1
|
Amontree J, Yan X, DiMarco CS, Levesque PL, Adel T, Pack J, Holbrook M, Cupo C, Wang Z, Sun D, Biacchi AJ, Wilson-Stokes CE, Watanabe K, Taniguchi T, Dean CR, Hight Walker AR, Barmak K, Martel R, Hone J. Reproducible graphene synthesis by oxygen-free chemical vapour deposition. Nature 2024; 630:636-642. [PMID: 38811732 DOI: 10.1038/s41586-024-07454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Chemical vapour deposition (CVD) synthesis of graphene on copper has been broadly adopted since the first demonstration of this process1. However, widespread use of CVD-grown graphene for basic science and applications has been hindered by challenges with reproducibility2 and quality3. Here we identify trace oxygen as a key factor determining the growth trajectory and quality for graphene grown by low-pressure CVD. Oxygen-free chemical vapour deposition (OF-CVD) synthesis is fast and highly reproducible, with kinetics that can be described by a compact model, whereas adding trace oxygen leads to suppressed nucleation and slower/incomplete growth. Oxygen affects graphene quality as assessed by surface contamination, emergence of the Raman D peak and decrease in electrical conductivity. Epitaxial graphene grown in oxygen-free conditions is contamination-free and shows no detectable D peak. After dry transfer and boron nitride encapsulation, it shows room-temperature electrical-transport behaviour close to that of exfoliated graphene. A graphite-gated device shows well-developed integer and fractional quantum Hall effects. By highlighting the importance of eliminating trace oxygen, this work provides guidance for future CVD system design and operation. The increased reproducibility and quality afforded by OF-CVD synthesis will broadly influence basic research and applications of graphene.
Collapse
Affiliation(s)
- Jacob Amontree
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Xingzhou Yan
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Pierre L Levesque
- Infinite Potential Laboratories, Waterloo, Ontario, Canada
- Département de Chimie, Université de Montréal, Montréal, Quebec, Canada
- Institut Courtois, Université de Montréal, Montréal, Quebec, Canada
| | - Tehseen Adel
- Quantum Metrology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Jordan Pack
- Department of Physics, Columbia University, New York, NY, USA
| | | | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Zhiying Wang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Dihao Sun
- Department of Physics, Columbia University, New York, NY, USA
| | - Adam J Biacchi
- Nanoscale Device Characterization Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Charlezetta E Wilson-Stokes
- Quantum Metrology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
- Department of Mechanical Engineering, Howard University, Washington, DC, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA
| | - Angela R Hight Walker
- Quantum Metrology Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | - Richard Martel
- Département de Chimie, Université de Montréal, Montréal, Quebec, Canada.
- Institut Courtois, Université de Montréal, Montréal, Quebec, Canada.
| | - James Hone
- Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Zhu Y, Zhang J, Cheng T, Tang J, Duan H, Hu Z, Shao J, Wang S, Wei M, Wu H, Li A, Li S, Balci O, Shinde SM, Ramezani H, Wang L, Lin L, Ferrari AC, Yakobson BI, Peng H, Jia K, Liu Z. Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308802. [PMID: 37878366 DOI: 10.1002/adma.202308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.
Collapse
Affiliation(s)
- Yeshu Zhu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ting Cheng
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hongwei Duan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaxin Shao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyue Wei
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Sheng Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Osman Balci
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sachin M Shinde
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Hamideh Ramezani
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Luda Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Boris I Yakobson
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
3
|
Chen S, Chen G, Zhao Y, Bu S, Hu Z, Mao B, Wu H, Liao J, Li F, Zhou C, Guo B, Liu W, Zhu Y, Lu Q, Hu J, Shang M, Shi Z, Yu B, Zhang X, Zhao Z, Jia K, Zhang Y, Sun P, Liu Z, Lin L, Wang X. Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308950. [PMID: 38288661 DOI: 10.1002/adma.202308950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/30/2023] [Indexed: 02/09/2024]
Abstract
The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.
