1
|
Dion T, Stenning KD, Vanstone A, Holder HH, Sultana R, Alatteili G, Martinez V, Kaffash MT, Kimura T, Oulton RF, Branford WR, Kurebayashi H, Iacocca E, Jungfleisch MB, Gartside JC. Ultrastrong magnon-magnon coupling and chiral spin-texture control in a dipolar 3D multilayered artificial spin-vortex ice. Nat Commun 2024; 15:4077. [PMID: 38744816 PMCID: PMC11094080 DOI: 10.1038/s41467-024-48080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 04/19/2024] [Indexed: 05/16/2024] Open
Abstract
Strongly-interacting nanomagnetic arrays are ideal systems for exploring reconfigurable magnonics. They provide huge microstate spaces and integrated solutions for storage and neuromorphic computing alongside GHz functionality. These systems may be broadly assessed by their range of reliably accessible states and the strength of magnon coupling phenomena and nonlinearities. Increasingly, nanomagnetic systems are expanding into three-dimensional architectures. This has enhanced the range of available magnetic microstates and functional behaviours, but engineering control over 3D states and dynamics remains challenging. Here, we introduce a 3D magnonic metamaterial composed from multilayered artificial spin ice nanoarrays. Comprising two magnetic layers separated by a non-magnetic spacer, each nanoisland may assume four macrospin or vortex states per magnetic layer. This creates a system with a rich 16N microstate space and intense static and dynamic dipolar magnetic coupling. The system exhibits a broad range of emergent phenomena driven by the strong inter-layer dipolar interaction, including ultrastrong magnon-magnon coupling with normalised coupling rates ofΔ f ν = 0.57 , GHz mode shifts in zero applied field and chirality-control of magnetic vortex microstates with corresponding magnonic spectra.
Collapse
Affiliation(s)
- Troy Dion
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan.
| | - Kilian D Stenning
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Rawnak Sultana
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Ghanem Alatteili
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Victoria Martinez
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Takashi Kimura
- Solid State Physics Laboratory, Kyushu University, Fukuoka, Japan
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Hidekazu Kurebayashi
- London Centre for Nanotechnology, University College London, London, UK
- Department of Electronic and Electrical Engineering, University College London, London, UK
- WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | - Ezio Iacocca
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | | | - Jack C Gartside
- Blackett Laboratory, Imperial College London, London, UK.
- London Centre for Nanotechnology, Imperial College London, London, UK.
| |
Collapse
|
2
|
Lendinez S, Kaffash MT, Heinonen OG, Gliga S, Iacocca E, Jungfleisch MB. Nonlinear multi-magnon scattering in artificial spin ice. Nat Commun 2023; 14:3419. [PMID: 37296142 DOI: 10.1038/s41467-023-38992-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Magnons, the quantum-mechanical fundamental excitations of magnetic solids, are bosons whose number does not need to be conserved in scattering processes. Microwave-induced parametric magnon processes, often called Suhl instabilities, have been believed to occur in magnetic thin films only, where quasi-continuous magnon bands exist. Here, we reveal the existence of such nonlinear magnon-magnon scattering processes and their coherence in ensembles of magnetic nanostructures known as artificial spin ice. We find that these systems exhibit effective scattering processes akin to those observed in continuous magnetic thin films. We utilize a combined microwave and microfocused Brillouin light scattering measurement approach to investigate the evolution of their modes. Scattering events occur between resonance frequencies that are determined by each nanomagnet's mode volume and profile. Comparison with numerical simulations reveals that frequency doubling is enabled by exciting a subset of nanomagnets that, in turn, act as nanosized antennas, an effect that is akin to scattering in continuous films. Moreover, our results suggest that tunable directional scattering is possible in these structures.
Collapse
Affiliation(s)
- Sergi Lendinez
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
- Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA, 70806, USA
| | - Mojtaba T Kaffash
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Olle G Heinonen
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Seagate Technology, 7801 Computer Ave., Bloomington, MN, 55435, USA
| | - Sebastian Gliga
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Ezio Iacocca
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom.
- Center for Magnetism and Magnetic Nanostructures, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA.
| | | |
Collapse
|
3
|
Yue WC, Yuan Z, Lyu YY, Dong S, Zhou J, Xiao ZL, He L, Tu X, Dong Y, Wang H, Xu W, Kang L, Wu P, Nisoli C, Kwok WK, Wang YL. Crystallizing Kagome Artificial Spin Ice. PHYSICAL REVIEW LETTERS 2022; 129:057202. [PMID: 35960577 DOI: 10.1103/physrevlett.129.057202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Artificial spin ices are engineered arrays of dipolarly coupled nanobar magnets. They enable direct investigations of fascinating collective phenomena from their diverse microstates. However, experimental access to ground states in the geometrically frustrated systems has proven difficult, limiting studies and applications of novel properties and functionalities from the low energy states. Here, we introduce a convenient approach to control the competing diploar interactions between the neighboring nanomagnets, allowing us to tailor the vertex degeneracy of the ground states. We achieve this by tuning the length of selected nanobar magnets in the spin ice lattice. We demonstrate the effectiveness of our method by realizing multiple low energy microstates in a kagome artificial spin ice, particularly the hardly accessible long range ordered ground state-the spin crystal state. Our strategy can be directly applied to other artificial spin systems to achieve exotic phases and explore new emergent collective behaviors.
