1
|
Chung YD, Tsai YC, Wang CH, Lee GB. Aptamer selection via versatile microfluidic platforms and their diverse applications. LAB ON A CHIP 2025. [PMID: 39774569 DOI: 10.1039/d4lc00859f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Aptamers are synthetic oligonucleotides that bind with high affinity and specificity to various targets, making them invaluable for diagnostics, therapeutics, and biosensing. Microfluidic platforms can improve the efficiency and scalability of aptamer selection, especially through advancements in systematic evolution of ligands by exponential enrichment (SELEX) methods. Microfluidic SELEX methods are less time-consuming and labor-intensive and include critical steps like library preparation, binding, partitioning, and amplification. This review examines the contributions of microfluidic technology to SELEX-based aptamer identification, with alternative methods like conditional SELEX, in vivo-like SELEX and Non-SELEX for selecting aptamers and also discusses critical SELEX steps over the past decade. This work also examined the integrated microfluidic systems for SELEX, highlighting innovations such as conditional SELEX and in vivo-like SELEX. These advancements provide potential solutions to existing challenges in aptamer selection using conventional SELEX, especially concerning biological samples. A trend toward non-SELEX methods was also reviewed and discussed, wherein nucleic acid amplification was eliminated to improve aptamer selection. Microfluidic platforms have demonstrated versatility not only in aptamer selection but also in various detection applications; they allow for precise control of liquid flow and have been essential in the advancement of therapeutic aptamers, facilitating accurate screening, enhancing drug delivery systems, and enabling targeted therapeutic interventions. Although advances in microfluidic technology are expected to enhance aptamer-based diagnostics, therapeutics, and biosensing, challenges still persist, especially in up-scaling microfluidic systems for various clinical applications. The advantages and limitations of integrating microfluidic platforms with aptamer development are further addressed, emphasizing areas for future research. We also present a perspective on the future of microfluidic systems and aptamer technologies, highlighting their increasing significance in healthcare and diagnostics.
Collapse
Affiliation(s)
- Yi-Da Chung
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chi-Hung Wang
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Zhong W, Geng C, Fu Z, Mao C, Zheng Y, Wang S, Liu K, Yang Y, Lu C, Jiang X. Flow Cytometry Sorting for Random Access in DNA Data Storage: Encapsulation for Enhanced Stability and Sequence Integrity of DNA. Anal Chem 2024; 96:16099-16108. [PMID: 39319639 DOI: 10.1021/acs.analchem.4c04637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
As digital data undergo explosive growth, deoxyribonucleic acid (DNA) has emerged as a promising storage medium due to its high density, longevity, and ease of replication, offering vast potential in data storage solutions. This study focuses on the protection and retrieval of data during the DNA storage process, developing a technique that employs flow cytometry sorting (FCS) to segregate multicolored fluorescent DNA microparticles encoded with data and facilitating efficient random access. Moreover, the encapsulated fluorescent DNA microparticles, formed through layer-by-layer self-assembly, preserve structural and sequence integrity even under harsh conditions while also supporting a high-density DNA payload. Experimental results have shown that the encoded data can still be successfully recovered from encapsulated DNA microparticles following de-encapsulation. We also successfully demonstrated the automated encapsulation process of fluorescent DNA microparticles using a microfluidic chip. This research provides an innovative approach to the long-term stability and random readability of DNA data storage.
Collapse
Affiliation(s)
- Wukun Zhong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Chunyang Geng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhangcheng Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cuiping Mao
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yanlin Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
3
|
Qin S, Liu Y, He G, Yang J, Zeng F, Lu Q, Wang M, He B, Song Y. Spatiotemporal Delivery of Dual Nanobodies by Engineered Probiotics to Reverse Tumor Immunosuppression via Targeting Tumor-Derived Exosomes. ACS NANO 2024; 18:26858-26871. [PMID: 39308426 DOI: 10.1021/acsnano.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The anti-PD-L1 and its bispecific antibodies have exhibited durable antitumor immunity but still elicit immunosuppression mainly caused by tumor-derived exosomes (TDEs), leading to difficulty in clinical transformation. Herein, engineered Escherichia coli Nissle 1917 (EcN) coexpressing anti-PD-L1 and anti-CD9 nanobodies (EcN-Nb) are developed and decorated with zinc-based metal-organic frameworks (MOFs) loaded with indocyanine green (ICG), to generate EcN-Nb-ZIF-8CHO-ICG (ENZC) for spatiotemporal lysis of bacteria for immunotherapy. The tumor-homing hybrid system can specifically release nanobodies in response to near-infrared (NIR) radiation, thereby targeting TDEs and changing their biological distribution, remodeling tumor-associated macrophages to M1 states, activating more effective and cytotoxic T lymphocytes, and finally, leading to the inhibition of tumor proliferation and metastasis. Altogether, the microfluidic-enabled MOF-modified engineered probiotics target TDEs and activate the antitumor immune response in a spatiotemporally manipulated manner, offering promising TDE-targeted immune therapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Meng Wang
- Department of Gastric and Hernia Surgery, Nanjing University Medical School Affiliated Drum Tower Hospital, Nanjing 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Yan B, Li Y, He S. Aptamer-mediated therapeutic strategies provide a potential approach for cancer. Int Immunopharmacol 2024; 136:112356. [PMID: 38820957 DOI: 10.1016/j.intimp.2024.112356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
The treatment of tumors still faces considerable challenges. While conventional treatments such as surgery, chemotherapy, and radiation therapy provide some curative effects, their side effects and limitations highlight the importance of finding more precise treatment strategies. Aptamers have become an important target molecule in the field of drug delivery systems due to their good affinity and targeting, and they have gradually become an important link from basic research to clinical application. In this paper, we discussed the latest progress of aptamer-mediated nanodrugs, as well as aptamer-mediated photodynamic therapy, photothermal therapy, and immunotherapy strategies for tumor treatment, and explored the possibility of aptamer-mediated therapy for accurate tumor treatment. The purpose of this review is to provide novel insights for treating tumors with aptamer-mediated therapies by summarizing these innovative strategies, thereby ultimately enhancing the therapeutic efficacy for cancer patients.