Collapse
Affiliation(s)
- Sensheng Chen
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ge Chen
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yixuan Zhao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junhao Liao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Fangfang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Bingbing Guo
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wenlin Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yaqi Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qi Lu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Mingpeng Shang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Zhuofeng Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Beiming Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaodong Zhang
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenxin Zhao
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Zhongfan Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Xiaomin Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| |
Collapse
|
4
|
Belyaeva L, Ludwig C, Lai YC, Chou CC, Shih CJ. Uniform, Strain-Free, Large-Scale Graphene and h-BN Monolayers Enabled by Hydrogel Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307054. [PMID: 37867241 DOI: 10.1002/smll.202307054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Translation of the unique properties of 2D monolayers from non-scalable micron-sized samples to macroscopic scale is a longstanding challenge obstructed by the substrate-induced strains, interface nonuniformities, and sample-to-sample variations inherent to the scalable fabrication methods. So far, the most successful strategies to reduce strain in graphene are the reduction of the interface roughness and lattice mismatch by using hexagonal boron nitride (h-BN), with the drawback of limited uniformity and applicability to other 2D monolayers, and liquid water, which is not compatible with electronic devices. This work demonstrates a new class of substrates based on hydrogels that overcome these limitations and excel h-BN and water substrates at strain relaxation enabling superiorly uniform and reproducible centimeter-sized sheets of unstrained monolayers. The ultimate strain relaxation and uniformity are rationalized by the extreme structural adaptability of the hydrogel surface owing to its high liquid content and low Young's modulus, and are universal to all 2D materials irrespective of their crystalline structure. Such platforms can be integrated into field effect transistors and demonstrate enhanced charge carrier mobilities in graphene. These results present a universal strategy for attaining uniform and strain-free sheets of 2D materials and underline the opportunities enabled by interfacing them with soft matter.
Collapse
Affiliation(s)
- Liubov Belyaeva
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| | - Cyril Ludwig
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| | - Yu-Cheng Lai
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chia-Ching Chou
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, Zürich, CH-8093, Switzerland
| |
Collapse
|
5
|
Liu B, Ma S. Precise synthesis of graphene by chemical vapor deposition. NANOSCALE 2024; 16:4407-4433. [PMID: 38291992 DOI: 10.1039/d3nr06041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Graphene, a typical representative of the family of two-dimensional (2D) materials, possesses a series of phenomenal physical properties. To date, numerous inspiring discoveries have been made on its structures, properties, characterization, synthesis, transfer and applications. The real practical applications of this magic material indeed require large-scale synthesis and precise control over its structures, such as size, crystallinity, layer number, stacking order, edge type and contamination levels. Nonetheless, studies on the precise synthesis of graphene are far from satisfactory currently. Our review aims to deal with the precise synthesis of four critical graphene structures, including single-crystal graphene (SCG), AB-stacked bilayer graphene (AB-BLG), etched graphene and clean graphene. Meanwhile, existing problems and future directions in the precise synthesis of graphene are also briefly discussed.
Collapse
Affiliation(s)
- Bing Liu
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| | - Siguang Ma
- Ji Hua Laboratory, Foshan, 528200, P. R. China.
| |
Collapse
|
6
|
Zhao Z, Wang Y, Wang C. Anomalous wrinkle propagation in polycrystalline graphene with tilt grain boundaries. Phys Chem Chem Phys 2023; 25:3681-3694. [PMID: 36650982 DOI: 10.1039/d2cp05067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the propagation of dynamic wrinkles in polycrystalline graphene with grain boundaries (GBs) is critical to the practical application of graphene-based nanodevices. Although wrinkle propagation behavior in pristine graphene (PG) and some defect-containing graphene samples have been investigated, there are no studies on the dynamic behavior of graphene with tilt GBs. Here, nine tilt GBs are constructed in graphene, and molecular dynamics (MD) simulations are performed to investigate anomalous wrinkle propagation. The MD simulation results show that a larger misorientation angle α first enhances the shielding effect of tilt GBs on wrinkle propagation before it weakens. The maximum Δz root mean square (RMS) shows that a greater misorientation angle α first increases the maximum RMS of the GB region (RGB) before it then decreases, while the maximum RMS of R80 exhibits the opposite trend. Moreover, approximately 96% of the C60 kinetic energy is converted into kinetic and potential energies in graphene, and the potential energy in graphene presents two evolution modes. Phase diagrams are plotted to study the effect of the distance d1 and rotation angle β on the wrinkle propagation and sensitivity of the maximum RMS value to d1. It is expected that our results can provide a fundamental understanding of defect engineering and guidelines to design protectors, energy absorbers, and defect detectors in nanodevices.