Collapse
Affiliation(s)
- Wen-Cheng Yue
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zixiong Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Yang-Yang Lyu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Sining Dong
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jian Zhou
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Zhi-Li Xiao
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - Liang He
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Ying Dong
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Huabing Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Weiwei Xu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Purple Mountain Laboratories, Nanjing 211111, China
| | - Cristiano Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Wai-Kwong Kwok
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yong-Lei Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing 211111, China
| |
Collapse
|
4
|
Gartside JC, Stenning KD, Vanstone A, Holder HH, Arroo DM, Dion T, Caravelli F, Kurebayashi H, Branford WR. Reconfigurable training and reservoir computing in an artificial spin-vortex ice via spin-wave fingerprinting. NATURE NANOTECHNOLOGY 2022; 17:460-469. [PMID: 35513584 DOI: 10.1038/s41565-022-01091-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Strongly interacting artificial spin systems are moving beyond mimicking naturally occurring materials to emerge as versatile functional platforms, from reconfigurable magnonics to neuromorphic computing. Typically, artificial spin systems comprise nanomagnets with a single magnetization texture: collinear macrospins or chiral vortices. By tuning nanoarray dimensions we have achieved macrospin-vortex bistability and demonstrated a four-state metamaterial spin system, the 'artificial spin-vortex ice' (ASVI). ASVI can host Ising-like macrospins with strong ice-like vertex interactions and weakly coupled vortices with low stray dipolar field. Vortices and macrospins exhibit starkly differing spin-wave spectra with analogue mode amplitude control and mode frequency shifts of Δf = 3.8 GHz. The enhanced bitextural microstate space gives rise to emergent physical memory phenomena, with ratchet-like vortex injection and history-dependent non-linear fading memory when driven through global magnetic field cycles. We employed spin-wave microstate fingerprinting for rapid, scalable readout of vortex and macrospin populations, and leveraged this for spin-wave reservoir computation. ASVI performs non-linear mapping transformations of diverse input and target signals in addition to chaotic time-series forecasting.
Collapse
Affiliation(s)
| | | | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Holly H Holder
- Blackett Laboratory, Imperial College London, London, UK
| | - Daan M Arroo
- Department of Materials, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| | - Troy Dion
- London Centre for Nanotechnology, University College London, London, UK
- Solid State Physics Lab., Kyushu University, Fukuoka, Japan
| | - Francesco Caravelli
- Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|
5
|
Gartside JC, Vanstone A, Dion T, Stenning KD, Arroo DM, Kurebayashi H, Branford WR. Reconfigurable magnonic mode-hybridisation and spectral control in a bicomponent artificial spin ice. Nat Commun 2021; 12:2488. [PMID: 33941786 PMCID: PMC8093262 DOI: 10.1038/s41467-021-22723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/22/2021] [Indexed: 02/02/2023] Open
Abstract
Strongly-interacting nanomagnetic arrays are finding increasing use as model host systems for reconfigurable magnonics. The strong inter-element coupling allows for stark spectral differences across a broad microstate space due to shifts in the dipolar field landscape. While these systems have yielded impressive initial results, developing rapid, scaleable means to access a broad range of spectrally-distinct microstates is an open research problem. We present a scheme whereby square artificial spin ice is modified by widening a 'staircase' subset of bars relative to the rest of the array, allowing preparation of any ordered vertex state via simple global-field protocols. Available microstates range from the system ground-state to high-energy 'monopole' states, with rich and distinct microstate-specific magnon spectra observed. Microstate-dependent mode-hybridisation and anticrossings are observed at both remanence and in-field with dynamic coupling strength tunable via microstate-selection. Experimental coupling strengths are found up to g/2π = 0.16 GHz. Microstate control allows fine mode-frequency shifting, gap creation and closing, and active mode number selection.
Collapse
Affiliation(s)
| | - Alex Vanstone
- Blackett Laboratory, Imperial College London, London, UK
| | - Troy Dion
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, University College London, London, UK
| | | | - Daan M Arroo
- London Centre for Nanotechnology, University College London, London, UK
- Department of Materials, Imperial College London, London, UK
| | | | - Will R Branford
- Blackett Laboratory, Imperial College London, London, UK
- London Centre for Nanotechnology, Imperial College London, London, UK
| |
Collapse
|