Collapse
Affiliation(s)
- Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
5
|
Wang Y, Feng S, Wang X, Tao C, Liu Y, Wang Y, Gao Y, Zhao J, Song Y. Microfluidic synthesis of hemin@ZIF-8 nanozyme with applications in cellular reactive oxygen species detection and anticancer drug screening. LAB ON A CHIP 2024; 24:3521-3527. [PMID: 38939907 DOI: 10.1039/d4lc00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) encapsulating enzymatically active biomolecules has emerged as a novel biocompatible nanozyme and offers significant implications for bioanalysis of various biomarkers towards early diagnosis of severe diseases such as cancers. However, the rapid, continuous and scalable synthesis of these nanozymes still remains challenging. In this work, we proposed a novel microfluidic approach for rapid and continuous synthesis of hemin@ZIF-8 nanozyme. By employing a distinctive combination of zigzag-shaped channel and spiral channel with sudden expansion structures, we have enhanced the mixing efficiency within the chip and achieved effective encapsulation of hemin in ZIF-8. The resulting hemin@ZIF-8 nanoparticles exhibit peroxidase-like activity and are capable of detecting free H2O2 with a limit of detection (LOD) as low as 45 nM, as well as H2O2 secreted by viable cells with a detection threshold of approximately 10 cells per mL. By leveraging this method, we achieved successful detection of cancer cells and effective screening of anticancer drugs that induce oxidative stress injury in cancer cells. This innovative microfluidic strategy offers a new avenue for synthesizing functional nanocomposites to facilitate the development of next-generation diagnostic tools for early disease detection and personalized medicine.
Collapse
Affiliation(s)
- Yanping Wang
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Shujun Feng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Chungui Tao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Yuta Liu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Yanyi Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Yanfeng Gao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| | - Jinsong Zhao
- School of Medical Imaging, Wannan Medical College, Wuhu 241002, China.
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Zafar A, Takeda C, Manzoor A, Tanaka D, Kobayashi M, Wadayama Y, Nakane D, Majeed A, Iqbal MA, Akitsu T. Towards Industrially Important Applications of Enhanced Organic Reactions by Microfluidic Systems. Molecules 2024; 29:398. [PMID: 38257311 PMCID: PMC10820862 DOI: 10.3390/molecules29020398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
This review presents a comprehensive evaluation for the manufacture of organic molecules via efficient microfluidic synthesis. Microfluidic systems provide considerably higher control over the growth, nucleation, and reaction conditions compared with traditional large-scale synthetic methods. Microfluidic synthesis has become a crucial technique for the quick, affordable, and efficient manufacture of organic and organometallic compounds with complicated characteristics and functions. Therefore, a unique, straightforward flow synthetic methodology can be developed to conduct organic syntheses and improve their efficiency.
Collapse
Affiliation(s)
- Ayesha Zafar
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - China Takeda
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Asif Manzoor
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Daiki Tanaka
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Masashi Kobayashi
- Research Organization for Nano & Life Innovation, Waseda University, Tokyo 169-8050, Japan
| | - Yoshitora Wadayama
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Daisuke Nakane
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Adnan Majeed
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, Faculty of Science, University of Agriculture, Faisalabad 38040, Pakistan
| | - Takashiro Akitsu
- Department of Chemistry, Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| |
Collapse
|
7
|
Zeng Y, Liao D, Kong X, Huang Q, Zhong M, Liu J, Nezamzadeh-Ejhieh A, Pan Y, Song H. Current status and prospect of ZIF-based materials for breast cancer treatment. Colloids Surf B Biointerfaces 2023; 232:113612. [PMID: 37898043 DOI: 10.1016/j.colsurfb.2023.113612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Breast cancer, one of the three most life-threatening cancers in modern times, must be explored for treatments with low side effects and practical efficacy. Metal organic framework materials (MOFs) is made by metal ions as the center for point and organic ligands as a bridge connecting a new type of porous nano-materials, among them, the zinc base zeolite imidazole skeleton material series (ZIFs) because of its excellent biocompatibility and pH slow controlled release ability, is widely used in the tumor microenvironment in basic research and achieved remarkable curative effect. Inspired by this, in this review, we focus on the recent research progress on the application of ZIFs in the treatment of breast cancer, mainly studying the structure of ZIFs such as ZIF-8, ZIF-90 and ZIF-67 and their application in novel therapies for breast cancer treatment, such as targeted drug delivery, photothermal therapy, immunotherapy and gene therapy.We will more fully demonstrate the potential of zif in breast cancer treatment, hoping to provide an avenue for exploring breast cancer treatment.
Collapse
Affiliation(s)
- Yana Zeng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Donghui Liao
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Xiangyang Kong
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Qianying Huang
- Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | - Muyi Zhong
- Breast Department, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong 523059, China.
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China
| | | | - Ying Pan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523700, China; Guangdong Provincial Key Laboratory of Research and DD.evelopment of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan 523808, China.