Collapse
Affiliation(s)
- Zihui Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China. .,Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| | - Yafei Wang
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Changguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China. .,Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
7
|
Liu X, Wu L, Yu X, Peng H, Xu S, Zhou Z. In-Situ Growth of Graphene Films to Improve Sensing Performances. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7814. [PMID: 36363409 PMCID: PMC9653576 DOI: 10.3390/ma15217814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Graphene films made by chemical vapor deposition (CVD) are a popular method to modify sensors by virtue of large-scale and reproducibility, but suffer from various surface contamination and structural defects induced during transfer procedures. In-situ growth of graphene films is proposed in this review article to improve sensing performance. Root causes of the surface contamination and structural defects are revealed with several common transfer methods. In-situ approaches are introduced and compared, growing graphene films with clean surfaces and few defects. This allows graphene film to display superior sensing performance for sensor applications. This work may reasonably be expected to offer a good avenue for synthesis of graphene films applicable for sensing applications.
Collapse
|
8
|
Schmidt R, Carrascoso Plana F, Nemes NM, Mompeán F, García-Hernández M. Impedance Spectroscopy of Encapsulated Single Graphene Layers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:804. [PMID: 35269292 PMCID: PMC8912308 DOI: 10.3390/nano12050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/01/2023]
Abstract
In this work, we demonstrate the use of electrical impedance spectroscopy (EIS) for the disentanglement of several dielectric contributions in encapsulated single graphene layers. The dielectric data strongly vary qualitatively with the nominal graphene resistance. In the case of sufficiently low resistance of the graphene layers, the dielectric spectra are dominated by inductive contributions, which allow for disentanglement of the electrode/graphene interface resistance from the intrinsic graphene resistance by the application of an adequate equivalent circuit model. Higher resistance of the graphene layers leads to predominantly capacitive dielectric contributions, and the deconvolution is not feasible due to the experimental high frequency limit of the EIS technique.
Collapse
Affiliation(s)
- Rainer Schmidt
- Campo Moncloa, Grupo de Física de Materiales Complejos (GFMC), Dpto. de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Unidad Asociada “Laboratorio de Heteroestructuras con Aplicación en Spintrónica”, UCM-CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
| | - Félix Carrascoso Plana
- Instituto de Ciencia de Materiales de Madrid—Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Materials Science Factory, 2D Foundry Group, Cantoblanco, 28049 Madrid, Spain; (F.C.P.); (F.M.); (M.G.-H.)
| | - Norbert Marcel Nemes
- Campo Moncloa, Grupo de Física de Materiales Complejos (GFMC), Dpto. de Física de Materiales, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Unidad Asociada “Laboratorio de Heteroestructuras con Aplicación en Spintrónica”, UCM-CSIC, Sor Juana Ines de la Cruz, 3, Cantoblanco, 28049 Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid—Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Materials Science Factory, 2D Foundry Group, Cantoblanco, 28049 Madrid, Spain; (F.C.P.); (F.M.); (M.G.-H.)
| | - Federico Mompeán
- Instituto de Ciencia de Materiales de Madrid—Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Materials Science Factory, 2D Foundry Group, Cantoblanco, 28049 Madrid, Spain; (F.C.P.); (F.M.); (M.G.-H.)
| | - Mar García-Hernández
- Instituto de Ciencia de Materiales de Madrid—Consejo Superior de Investigaciones Cientificas (ICMM-CSIC), Materials Science Factory, 2D Foundry Group, Cantoblanco, 28049 Madrid, Spain; (F.C.P.); (F.M.); (M.G.-H.)
| |
Collapse
|
9
|
Yao W, Zhang J, Ji J, Yang H, Zhou B, Chen X, Bøggild P, Jepsen PU, Tang J, Wang F, Zhang L, Liu J, Wu B, Dong J, Liu Y. Bottom-Up-Etching-Mediated Synthesis of Large-Scale Pure Monolayer Graphene on Cyclic-Polishing-Annealed Cu(111). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108608. [PMID: 34820918 DOI: 10.1002/adma.202108608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Synthesis of large-scale single-crystalline graphene monolayers without multilayers involves the fabrication of proper single-crystalline substrates and the ubiquitous formation of multilayered graphene islands during chemical vapor deposition. Here, a method of cyclic electrochemical polishing combined with thermal annealing, which allows the conversion of commercial polycrystalline Cu foils to single-crystal Cu(111) with an almost 100% yield, is presented. A global "bottom-up-etching" method that is capable of fabricating large-area pure single-crystalline graphene monolayers without multilayers through selectively etching bottom multilayered graphene underneath large area as-grown graphene monolayer on Cu(111) surface is demonstrated. Terahertz time-domain spectroscopy (THz-TDS) measurement of the pure monolayer graphene film shows a high average sheet conductivity of 2.8 mS and mean carrier mobility of 6903 cm2 V-1 s-1 over a large area. Density functional theory (DFT) calculations show that the selective etching is induced by the much easier diffusion of hydrogen atoms than hydrocarbon radicals across the edges of the top graphene layer, and the simulated selective etching processes based on phase field modeling are well consistent with experimental observations. This work provides new ways toward the production of single-crystal Cu(111) and the synthesis of pure monolayer graphene with high electronic quality.
