1
|
Rivlis R, Zadorozhnyi A, Dahnovsky Y. Giant and negative magnetoresistances in conical magnets in the nonequilibrium Boltzmann equation approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:015801. [PMID: 39332449 DOI: 10.1088/1361-648x/ad80f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 09/29/2024]
Abstract
We study magnetotransport in conical helimagnet crystals using the nonequilibriun Boltzmann equation approach. Spin dependent magnetoresistance exhibits dramatic properties for high and low electron concentrations at different temperatures. For spin up electrons we find negative magnetoresistance despite only considering a single carrier type. For spin down electrons we observe giant magnetoresistance due to depletion of spin down electrons with an applied magnetic field. For spin up carriers, the magnetoresistance is negative, due to the increase in charge carriers with a magnetic field. In addition, we investigate the spin dependent Hall effect. If a magnetic field reaches some critical value for spin down electrons, giant Hall resistance occurs, i.e. Hall current vanishes. This effect is explained by the absence of spin down carriers. For spin up carriers, the Hall constant dramatically decreases with field, due to the increase in spin up electron density. Because of the giant spin dependent magnetoresistance and Hall resistivity, conical helimagnets could be useful in spin switching devices.
Collapse
Affiliation(s)
- Raz Rivlis
- Department of Physics and Astronomy/3905, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, United States of America
| | - Andrei Zadorozhnyi
- Department of Physics, Georgetown University, 37th Street, Washington, DC 20057, United States of America
| | - Yuri Dahnovsky
- Department of Physics and Astronomy/3905, University of Wyoming, 1000 E. University Avenue, Laramie, WY 82071, United States of America
| |
Collapse
|
2
|
Tong C, Ginzel F, Kurzmann A, Garreis R, Ostertag L, Gerber JD, Huang WW, Watanabe K, Taniguchi T, Burkard G, Danon J, Ihn T, Ensslin K. Three-Carrier Spin Blockade and Coupling in Bilayer Graphene Double Quantum Dots. PHYSICAL REVIEW LETTERS 2024; 133:017001. [PMID: 39042804 DOI: 10.1103/physrevlett.133.017001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/08/2024] [Accepted: 05/19/2024] [Indexed: 07/25/2024]
Abstract
The spin degrees of freedom is crucial for the understanding of any condensed matter system. Knowledge of spin-mixing mechanisms is not only essential for successful control and manipulation of spin qubits, but also uncovers fundamental properties of investigated devices and material. For electrostatically defined bilayer graphene quantum dots, in which recent studies report spin-relaxation times T_{1} up to 50 ms with strong magnetic field dependence, we study spin-blockade phenomena at charge configuration (1,2)↔(0,3). We examine the dependence of the spin-blockade leakage current on interdot tunnel coupling and on the magnitude and orientation of externally applied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise from finite-temperature cotunneling with the leads; though involvement of additional spin- and valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between the spin Zeeman effect and the Kane-Mele spin-orbit interaction. Details of the line shape of this current dip, however, suggest additional underlying mechanisms are at play.
Collapse
|
3
|
Chakraborti H, Gorini C, Knothe A, Liu MH, Makk P, Parmentier FD, Perconte D, Richter K, Roulleau P, Sacépé B, Schönenberger C, Yang W. Electron wave and quantum optics in graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:393001. [PMID: 38697131 DOI: 10.1088/1361-648x/ad46bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.
Collapse
Affiliation(s)
| | - Cosimo Gorini
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Angelika Knothe
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Péter Makk
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- MTA-BME Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | | | - David Perconte
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Preden Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Benjamin Sacépé
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | - Wenmin Yang
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
4
|
Todorov Y, Dhillon S, Mangeney J. THz quantum gap: exploring potential approaches for generating and detecting non-classical states of THz light. NANOPHOTONICS 2024; 13:1681-1691. [PMID: 38681681 PMCID: PMC11052537 DOI: 10.1515/nanoph-2023-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/30/2023] [Indexed: 05/01/2024]
Abstract
Over the past few decades, THz technology has made considerable progress, evidenced by the performance of current THz sources and detectors, as well as the emergence of several THz applications. However, in the realm of quantum technologies, the THz spectral domain is still in its infancy, unlike neighboring spectral domains that have flourished in recent years. Notably, in the microwave domain, superconducting qubits currently serve as the core of quantum computers, while quantum cryptography protocols have been successfully demonstrated in the visible and telecommunications domains through satellite links. The THz domain has lagged behind in these impressive advancements. Today, the current gap in the THz domain clearly concerns quantum technologies. Nonetheless, the emergence of quantum technologies operating at THz frequencies will potentially have a significant impact. Indeed, THz radiation holds significant promise for wireless communications with ultimate security owing to its low sensitivity to atmospheric disturbances. Moreover, it has the potential to raise the operating temperature of solid-state qubits, effectively addressing existing scalability issues. In addition, THz radiation can manipulate the quantum states of molecules, which are recognized as new platforms for quantum computation and simulation with long range interactions. Finally, its ability to penetrate generally opaque materials or its resistance to Rayleigh scattering are very appealing features for quantum sensing. In this perspective, we will discuss potential approaches that offer exciting prospects for generating and detecting non-classical states of THz light, thereby opening doors to significant breakthroughs in THz quantum technologies.