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, Guangdong 523770, China.
| |
Collapse
|
8
|
Huang Y, Liu C, Feng Q, Sun J. Microfluidic synthesis of nanomaterials for biomedical applications. NANOSCALE HORIZONS 2023; 8:1610-1627. [PMID: 37723984 DOI: 10.1039/d3nh00217a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The field of nanomaterials has progressed dramatically over the past decades with important contributions to the biomedical area. The physicochemical properties of nanomaterials, such as the size and structure, can be controlled through manipulation of mass and heat transfer conditions during synthesis. In particular, microfluidic systems with rapid mixing and precise fluid control are ideal platforms for creating appropriate synthesis conditions. One notable example of microfluidics-based synthesis is the development of lipid nanoparticle (LNP)-based mRNA vaccines with accelerated clinical translation and robust efficacy during the COVID-19 pandemic. In addition to LNPs, microfluidic systems have been adopted for the controlled synthesis of a broad range of nanomaterials. In this review, we introduce the fundamental principles of microfluidic technologies including flow field- and multiple field-based methods for fabricating nanoparticles, and discuss their applications in the biomedical field. We conclude this review by outlining several major challenges and future directions in the implementation of microfluidic synthesis of nanomaterials.
Collapse
Affiliation(s)
- Yanjuan Huang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Feng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Yang K, Ni M, Xu C, Wang L, Han L, Lv S, Wu W, Zheng D. Microfluidic one-step synthesis of a metal-organic framework for osteoarthritis therapeutic microRNAs delivery. Front Bioeng Biotechnol 2023; 11:1239364. [PMID: 37576986 PMCID: PMC10415039 DOI: 10.3389/fbioe.2023.1239364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
As a class of short non-coding ribonucleic acids (RNAs), microRNAs (miRNA) regulate gene expression in human cells and are expected to be nucleic acid drugs to regulate and treat a variety of biological processes and diseases. However, the issues with potential materials toxicity, quantity production, poor cellular uptake, and endosomal entrapment limit their further applications in clinical practice. Herein, ZIF-8, a metal-organic framework with noncytotoxic zinc (II) as the metal coordination center, was selected as miRNA delivery vector was used to prepare miR-200c-3p@ZIF-8 in one step by Y-shape microfluidic chip to achieve intracellular release with low toxicity, batch size, and efficient cellular uptake. The obtained miR-200c-3p@ZIF-8 was identified by TEM, particle size analysis, XRD, XPS, and zeta potential. Compared with the traditional hydrothermal method, the encapsulation efficiency of miR-200c-3p@ZIF-8 prepared by the microfluidic method is higher, and the particle size is more uniform and controllable. The experimental results in cellular level verified that the ZIF-8 vectors with low cytotoxicity and high miRNAs loading efficiency could significantly improve cellular uptake and endosomal escape of miRNAs, providing a robust and general strategy for nucleic acid drug delivery. As a model, the prepared miR-200c-3p@ZIF-8 is confirmed to be effective in osteoarthritis treatment.
Collapse
Affiliation(s)
- Kaiyuan Yang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Min Ni
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Chao Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Long Han
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| | - Songwei Lv
- School of Pharmacy, Changzhou University, Changzhou, China
| | - Wenbo Wu
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, China
| | - Dong Zheng
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
11
|
Gao Z, Mansor MH, Winder N, Demiral S, Maclnnes J, Zhao X, Muthana M. Microfluidic-Assisted ZIF-Silk-Polydopamine Nanoparticles as Promising Drug Carriers for Breast Cancer Therapy. Pharmaceutics 2023; 15:1811. [PMID: 37513998 PMCID: PMC10384305 DOI: 10.3390/pharmaceutics15071811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Metal-organic frameworks (MOFs) are heralded as potential nanoplatforms for biomedical applications. Zeolitic imidazolate framework-8 (ZIF-8), as one of the most well known MOFs, has been widely applied as a drug delivery carrier for cancer therapy. However, the application of ZIF-8 nanoparticles as a therapeutic agent has been hindered by the challenge of how to control the release behaviour of anti-cancer zinc ions to cancer cells. In this paper, we designed microfluidic-assisted core-shell ZIF-8 nanoparticles modified with silk fibroin (SF) and polydopamine (PDA) for sustained release of zinc ions and curcumin (CUR) and tested these in vitro in various human breast cancer cells. We report that microfluidic rapid mixing is an efficient method to precisely control the proportion of ZIF-8, SF, PDA, and CUR in the nanoparticles by simply adjusting total flow rates (from 1 to 50 mL/min) and flow rate ratios. Owing to sufficient and rapid mixing during microfluidic-assisted nanoprecipitation, our designer CUR@ZIF-SF-PDA nanoparticles had a desired particle size of 170 nm with a narrow size distribution (PDI: 0.08), which is much smaller than nanoparticles produced using traditional magnetic stirrer mixing method (over 1000 nm). Moreover, a properly coated SF layer successfully enhanced the capability of ZIF-8 as a reservoir of zinc ions. Meanwhile, the self-etching reaction between ZIF-8 and PDA naturally induced a pH-responsive release of zinc ions and CUR to a therapeutic level in the MDA-MB-231, SK-BR-3, and MCF-7 breast cancer cell lines, resulting in a high cellular uptake efficiency, cytotoxicity, and cell cycle arrest. More importantly, the high biocompatibility of designed CUR@ZIF-SF-PDA nanoparticles remained low in cytotoxicity on AD-293 non-cancer cells. We demonstrate the potential of prepared CUR@ZIF-SF-PDA nanoparticles as promising carriers for the controlled release of CUR and zinc ions in breast cancer therapy.
