnology and materials science, numerous nanomaterials have been used as catalysts for nanomedical applications. Their design and modification according to the microenvironment of diseases have been shown to achieve effective treatment. Chemists are in pursuit of nanocatalysts that are more efficient, controllable, and less toxic by developing innovative synthetic technologies and improving existing ones. Recently, single-atom catalysts (SACs) with excellent catalytic activity and high selectivity have attracted increasing attention because of their accurate design as nanomaterials at the atomic level, thereby highlighting their potential for nanomedical applications. In this review, the recent advances in nanocatalysts and SACs are briefly summarized according to their synthesis, characterizations, catalytic mechanisms, and nanomedical applications. The opportunities and future scope for their development and the issues and challenges for their application as nanomedicine are also discussed. As far as it is known, the review is the systematic comparison of nanocatalysts and SACs, especially in the field of nanomedicine, which has promoted the development of nanocatalytic medicine.
Collapse
Affiliation(s)
- Mengyang Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Nan Zhang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Ruigeng Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| | - Deliang Chen
- School of Materials Science and Engineering Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- School of Materials Science and Engineering Dongguan University of Technology Dongguan 523808 P. R. China
| | - Yongxing Zhao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment Department of Pharmaceutics School of Pharmaceutical Sciences Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases Zhengzhou University No. 100 Kexue Ave Zhengzhou 450001 P. R. China
| |
Collapse
|
43
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review comprehensively summarises stimulus-cleavable linkers from various research areas and their cleavage mechanisms, thus provides an insightful guideline to extend their potential applications to controlled drug release from nanomaterials.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton
- Victoria 3168
- Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics
- Xi’an Institute of Flexible Electronics (IFE) and Xi’an Institute of Biomedical Materials & Engineering
- Northwestern Polytechnical University
- 127 West Youyi Road
- Xi'an 710072
| |
Collapse
|