Collapse
Affiliation(s)
- Yanko Todorov
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Sukhdeep Dhillon
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | - Juliette Mangeney
- Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
5
|
Hecker K, Banszerus L, Schäpers A, Möller S, Peters A, Icking E, Watanabe K, Taniguchi T, Volk C, Stampfer C. Coherent charge oscillations in a bilayer graphene double quantum dot. Nat Commun 2023; 14:7911. [PMID: 38036517 PMCID: PMC10689829 DOI: 10.1038/s41467-023-43541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
The coherent dynamics of a quantum mechanical two-level system passing through an anti-crossing of two energy levels can give rise to Landau-Zener-Stückelberg-Majorana (LZSM) interference. LZSM interference spectroscopy has proven to be a fruitful tool to investigate charge noise and charge decoherence in semiconductor quantum dots (QDs). Recently, bilayer graphene has developed as a promising platform to host highly tunable QDs potentially useful for hosting spin and valley qubits. So far, in this system no coherent oscillations have been observed and little is known about charge noise in this material. Here, we report coherent charge oscillations and [Formula: see text] charge decoherence times in a bilayer graphene double QD. The charge decoherence times are measured independently using LZSM interference and photon assisted tunneling. Both techniques yield [Formula: see text] average values in the range of 400-500 ps. The observation of charge coherence allows to study the origin and spectral distribution of charge noise in future experiments.
Collapse
Affiliation(s)
- K Hecker
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany.
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - L Banszerus
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Schäpers
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - S Möller
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - A Peters
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - C Volk
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, 52074, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
6
|
Korkusinski M, Saleem Y, Dusko A, Miravet D, Hawrylak P. Spontaneous Spin and Valley Symmetry-Broken States of Interacting Massive Dirac Fermions in a Bilayer Graphene Quantum Dot. NANO LETTERS 2023; 23:7546-7551. [PMID: 37561956 DOI: 10.1021/acs.nanolett.3c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We predict the existence of spontaneous spin and valley symmetry-broken states of interacting massive Dirac Fermions in a gated bilayer graphene quantum dot based on the exact diagonalization of the many-body Hamiltonian. The dot is defined by a vertical electric field and lateral gates, and its single-particle (SP) energies, wave functions, and Coulomb matrix elements are computed by using the atomistic tight-binding model. The effect of the Coulomb interaction is measured by the ratio of Coulomb elements to the SP level spacing. As we increase the interaction strength, we find the electrons in a series of spin and valley symmetry-broken phases with increasing valley and spin polarizations. The phase transitions result from the competition of the SP, exchange, and correlation energy scales. A phase diagram for N = 1-6 electrons is mapped out as a function of the Coulomb interaction strength.
Collapse
Affiliation(s)
- Marek Korkusinski
- Physics Department, University of Ottawa, Ottawa K1N6N5, Canada
- Security and Disruptive Technologies, National Research Council, Ottawa K1A0R6, Canada
| | - Yasser Saleem
- Physics Department, University of Ottawa, Ottawa K1N6N5, Canada
| | - Amintor Dusko
- Physics Department, University of Ottawa, Ottawa K1N6N5, Canada
| | - Daniel Miravet
- Physics Department, University of Ottawa, Ottawa K1N6N5, Canada
| | - Pawel Hawrylak
- Physics Department, University of Ottawa, Ottawa K1N6N5, Canada
| |
Collapse
|
7
|
Ali H, Serra L. Electrostatic Tuning of Bilayer Graphene Edge Modes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2102. [PMID: 37513113 PMCID: PMC10383601 DOI: 10.3390/nano13142102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
We study the effect of a local potential shift induced by a side electrode on the edge modes at the boundary between gapped and ungapped bilayer graphene. A potential shift close to the gapped-ungapped boundary causes the emergence of unprotected edge modes, propagating in both directions along the boundary. These counterpropagating edge modes allow edge backscattering, as opposed to the case of valley-momentum-locked edge modes. We then calculate the conductance of a bilayer graphene wire in presence of finger-gate electrodes, finding strong asymmetries with energy inversion and deviations from conductance quantization that can be understood with the gate-induced unprotected edge modes.