Collapse
Affiliation(s)
- Zijian Gao
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Muhamad Hawari Mansor
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Natalie Winder
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Secil Demiral
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Jordan Maclnnes
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Munitta Muthana
- Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
12
|
Jiang X, Zhao Y, Sun S, Xiang Y, Yan J, Wang J, Pei R. Research development of porphyrin-based metal-organic frameworks: targeting modalities and cancer therapeutic applications. J Mater Chem B 2023. [PMID: 37305964 DOI: 10.1039/d3tb00632h] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyrins are naturally occurring organic molecules that have attracted widespread attention for their potential in the field of biomedical research. Porphyrin-based metal-organic frameworks (MOFs) that utilize porphyrin molecules as organic ligands have gained attention from researchers due to their excellent results as photosensitizers in tumor photodynamic therapy (PDT). Additionally, MOFs hold significant promise and potential for other tumor therapeutic approaches due to their tunable size and pore size, excellent porosity, and ultra-high specific surface area. Active delivery of nanomaterials via targeted molecules for tumor therapy has demonstrated greater accumulation, lower drug doses, higher therapeutic efficacy, and reduced side effects relative to passive targeting through the enhanced permeation and retention effect (EPR). This paper presents a comprehensive review of the targeting methods employed by porphyrin-based MOFs in tumor targeting therapy over the past few years. It further discusses the applications of porphyrin-based MOFs for targeted cancer therapy through various therapeutic methods. The objective of this paper is to provide a valuable reference and source of ideas for targeted therapy using porphyrin-based MOF materials and to inspire further exploration of their potential in the field of cancer therapy.
Collapse
Affiliation(s)
- Xiang Jiang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Shengkai Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Ying Xiang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jincong Yan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- College of Mechanics and Materials, Hohai University, Nanjing, 210098, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
- Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
13
|
Yao F, Zhu P, Chen J, Li S, Sun B, Li Y, Zou M, Qi X, Liang P, Chen Q. Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim Acta 2023; 190:256. [PMID: 37301779 DOI: 10.1007/s00604-023-05838-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
In recent years, nanomaterials have attracted the research intervention of experts in the fields of catalysis, energy, biomedical testing, and biomedicine with their unrivaled optical, chemical, and biological properties. From basic metal and oxide nanoparticles to complex quantum dots and MOFs, the stable preparation of various nanomaterials has always been a struggle for researchers. Microfluidics, as a paradigm of microscale control, is a remarkable platform for online stable synthesis of nanomaterials with efficient mass and heat transfer in microreactors, flexible blending of reactants, and precise control of reaction conditions. We describe the process of microfluidic preparation of nanoparticles in the last 5 years in terms of microfluidic techniques and the methods of microfluidic manipulation of fluids. Then, the ability of microfluidics to prepare different nanomaterials, such as metals, oxides, quantum dots, and biopolymer nanoparticles, is presented. The effective synthesis of some nanomaterials with complex structures and the cases of nanomaterials prepared by microfluidics under extreme conditions (high temperature and pressure), the compatibility of microfluidics as a superior platform for the preparation of nanoparticles is demonstrated. Microfluidics has a potent integration capability to combine nanoparticle synthesis with real-time monitoring and online detection, which significantly improves the quality and production efficiency of nanoparticles, and also provides a high-quality ultra-clean platform for some bioassays.
Collapse
Affiliation(s)
- Fuqi Yao
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Pengpeng Zhu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Junjie Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Suyang Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yunfeng Li
- College of Information Engineering, China Jiliang University, 310018, Hangzhou, 310000, People's Republic of China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine (CAIQ), 100123, Beijing, People's Republic of China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| | - Qiang Chen
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
14
|
Xia Y, Fu S, Ma Q, Liu Y, Zhang N. Application of Nano-Delivery Systems in Lymph Nodes for Tumor Immunotherapy. NANO-MICRO LETTERS 2023; 15:145. [PMID: 37269391 PMCID: PMC10239433 DOI: 10.1007/s40820-023-01125-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023]
Abstract
Immunotherapy has become a promising research "hotspot" in cancer treatment. "Soldier" immune cells are not uniform throughout the body; they accumulate mostly in the immune organs such as the spleen and lymph nodes (LNs), etc. The unique structure of LNs provides the microenvironment suitable for the survival, activation, and proliferation of multiple types of immune cells. LNs play an important role in both the initiation of adaptive immunity and the generation of durable anti-tumor responses. Antigens taken up by antigen-presenting cells in peripheral tissues need to migrate with lymphatic fluid to LNs to activate the lymphocytes therein. Meanwhile, the accumulation and retaining of many immune functional compounds in LNs enhance their efficacy significantly. Therefore, LNs have become a key target for tumor immunotherapy. Unfortunately, the nonspecific distribution of the immune drugs in vivo greatly limits the activation and proliferation of immune cells, which leads to unsatisfactory anti-tumor effects. The efficient nano-delivery system to LNs is an effective strategy to maximize the efficacy of immune drugs. Nano-delivery systems have shown beneficial in improving biodistribution and enhancing accumulation in lymphoid tissues, exhibiting powerful and promising prospects for achieving effective delivery to LNs. Herein, the physiological structure and the delivery barriers of LNs were summarized and the factors affecting LNs accumulation were discussed thoroughly. Moreover, developments in nano-delivery systems were reviewed and the transformation prospects of LNs targeting nanocarriers were summarized and discussed.