Collapse
Affiliation(s)
- Wenqian Yao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianing Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Ji
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - He Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Binbin Zhou
- Department of Photonics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Xin Chen
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Peter Bøggild
- Department of Physics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Peter U Jepsen
- Department of Photonics, Technical University of Denmark, Kongens Lyngby, DK-2800, Denmark
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li Zhang
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiahui Liu
- Analytical Instrumentation Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, 100190, P. R. China
- Sino-Danish Center for Education and Research, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Han Z, Li L, Jiao F, Yu G, Wei Z, Geng D, Hu W. Continuous orientated growth of scaled single-crystal 2D monolayer films. NANOSCALE ADVANCES 2021; 3:6545-6567. [PMID: 36132651 PMCID: PMC9418785 DOI: 10.1039/d1na00545f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/03/2021] [Indexed: 06/16/2023]
Abstract
Single-crystal 2D materials have attracted a boom of scientific and technological activities. Recently, chemical vapor deposition (CVD) shows great promise for the synthesis of high-quality 2D materials owing to high controllability, high scalability and ultra-low cost. Two types of strategies have been developed: one is single-seed method, which focuses on the ultimate control of the density of nucleation into only one nucleus and the other is a multi-seed approach, which concentrates on the precise engineering of orientation of nuclei into a uniform alignment. Currently, the latter is recognized as a more effective method to meet the demand of industrial production, whereas the oriented domains can seamlessly merge into a continuous single-crystal film in a short time. In this review, we present the detailed cases of growing the representative monocrystalline 2D materials via the single-seed CVD method as well as show its advantages and disadvantages in shaping 2D materials. Then, other typical 2D materials (including graphene, h-BN, and TMDs) are given in terms of the unique feature under the guideline of the multi-seed growth approach. Furthermore, the growth mechanism for the 2D single crystals is presented and the following application in electronics, optics and antioxidation coatings are also discussed. Finally, we outline the current challenges, and a bright development in the future of the continuous orientated growth of scaled 2D crystals should be envisioned.
Collapse
Affiliation(s)
- Ziyi Han
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Lin Li
- Institute of Molecular Plus Tianjin 300072 P. R. China
| | - Fei Jiao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, Organic Solid Laboratory, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences Beijing 100083 China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P. R. China
| |
Collapse
|
11
|
Schlingman K, Chen Y, Carmichael RS, Carmichael TB. 25 Years of Light-Emitting Electrochemical Cells: A Flexible and Stretchable Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006863. [PMID: 33852176 DOI: 10.1002/adma.202006863] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Light-emitting electrochemical cells (LECs) are simple electroluminescent devices comprising an emissive material containing mobile ions sandwiched between two electrodes. The operating mechanism of the LEC involves both ionic and electronic transport, distinguishing it from its more well-known cousin, the organic light-emitting diode (OLED). While OLEDs have become a leading player in commercial displays, LECs have flourished in academic research due to the simple device architecture and unique features of its operating mechanism, inviting exploration of new materials and fabrication strategies. These explorations have brought LECs to an exciting frontier in advanced optoelectronics: flexible and stretchable light-emitting devices. Flexible and stretchable LECs are discussed herein, presenting the LEC system as a robust and fault-tolerant development platform. The engineering of emissive composites is highlighted to control mechanical properties, and how the tolerance of LECs to electrode work function and roughness has enabled the incorporation of new electrode materials to achieve flexibility and stretchability. As part of this story, the solution processability of LECs has led to exciting demonstrations of flexible and printed LECs. An outlook is provided for LECs that builds on these strengths, potentially leading to flexible, stretchable, low-cost devices such as illuminated tags, smart packaging, flexible signage, and wearable illumination.
Collapse
Affiliation(s)
- Kory Schlingman
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yiting Chen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - R Stephen Carmichael
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Tricia Breen Carmichael
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|