Collapse
Affiliation(s)
- Hira Ali
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), E-07122 Palma, Spain
| | - Llorenç Serra
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (CSIC-UIB), E-07122 Palma, Spain
- Physics Department, University of the Balearic Islands, E-07122 Palma, Spain
| |
Collapse
|
8
|
Banszerus L, Möller S, Hecker K, Icking E, Watanabe K, Taniguchi T, Hassler F, Volk C, Stampfer C. Particle-hole symmetry protects spin-valley blockade in graphene quantum dots. Nature 2023:10.1038/s41586-023-05953-5. [PMID: 37138084 DOI: 10.1038/s41586-023-05953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 05/05/2023]
Abstract
Particle-hole symmetry plays an important role in the characterization of topological phases in solid-state systems1. It is found, for example, in free-fermion systems at half filling and it is closely related to the notion of antiparticles in relativistic field theories2. In the low-energy limit, graphene is a prime example of a gapless particle-hole symmetric system described by an effective Dirac equation3,4 in which topological phases can be understood by studying ways to open a gap by preserving (or breaking) symmetries5,6. An important example is the intrinsic Kane-Mele spin-orbit gap of graphene, which leads to a lifting of the spin-valley degeneracy and renders graphene a topological insulator in a quantum spin Hall phase7 while preserving particle-hole symmetry. Here we show that bilayer graphene allows the realization of electron-hole double quantum dots that exhibit near-perfect particle-hole symmetry, in which transport occurs via the creation and annihilation of single electron-hole pairs with opposite quantum numbers. Moreover, we show that particle-hole symmetric spin and valley textures lead to a protected single-particle spin-valley blockade. The latter will allow robust spin-to-charge and valley-to-charge conversion, which are essential for the operation of spin and valley qubits.
Collapse
Affiliation(s)
- L Banszerus
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - S Möller
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - K Hecker
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - F Hassler
- JARA-Institute for Quantum Information, RWTH Aachen University, Aachen, Germany
| | - C Volk
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics A, RWTH Aachen University, Aachen, Germany.
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
9
|
Saleem Y, Sadecka K, Korkusinski M, Miravet D, Dusko A, Hawrylak P. Theory of Excitons in Gated Bilayer Graphene Quantum Dots. NANO LETTERS 2023; 23:2998-3004. [PMID: 36962005 DOI: 10.1021/acs.nanolett.3c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present a theory of excitons in gated bilayer graphene (BLG) quantum dots (QDs). Electrical gating of BLG opens an energy gap, turning this material into an electrically tunable semiconductor. Unlike in laterally gated semiconductor QDs, where electrons are attracted and holes repelled, we show here that lateral structuring of metallic gates results in a gated lateral QD confining both electrons and holes. Using an accurate atomistic approach and exact diagonalization tools, we describe strongly interacting electrons and holes forming an electrically tunable exciton. We find these excitons to be different from those found in semiconductor QDs and nanocrystals, with exciton energy tunable by voltage from the terahertz to far infrared (FIR) range. The conservation of spin, valley, and orbital angular momentum results in an exciton fine structure with a band of dark low-energy states, making this system a promising candidate for storage, detection and emission of photons in the terahertz range.
Collapse
Affiliation(s)
- Yasser Saleem
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
| | - Katarzyna Sadecka
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
- Institute of Theoretical Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marek Korkusinski
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
- Security and Disruptive Technologies, National Research Council, Ottawa K1A0R6, Canada
| | - Daniel Miravet
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
| | - Amintor Dusko
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
| | - Pawel Hawrylak
- Department of Physics, University of Ottawa, Ottawa K1N6N5, Canada
| |
Collapse
|
10
|
Schock RTK, Neuwald J, Möckel W, Kronseder M, Pirker L, Remškar M, Hüttel AK. Non-Destructive Low-Temperature Contacts to MoS 2 Nanoribbon and Nanotube Quantum Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209333. [PMID: 36624967 DOI: 10.1002/adma.202209333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Molybdenum disulfide nanoribbons and nanotubes are quasi-1D semiconductors with strong spin-orbit interaction, a nanomaterial highly promising for quantum electronic applications. Here, it is demonstrated that a bismuth semimetal layer between the contact metal and this nanomaterial strongly improves the properties of the contacts. Two-point resistances on the order of 100 kΩ are observed at room temperature. At cryogenic temperature, Coulomb blockade is visible. The resulting stability diagrams indicate a marked absence of trap states at the contacts and the corresponding disorder, compared to previous devices that use low-work-function metals as contacts. Single-level quantum transport is observed at temperatures below 100 mK.