Collapse
Affiliation(s)
- Yiming Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
15
|
Fabozzi A, Della Sala F, di Gennaro M, Barretta M, Longobardo G, Solimando N, Pagliuca M, Borzacchiello A. Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. LAB ON A CHIP 2023; 23:1389-1409. [PMID: 36647782 DOI: 10.1039/d2lc00933a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticle systems are functional carriers that can be used in the cancer therapy field for the delivery of a variety of hydrophobic and/or hydrophilic drugs. Recently, the advent of microfluidic platforms represents an advanced approach to the development of new nanoparticle-based drug delivery systems. Particularly, microfluidics can simplify the design of new nanoparticle-based systems with tunable physicochemical properties such as size, size distribution and morphology, ensuring high batch-to-batch reproducibility and consequently, an enhanced therapeutic effect in vitro and in vivo. In this perspective, we present accurate state-of-the-art microfluidic platforms focusing on the fabrication of polymer-based, lipid-based, lipid/polymer-based, inorganic-based and metal-based nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Antonio Fabozzi
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania "L. Vanvitelli", 81100 Caserta, Italy
| | - Marco Barretta
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| | - Gennaro Longobardo
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
- Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, P. le Tecchio 80, 80125 Napoli, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI - 83040 Morra De Sanctis (AV), Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy.
| |
Collapse
|
16
|
Qiu J, Anas Tomeh M, Jin Y, Zhang B, Zhao X. Microfluidic fabrication of anticancer peptide loaded ZIF-8 nanoparticles for the treatment of breast cancer. J Colloid Interface Sci 2023; 642:810-819. [PMID: 37043939 DOI: 10.1016/j.jcis.2023.03.172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Anticancer peptides (ACPs) are promising antitumor drugs owning to their great cancer cell targeting and anticancer effects as well as low drug resistance. However, many of the ACPs have non-specific toxicity and can be easily degraded by the enzymes after administration. Therefore, drug delivery systems (DDSs) are required to shield these peptides from degradation and induce targeted delivery. In this paper, a high performance microfluidic device was used to fabricate the zeolitic imidazolate framework (ZIF-8) encapsulating an ACP (At3) recently developed by our group. The microfluidic device allowed for efficient and rapid mixing to generate ACP loaded nanoparticles (NPs) with controllable properties at high production rate (120 mL/min) and high encapsulation efficiency. The ZIF-8 NPs synthesised by microfluidic processing showed lower polydispersity index (PDI) than the conventional method, demonstrating an improved size uniformity. Encapsulating At3 into the ZIF-8 (At3@ZIF-8) significantly reduced the hemolytic effect and provided a pH-controlled release of At3 peptide. At3@ZIF-8 showed higher anticancer effect than the unloaded peptide at the same concentration due to the enhanced cell uptake by the ZIF-8 NPs. The NPs were able to inhibit the growth of the multicellular tumour spheroids (MCTSs) and damage the mitochondrial membrane of the MCF-7 breast cancer cells. In vivo experiments demonstrated that the At3@ZIF-8 NPs inhibited the growth of MCF-7 tumours in nude mice without changing the biochemical properties of the blood or the histopathological properties of vital organs. Therefore, the development of At3 loaded NPs provides an alternative approach in ACP delivery which can broaden the application of ACP-based cancer therapy.
Collapse
|
17
|
Mao C, Wang S, Li J, Feng Z, Zhang T, Wang R, Fan C, Jiang X. Metal-Organic Frameworks in Microfluidics Enable Fast Encapsulation/Extraction of DNA for Automated and Integrated Data Storage. ACS NANO 2023; 17:2840-2850. [PMID: 36728704 DOI: 10.1021/acsnano.2c11241] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
DNA as an exceptional data storage medium offers high information density. However, DNA storage requires specialized equipment and tightly controlled environments for storage. Fast encapsulation within minutes for enhanced DNA stability to do away with specialized equipment and fast DNA extraction remain a challenge. Here, we report a DNA microlibrary that can be encapsulated by metal-organic frameworks (MOFs) within 10 min and extracted (5 min) in a single microfluidic chip for automated and integrated DNA-based data storage. The DNA microlibrary@MOFs enhances the stability of data-encoded DNA against harsh environments. The encoded information can be read out perfectly after accelerated aging, equivalent to being readable after 10 years of storage at 25 °C, 50% relative humidity, and 10 000 lx sunlight radiation. Moreover, the library enables fast retrieval of target data via flow cytometry and can be reproduced after each access.
Collapse
Affiliation(s)
- Cuiping Mao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Shuchen Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Jiankai Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Zhuowei Feng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Tong Zhang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Rui Wang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, No 800, DongChuan Road, Minhang District, Shanghai 200240, People's Republic of China
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
18
|
Microfluidic Synthesis of the Tumor Microenvironment-Responsive Nanosystem for Type-I Photodynamic Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238386. [PMID: 36500477 PMCID: PMC9736763 DOI: 10.3390/molecules27238386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Type I photosensitizers with aggregation-induced emission luminogens (AIE-gens) have the ability to generate high levels of reactive oxygen species (ROS), which have a good application prospect in cancer photodynamic therapy (PDT). However, the encapsulation and delivery of AIE molecules are unsatisfactory and seriously affect the efficiency of a practical therapy. Faced with this issue, we synthesized the metal-organic framework (MOF) in one step using the microfluidic integration technology and encapsulated TBP-2 (an AIE molecule) into the MOF to obtain the composite nanomaterial ZT. Material characterization showed that the prepared ZT had stable physical and chemical properties and controllable size and morphology. After being endocytosed by tumor cells, ZT was degraded in response to the acidic tumor microenvironment (TME), and then TBP-2 molecules were released. After stimulation by low-power white light, a large amount of •OH and H2O2 was generated by TBP-2 through type I PDT, thereby achieving a tumor-killing effect. Further in vitro cell experiments showed good biocompatibility of the prepared ZT. To the best of our knowledge, this report is the first on the microfluidic synthesis of multifunctional MOF for type I PDT in response to the TME. Overall, the preparation of ZT by the microfluidic synthesis method provides new insight into cancer therapy.
Collapse
|
19
|
Simultaneous ultrasensitive ADP and ATP quantification based on CRISPR/Cas12a integrated ZIF-90@Ag3AuS2@Fe3O4 nanocomposites. Biosens Bioelectron 2022; 218:114784. [DOI: 10.1016/j.bios.2022.114784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/19/2022]
|
20
|
Metal-organic frameworks (MOFs) as biomolecules drug delivery systems for anticancer purposes. Eur J Med Chem 2022; 244:114801. [DOI: 10.1016/j.ejmech.2022.114801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 12/07/2022]
|
21
|
Xu X, Liu C, Wang S, Mäkilä E, Wang J, Koivisto O, Zhou J, Rosenholm JM, Shu Y, Zhang H. Microfluidic-assisted biomineralization of CRISPR/Cas9 in near-infrared responsive metal-organic frameworks for programmable gene-editing. NANOSCALE 2022; 14:15832-15844. [PMID: 36255392 DOI: 10.1039/d2nr04095f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ribonucleoprotein (RNP) based CRISPR/Cas9 gene-editing system shows great potential in biomedical applications. However, due to the large size, charged surface and high biological sensitivity of RNP, its efficient delivery with precise control remains highly challenging. Herein, a microfluidic-assisted metal-organic framework (MOF) based biomineralization strategy is designed and utilized for the efficient delivery and remote regulation of CRISPR/Cas9 RNP gene editing. The strategy is realized by biomimetic growing of thermo-responsive EuMOFs onto photothermal template Prussian blue (PB). The RNP is loaded during MOFs crystallization in microfluidic channels. By adjusting different microfluidic parameters, well-defined and comparable RNP encapsulated nanocarrier (PB@RNP-EuMOFs) are obtained with high loading efficiency (60%), remarkable RNP protection and NIR-stimulated release capacity. Upon laser exposure, the nanocarrier induces effective endosomal escape (4 h) and precise gene knockout of green fluorescent protein by 40% over 2 days. Moreover, the gene-editing activity can be programmed by tuning exposure times (42% for three times and 47% for four times), proving more controllable and inducible editing modality compared to control group without laser irradiation. This novel microfluidic-assisted MOFs biomineralization strategy thus offers an attractive route to optimize delivery systems and reduce off-target side effects by NIR-triggered remote control of CRISPR/Cas9 RNP, improving the potential for its highly efficient and precise therapeutic application.
Collapse
Affiliation(s)
- Xiaoyu Xu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
| | - Shengyi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China.
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku 20500, Finland
| | - Jiali Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Oliver Koivisto
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
| | - Junnian Zhou
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku 20520, Finland
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Pang Z, Yan W, Yang J, Li Q, Guo Y, Zhou D, Jiang X. Multifunctional Gold Nanoclusters for Effective Targeting, Near-Infrared Fluorescence Imaging, Diagnosis, and Treatment of Cancer Lymphatic Metastasis. ACS NANO 2022; 16:16019-16037. [PMID: 36130729 PMCID: PMC9620408 DOI: 10.1021/acsnano.2c03752] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing effective lymph-node (LN) targeting and imaging probes is crucial for the early detection and diagnosis of tumor metastasis to improve patient survival. Most current clinical LN imaging probes are based on small organic dyes (e.g., indocyanine green) or radioactive 99mTc-complexes, which often suffer from limitations, such as rapid photobleaching, poor signal contrast, and potential biosafety issues. Moreover, these probes cannot easily incorporate therapeutic functions to realize beneficial theranostics without affecting their LN-targeting ability. Herein, we have developed dual-ligand-/multiligand-capped gold nanoclusters (GNCs) for specific targeting, near-infrared (NIR) fluorescence imaging, diagnosis, and treatment of LN cancer metastasis in in vivo mouse models. By optimizing the surface ligand coating, we have prepared Au25(SR1)n(SR2)18-n (where SR1 and SR2 are different functional thiol ligands)-type GNCs, which display highly effective LN targeting, excellent stability and biocompatibility, and optimal body-retention time. Moreover, they can provide continuous NIR fluorescence imaging of LNs for >3 h from a single dose, making them well-suited for fluorescence-guided surgery. Importantly, we have further incorporated methotrexate, a chemotherapeutic drug, into the GNCs without affecting their LN-targeting ability. Consequently, they can significantly improve the efficiency of methotrexate delivery to target LNs, achieving excellent therapeutic efficacy with up to 4-fold lower hepatotoxicity. Thus, the GNCs are highly effective and safe theranostic nanomedicines against cancer lymphatic metastasis.
Collapse
Affiliation(s)
- Zeyang Pang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Weixiao Yan
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Jie Yang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qizhen Li
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Yuan Guo
- School
of Food Science and Nutrition and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials and Shenzhen Key
Laboratory of Smart Healthcare Engineering, Department of Biomedical
Engineering, Southern University of Science
and Technology, No 1088, Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
23
|
Liu Y, Yang G, Hui Y, Ranaweera S, Zhao CX. Microfluidic Nanoparticles for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106580. [PMID: 35396770 DOI: 10.1002/smll.202106580] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Nanoparticles (NPs) have attracted tremendous interest in drug delivery in the past decades. Microfluidics offers a promising strategy for making NPs for drug delivery due to its capability in precisely controlling NP properties. The recent success of mRNA vaccines using microfluidics represents a big milestone for microfluidic NPs for pharmaceutical applications, and its rapid scaling up demonstrates the feasibility of using microfluidics for industrial-scale manufacturing. This article provides a critical review of recent progress in microfluidic NPs for drug delivery. First, the synthesis of organic NPs using microfluidics focusing on typical microfluidic methods and their applications in making popular and clinically relevant NPs, such as liposomes, lipid NPs, and polymer NPs, as well as their synthesis mechanisms are summarized. Then, the microfluidic synthesis of several representative inorganic NPs (e.g., silica, metal, metal oxide, and quantum dots), and hybrid NPs is discussed. Lastly, the applications of microfluidic NPs for various drug delivery applications are presented.