Collapse
Affiliation(s)
- Robin T K Schock
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Jonathan Neuwald
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Wolfgang Möckel
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Matthias Kronseder
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Luka Pirker
- Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Czech Academy of Sciences, 182 23, Prague, Czech Republic
| | - Maja Remškar
- Solid State Physics Department, Jožef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Andreas K Hüttel
- Institute for Experimental and Applied Physics, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|
11
|
Ren YN, Zhuang YC, Sun QF, He L. Magnetic-Field-Tunable Valley-Contrasting Pseudomagnetic Confinement in Graphene. PHYSICAL REVIEW LETTERS 2022; 129:076802. [PMID: 36018692 DOI: 10.1103/physrevlett.129.076802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Introducing quantum confinement has uncovered a rich set of interesting quantum phenomena and allows one to directly probe the physics of confined (quasi-)particles. In most experiments, however, an electrostatic potential is the only available method to generate quantum dots in a continuous system to confine (quasi-)particles. Here we demonstrate experimentally that inhomogeneous pseudomagnetic fields in strained graphene can introduce exotic quantum confinement of massless Dirac fermions. The pseudomagnetic fields have opposite directions in the two distinct valleys of graphene. By adding and tuning real magnetic fields, the total effective magnetic fields in the two valleys are imbalanced. By that we realized valley-contrasting spatial confinement, which lifts the valley degeneracy and results in field-tunable valley-polarized confined states in graphene. Our results provide a new avenue to manipulate the valley degree of freedom.
Collapse
Affiliation(s)
- Ya-Ning Ren
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yu-Chen Zhuang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, West Bld. #3, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
12
|
Spin relaxation in a single-electron graphene quantum dot. Nat Commun 2022; 13:3637. [PMID: 35752620 PMCID: PMC9233672 DOI: 10.1038/s41467-022-31231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
The relaxation time of a single-electron spin is an important parameter for solid-state spin qubits, as it directly limits the lifetime of the encoded information. Thanks to the low spin-orbit interaction and low hyperfine coupling, graphene and bilayer graphene (BLG) have long been considered promising platforms for spin qubits. Only recently, it has become possible to control single-electrons in BLG quantum dots (QDs) and to understand their spin-valley texture, while the relaxation dynamics have remained mostly unexplored. Here, we report spin relaxation times (T1) of single-electron states in BLG QDs. Using pulsed-gate spectroscopy, we extract relaxation times exceeding 200 μs at a magnetic field of 1.9 T. The T1 values show a strong dependence on the spin splitting, promising even longer T1 at lower magnetic fields, where our measurements are limited by the signal-to-noise ratio. The relaxation times are more than two orders of magnitude larger than those previously reported for carbon-based QDs, suggesting that graphene is a potentially promising host material for scalable spin qubits. Graphene has long been considered to be a promising host for spin qubits, however a demonstration of long spin relaxation times for a potential qubit has been lacking. Here, the authors report the electrical measurement of the single-electron spin relaxation time exceeding 200 μs in a bilayer graphene quantum dot.
Collapse
|
13
|
Ren YN, Cheng Q, Sun QF, He L. Realizing Valley-Polarized Energy Spectra in Bilayer Graphene Quantum Dots via Continuously Tunable Berry Phases. PHYSICAL REVIEW LETTERS 2022; 128:206805. [PMID: 35657882 DOI: 10.1103/physrevlett.128.206805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/08/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
The Berry phase plays an important role in determining many physical properties of quantum systems. However, tuning the energy spectrum of a quantum system via Berry phase is comparatively rare because the Berry phase is usually a fixed constant. Here, we report the realization of an unusual valley-polarized energy spectra via continuously tunable Berry phases in Bernal-stacked bilayer graphene quantum dots. In our experiment, the Berry phase of electron orbital states is continuously tuned from about π to 2π by perpendicular magnetic fields. When the Berry phase equals π or 2π, the electron states in the two inequivalent valleys are energetically degenerate. By altering the Berry phase to noninteger multiples of π, large and continuously tunable valley-polarized energy spectra are realized. Our result reveals the Berry phase's essential role in valleytronics and the observed valley splitting, on the order of 10 meV at a magnetic field of 1 T, is about 100 times larger than Zeeman splitting for spin, shedding light on graphene-based valleytronics.