Collapse
Affiliation(s)
- Yun Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guangze Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yue Hui
- Institute of Advanced Technology, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Supun Ranaweera
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering and Advanced Materials, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
24
|
Zhang J, Li Y, Chai F, Li Q, Wang D, Liu L, Tang BZ, Jiang X. Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. SCIENCE ADVANCES 2022; 8:eabo1874. [PMID: 35895821 PMCID: PMC9328688 DOI: 10.1126/sciadv.abo1874] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Point-of-care (POC) biochemical sensors have found broad applications in areas ranging from clinical diagnosis to environmental monitoring. However, POC sensors often suffer from poor sensitivity. Here, we synthesized a metal-organic framework, where the ligand is the aggregation-induced emission luminogen (AIEgen), which we call metal-AIEgen frameworks (MAFs), for use in the ultrasensitive POC biochemical sensors. MAFs process a unique luminescent mechanism of structural rigidity-enhanced emission to achieve a high quantum yield (~99.9%). We optimized the MAFs to show 102- to 103-fold enhanced sensitivity for a hydrogel-based POC digital sensor and lateral flow immunoassays (LFIA). MAFs have a high affinity to directly absorb proteins, which can label antibodies for immunoassays. MAFs-based LFIA with enhanced sensitivity shows robust serum detection for POC clinical diagnosis.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Fengli Chai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qizhen Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Liping Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| |
Collapse
|
25
|
Zhang J, Tavakoli H, Ma L, Li X, Han L, Li X. Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment. Adv Drug Deliv Rev 2022; 187:114365. [PMID: 35667465 DOI: 10.1016/j.addr.2022.114365] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/17/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023]
Abstract
Cancer immunotherapy has achieved remarkable success over the past decade by modulating patients' own immune systems and unleashing pre-existing immunity. However, only a minority of cancer patients across different cancer types are able to benefit from immunotherapy treatment; moreover, among those small portions of patients with response, intrinsic and acquired resistance remains a persistent challenge. Because the tumor microenvironment (TME) is well recognized to play a critical role in tumor initiation, progression, metastasis, and the suppression of the immune system and responses to immunotherapy, understanding the interactions between the TME and the immune system is a pivotal step in developing novel and efficient cancer immunotherapies. With unique features such as low reagent consumption, dynamic and precise fluid control, versatile structures and function designs, and 3D cell co-culture, microfluidic tumor organoid-on-a-chip platforms that recapitulate key factors of the TME and the immune contexture have emerged as innovative reliable tools to investigate how tumors regulate their TME to counteract antitumor immunity and the mechanism of tumor resistance to immunotherapy. In this comprehensive review, we focus on recent advances in tumor organoid-on-a-chip platforms for studying the interaction between the TME and the immune system. We first review different factors of the TME that recent microfluidic in vitro systems reproduce to generate advanced tools to imitate the crosstalk between the TME and the immune system. Then, we discuss their applications in the assessment of different immunotherapies' efficacy using tumor organoid-on-a-chip platforms. Finally, we present an overview and the outlook of engineered microfluidic platforms in investigating the interactions between cancer and immune systems, and the adoption of patient-on-a-chip models in clinical applications toward personalized immunotherapy.
Collapse
Affiliation(s)
- Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China; Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Lei Ma
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA
| | - Xiaochun Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Lichun Han
- Xi'an Daxing Hospital, Xi'an 710016, China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 W University Ave., El Paso, TX 79968, USA; Border Biomedical Research Center, Forensic Science, & Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA.
| |
Collapse
|
26
|
Zou B, Xiong Z, He L, Chen T. Reversing breast cancer bone metastasis by metal organic framework-capped nanotherapeutics via suppressing osteoclastogenesis. Biomaterials 2022; 285:121549. [DOI: 10.1016/j.biomaterials.2022.121549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/28/2022]
|
27
|
Shao C, Chi J, Shang L, Fan Q, Ye F. Droplet microfluidics-based biomedical microcarriers. Acta Biomater 2022; 138:21-33. [PMID: 34718181 DOI: 10.1016/j.actbio.2021.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022]
Abstract
Droplet microfluidic technology provides a new platform for controllable generation of microdroplets and droplet-derived materials. In particular, because of the ability in high-throughput production and accurate control of the size, structure, and function of these materials, droplet microfluidics presents unique advantages in the preparation of functional microcarriers, i.e., microsized liquid containers or solid particles that serve as substrates of biomolecules or cells. These microcarriers could be extensively applied in the areas of cell culture, tissue engineering, and drug delivery. In this review, we focus on the fabrication of microcarriers from droplet microfluidics, and discuss their applications in the biomedical field. We start with the basic principle of droplet microfluidics, including droplet generation regimes and its control methods. We then introduce the fabrication of biomedical microcarriers based on single, double, and multiple emulsion droplets, and emphasize the various applications of microcarriers in biomedical field, especially in 3D cell culture, drug development and biomedical detection. Finally, we conclude this review by discussing the limitations and challenges of droplet microfluidics in preparing microcarriers. STATEMENT OF SIGNIFICANCE: Because of its precise control and high throughput, droplet microfluidics has been employed to generate functional microcarriers, which have been widely used in the areas of drug development, tissue engineering, and regenerative medicine. This review is significant because it emphasizes recent progress in research on droplet microfluidics in the preparation and application of biomedical microcarriers. In addition, this review suggests research directions for the future development of biomedical microcarriers based on droplet microfluidics by presenting existing shortcomings and challenges.