Collapse
Affiliation(s)
- Ya-Ning Ren
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Qiang Cheng
- School of Science, Qingdao University of Technology, Qingdao, Shandong 266520, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qing-Feng Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Beijing Academy of Quantum Information Sciences, West Building #3, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
14
|
Metal-enhanced fluorescence of graphene oxide sheets. Anal Bioanal Chem 2022; 414:3625-3630. [PMID: 35257216 DOI: 10.1007/s00216-022-04001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 03/01/2022] [Indexed: 12/15/2022]
Abstract
Graphene oxide (GO) is an excellent chemical tunable optical platform for imaging and sensing. The photoluminescence (PL) quantum yield of GO is relatively low, which limited the application of the intrinsic and tunable fluorescence from GO. Here, we report the first case of metal-enhanced fluorescence (MEF) of GO. A significant enhancement (~10-fold) in fluorescence intensity is observed from GO on the Ag substrate as compared to that on the glass. FL, Raman, and SEM images are used to investigate the MEF behavior and are coincident with each other. The influence of the metal particle size of Ag substrate is investigated. The fluorescence is also found to be responsive when adding different metal ions into GO solution. GO contacting directly with metal substrate exhibits strong MEF without quenching, which makes it possible to use GO sheets for three-dimension optical imaging and sensing.
Collapse
|
15
|
Tong C, Kurzmann A, Garreis R, Huang WW, Jele S, Eich M, Ginzburg L, Mittag C, Watanabe K, Taniguchi T, Ensslin K, Ihn T. Pauli Blockade of Tunable Two-Electron Spin and Valley States in Graphene Quantum Dots. PHYSICAL REVIEW LETTERS 2022; 128:067702. [PMID: 35213193 DOI: 10.1103/physrevlett.128.067702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/23/2021] [Accepted: 01/10/2022] [Indexed: 05/21/2023]
Abstract
Pauli blockade mechanisms-whereby carrier transport through quantum dots (QD) is blocked due to selection rules even when energetically allowed-are a direct manifestation of the Pauli exclusion principle, as well as a key mechanism for manipulating and reading out spin qubits. The Pauli spin blockade is well established for systems such as GaAs QDs, but is to be further explored for systems with additional degrees of freedom, such as the valley quantum numbers in carbon-based materials or silicon. Here we report experiments on coupled bilayer graphene double quantum dots, in which the spin and valley states are precisely controlled, enabling the observation of the two-electron combined blockade physics. We demonstrate that the doubly occupied single dot switches between two different ground states with gate and magnetic-field tuning, allowing for the switching of selection rules: with a spin-triplet-valley-singlet ground state, valley blockade is observed; and with the spin-singlet-valley-triplet ground state, robust spin blockade is shown.
Collapse
Affiliation(s)
- Chuyao Tong
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Annika Kurzmann
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Rebekka Garreis
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Wei Wister Huang
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Samuel Jele
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marius Eich
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lev Ginzburg
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Klaus Ensslin
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Thomas Ihn
- Solid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
16
|
Möller S, Banszerus L, Knothe A, Steiner C, Icking E, Trellenkamp S, Lentz F, Watanabe K, Taniguchi T, Glazman LI, Fal'ko VI, Volk C, Stampfer C. Probing Two-Electron Multiplets in Bilayer Graphene Quantum Dots. PHYSICAL REVIEW LETTERS 2021; 127:256802. [PMID: 35029428 DOI: 10.1103/physrevlett.127.256802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 05/21/2023]
Abstract
We report on finite bias spectroscopy measurements of the two-electron spectrum in a gate defined bilayer graphene (BLG) quantum dot for varying magnetic fields. The spin and valley degree of freedom in BLG give rise to multiplets of six orbital symmetric and ten orbital antisymmetric states. We find that orbital symmetric states are lower in energy and separated by ≈ 0.4-0.8 meV from orbital antisymmetric states. The symmetric multiplet exhibits an additional energy splitting of its six states of ≈ 0.15-0.5 meV due to lattice scale interactions. The experimental observations are supported by theoretical calculations, which allow to determine that intervalley scattering and "current-current" interaction constants are of the same magnitude in BLG.
Collapse
Affiliation(s)
- S Möller
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - L Banszerus
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - A Knothe
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - C Steiner
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - S Trellenkamp
- Helmholtz Nano Facility, Forschungszentrum Jülich, Jülich 52425, Germany
| | - F Lentz
- Helmholtz Nano Facility, Forschungszentrum Jülich, Jülich 52425, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - L I Glazman
- Departments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - V I Fal'ko
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Henry Royce Institute for Advanced Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - C Volk
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich 52425, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen 52074, Germany
- Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
17
|
Banszerus L, Möller S, Steiner C, Icking E, Trellenkamp S, Lentz F, Watanabe K, Taniguchi T, Volk C, Stampfer C. Spin-valley coupling in single-electron bilayer graphene quantum dots. Nat Commun 2021; 12:5250. [PMID: 34475394 PMCID: PMC8413270 DOI: 10.1038/s41467-021-25498-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022] Open
Abstract
Understanding how the electron spin is coupled to orbital degrees of freedom, such as a valley degree of freedom in solid-state systems, is central to applications in spin-based electronics and quantum computation. Recent developments in the preparation of electrostatically-confined quantum dots in gapped bilayer graphene (BLG) enable to study the low-energy single-electron spectra in BLG quantum dots, which is crucial for potential spin and spin-valley qubit operations. Here, we present the observation of the spin-valley coupling in bilayer graphene quantum dots in the single-electron regime. By making use of highly-tunable double quantum dot devices we achieve an energy resolution allowing us to resolve the lifting of the fourfold spin and valley degeneracy by a Kane-Mele type spin-orbit coupling of ≈ 60 μeV. Furthermore, we find an upper limit of a potentially disorder-induced mixing of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K$$\end{document}K and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K^{\prime}$$\end{document}K′ states below 20 μeV. Understanding the interaction between spin and valley degrees of freedom in graphene-based quantum dots underpins their applications in electronics and quantum information. Here, the authors study the low-energy spectrum and resolve the spin-valley coupling in single-electron quantum dots in bilayer graphene.
Collapse
Affiliation(s)
- L Banszerus
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany. .,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany.
| | - S Möller
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany.,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - C Steiner
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany.,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - E Icking
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany.,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - S Trellenkamp
- Helmholtz Nano Facility, Forschungszentrum Jülich, Jülich, Germany
| | - F Lentz
- Helmholtz Nano Facility, Forschungszentrum Jülich, Jülich, Germany
| | - K Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - C Volk
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany.,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| | - C Stampfer
- JARA-FIT and 2nd Institute of Physics, RWTH Aachen University, Aachen, Germany.,Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Garreis R, Knothe A, Tong C, Eich M, Gold C, Watanabe K, Taniguchi T, Fal'ko V, Ihn T, Ensslin K, Kurzmann A. Shell Filling and Trigonal Warping in Graphene Quantum Dots. PHYSICAL REVIEW LETTERS 2021; 126:147703. [PMID: 33891439 DOI: 10.1103/physrevlett.126.147703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Transport measurements through a few-electron circular quantum dot in bilayer graphene display bunching of the conductance resonances in groups of four, eight, and twelve. This is in accordance with the spin and valley degeneracies in bilayer graphene and an additional threefold "minivalley degeneracy" caused by trigonal warping. For small electron numbers, implying a small dot size and a small displacement field, a two-dimensional s shell and then a p shell are successively filled with four and eight electrons, respectively. For electron numbers larger than 12, as the dot size and the displacement field increase, the single-particle ground state evolves into a threefold degenerate minivalley ground state. A transition between these regimes is observed in our measurements and can be described by band-structure calculations. Measurements in the magnetic field confirm Hund's second rule for spin filling of the quantum dot levels, emphasizing the importance of exchange interaction effects.
Collapse
Affiliation(s)
- R Garreis
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - A Knothe
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - C Tong
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - M Eich
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - C Gold
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - K Watanabe
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - T Taniguchi
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - V Fal'ko
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
- Henry Royce Institute for Advanced Materials, M13 9PL, Manchester, United Kingdom
| | - T Ihn
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - K Ensslin
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| | - A Kurzmann
- ETH Zurich (Swiss Federal Institute of Technology in Zurich), 8093 Zurich, Switzerland
| |
Collapse
|