Collapse
|
28
|
Li Y, Feng S, Dai P, Liu F, Shang Y, Yang Q, Qin J, Yuchi Z, Wang Z, Zhao Y. Tailored Trojan horse nanocarriers for enhanced redox-responsive drug delivery. J Control Release 2022; 342:201-209. [PMID: 34998915 DOI: 10.1016/j.jconrel.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/04/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023]
Abstract
Redox-responsive anti-tumor nanomedicine is appealing in improving the therapeutic efficacy and patient compliance. However, the thiol-disulfide exchange reaction is reversible and kinetically very slow, resulting in poor drug release and delayed onset of drug action. To address this issue, a tailored Trojan horse nanocarrier is designed with pH-labile zeolitic imidazolate framework-8 (ZIF-8) as the core and disulfide-linked amphiphilic polymer-drug conjugate as the steric shell. A potent reductant, tris(3-hydroxypropyl)phosphine (THPP) is loaded in ZIF-8 and capped by myristyl alcohol. At low pH (e.g. endosome and lysosome), the collapse of ZIF-8 can induce the liberation of THPP that further cleaves the disulfide bond and release the drug post self-immolation. As the reaction between THPP and disulfide is both thermodynamically and kinetically favored, the drug release rate can be boosted. The proof-of-concept is demonstrated both in 4T1 murine mammary carcinoma cells and 4T1 tumor-bearing mice with curcumin as the model drug. Compared to the control nanosystem without THPP, the tailored nanocarrier can significantly enhance the drug release and hence therapeutic efficacy, which is demonstrated by the assays of cell viability, tumor growth inhibition, and histological staining. Such strategy can extend to a plethora of thiol-free cargos for controlled intracellular delivery.
Collapse
Affiliation(s)
- Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Simin Feng
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Peipei Dai
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Fang Liu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Yaqi Shang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Qian Yang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Juan Qin
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhiguang Yuchi
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
29
|
Nandimandalam M, Costantini F, Lovecchio N, Iannascoli L, Nascetti A, de Cesare G, Caputo D, Manetti C. Split Aptamers Immobilized on Polymer Brushes Integrated in a Lab-on-Chip System Based on an Array of Amorphous Silicon Photosensors: A Novel Sensor Assay. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7210. [PMID: 34885364 PMCID: PMC8658169 DOI: 10.3390/ma14237210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Innovative materials for the integration of aptamers in Lab-on-Chip systems are important for the development of miniaturized portable devices in the field of health-care and diagnostics. Herein we highlight a general method to tailor an aptamer sequence in two subunits that are randomly immobilized into a layer of polymer brushes grown on the internal surface of microfluidic channels, optically aligned with an array of amorphous silicon photosensors for the detection of fluorescence. Our approach relies on the use of split aptamer sequences maintaining their binding affinity to the target molecule. After binding the target molecule, the fragments, separately immobilized to the brush layer, form an assembled structure that in presence of a "light switching" complex [Ru(phen)2(dppz)]2+, emit a fluorescent signal detected by the photosensors positioned underneath. The fluorescent intensity is proportional to the concentration of the target molecule. As proof of principle, we selected fragments derived from an aptamer sequence with binding affinity towards ATP. Using this assay, a limit of detection down to 0.9 µM ATP has been achieved. The sensitivity is compared with an assay where the original aptamer sequence is used. The possibility to re-use both the aptamer assays for several times is demonstrated.
Collapse
Affiliation(s)
- Manasa Nandimandalam
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| | - Francesca Costantini
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
- CREA-DC Research Centre for Plant Protection and Certification, 00156 Rome, Italy
| | - Nicola Lovecchio
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Lorenzo Iannascoli
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851/881, 00138 Rome, Italy;
| | - Giampiero de Cesare
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Domenico Caputo
- Department of Information, Electronic and Telecommunication Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Roma, Italy; (N.L.); (L.I.); (G.d.C.); (D.C.)
| | - Cesare Manetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (M.N.); (C.M.)
| |
Collapse
|
30
|
Tong PH, Zhu L, Zang Y, Li J, He XP, James TD. Metal-organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chem Commun (Camb) 2021; 57:12098-12110. [PMID: 34714306 DOI: 10.1039/d1cc05157a] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomacromolecular drugs have become an important class of therapeutic agents for the treatment of human diseases. Considering their high propensity for being degraded in the human body, the choice of an appropriate delivery system is key to ensure the therapeutic efficacy of biomacromolecular drugs in vivo. As an emerging class of supramolecular "host" materials, metal-organic frameworks (MOFs) exhibit advantages in terms of the tunability of pore size, encapsulation efficiency, controllable drug release, simplicity in surface functionalization and good biocompatibility. As a result, MOF-based host-guest systems have been extensively developed as a new class of flexible and powerful platform for the delivery of therapeutic biomacromolecules. In this review, we summarize current research progress in the synthesis of MOFs as delivery materials for a variety of biomacromolecules. Firstly, we briefly introduce the advances made in the use of biomacromolecular drugs for disease therapy and the types of commonly used clinical delivery systems. We then describe the advantages of using MOFs as delivery materials. Secondly, the strategies for the construction of MOF-encapsulated biomacromolecules (Biomacromolecules@MOFs) and the release mechanisms of the therapeutics are categorized. Thirdly, the application of MOFs to deliver different types of biomacromolecules (e.g., antigens/antibodies, enzymes, therapeutic proteins, DNA/RNA, polypeptides, and polysaccharides) for the treatment of various human diseases based on immunotherapy, gene therapy, starvation therapy and oxidation therapy is summarized. Finally, the remaining challenges and available opportunities for MOFs as drug delivery systems are outlined, which we anticipate will encourage additional research efforts directed towards developing Biomacromolecules@MOFs systems for biomedical applications.
Collapse
Affiliation(s)
- Pei-Hong Tong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Ling Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Rd., Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|