1
|
Ramasundaram S, Jeevanandham S, Vijay N, Divya S, Jerome P, Oh TH. Unraveling the Dynamic Properties of New-Age Energy Materials Chemistry Using Advanced In Situ Transmission Electron Microscopy. Molecules 2024; 29:4411. [PMID: 39339406 PMCID: PMC11433656 DOI: 10.3390/molecules29184411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The field of energy storage and conversion materials has witnessed transformative advancements owing to the integration of advanced in situ characterization techniques. Among them, numerous real-time characterization techniques, especially in situ transmission electron microscopy (TEM)/scanning TEM (STEM) have tremendously increased the atomic-level understanding of the minute transition states in energy materials during electrochemical processes. Advanced forms of in situ/operando TEM and STEM microscopic techniques also provide incredible insights into material phenomena at the finest scale and aid to monitor phase transformations and degradation mechanisms in lithium-ion batteries. Notably, the solid-electrolyte interface (SEI) is one the most significant factors that associated with the performance of rechargeable batteries. The SEI critically controls the electrochemical reactions occur at the electrode-electrolyte interface. Intricate chemical reactions in energy materials interfaces can be effectively monitored using temperature-sensitive in situ STEM techniques, deciphering the reaction mechanisms prevailing in the degradation pathways of energy materials with nano- to micrometer-scale spatial resolution. Further, the advent of cryogenic (Cryo)-TEM has enhanced these studies by preserving the native state of sensitive materials. Cryo-TEM also allows the observation of metastable phases and reaction intermediates that are otherwise challenging to capture. Along with these sophisticated techniques, Focused ion beam (FIB) induction has also been instrumental in preparing site-specific cross-sectional samples, facilitating the high-resolution analysis of interfaces and layers within energy devices. The holistic integration of these advanced characterization techniques provides a comprehensive understanding of the dynamic changes in energy materials. This review highlights the recent progress in employing state-of-the-art characterization techniques such as in situ TEM, STEM, Cryo-TEM, and FIB for detailed investigation into the structural and chemical dynamics of energy storage and conversion materials.
Collapse
Affiliation(s)
| | - Sampathkumar Jeevanandham
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201313, Uttar Pradesh, India
| | - Natarajan Vijay
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sivasubramani Divya
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Peter Jerome
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Han S, Qiao X, Zhao Q, Guo J, Yu D, Xu J, Zhuang S, Wang D, Fang X, Zhang D. Ultrafast and Parts-per-Billion-Level MEMS Gas Sensors by Hetero-Interface Engineering of 2D/2D Cu-TCPP@ZnIn 2S 4 with Enriched Surface Sulfur Vacancies. NANO LETTERS 2024. [PMID: 38842083 DOI: 10.1021/acs.nanolett.4c01555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The primary challenge for resonant-gravimetric gas sensors is the synchronous improvement of the sensitivity and response time, which is restricted by low adsorption capacity and slow mass transfer in the sensing process and remains a great challenge. In this study, a novel 2D/2D Cu-TCPP@ZnIn2S4 composite is successfully constructed, in which Cu-TCPP MOF is used as a core substrate for the growth of 2D ultrathin ZnIn2S4 nanosheets with well-defined {0001} crystalline facets. The Cu-TCPP@ZnIn2S4 sensor exhibited high sensitivity (1.5 Hz@50 and 2.3 Hz@100 ppb), limit of detection (LOD: 50 ppb), and ultrafast (9 s @500 ppb) detection of triethylamine (TEA), which is the lowest LOD and the fastest sensor among the reported TEA sensors at room temperature, tackling the bottleneck for the ultrafast detection of the resonant-gravimetric sensor. These above results provide an innovative and easily achievable pathway for the synthesis of heterogeneous structure sensing materials.
Collapse
Affiliation(s)
- Sancan Han
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xianyu Qiao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Qingqiang Zhao
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jie Guo
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Dechao Yu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Jingcheng Xu
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Songlin Zhuang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Ding Wang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiaosheng Fang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, People's Republic of China
| | - Dawei Zhang
- School of Materials and Chemistry, School of Optoelectronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
3
|
Guan K, Xu F, Huang X, Li Y, Guo S, Situ Y, Chen Y, Hu J, Liu Z, Liang H, Zhu X, Wu Y, Qiao Z. Deep learning and big data mining for Metal-Organic frameworks with high performance for simultaneous desulfurization and carbon capture. J Colloid Interface Sci 2024; 662:941-952. [PMID: 38382377 DOI: 10.1016/j.jcis.2024.02.098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
Carbon capture and desulfurization of flue gases are crucial for the achievement of carbon neutrality and sustainable development. In this work, the "one-step" adsorption technology with high-performance metal-organic frameworks (MOFs) was proposed to simultaneously capture the SO2 and CO2. Four machine learning algorithms were used to predict the performance indicators (NCO2+SO2, SCO2+SO2/N2, and TSN) of MOFs, with Multi-Layer Perceptron Regression (MLPR) showing better performance (R2 = 0.93). To address sparse data of MOF chemical descriptors, we introduced the Deep Factorization Machines (DeepFM) model, outperforming MLPR with a higher R2 of 0.95. Then, sensitivity analysis was employed to find that the adsorption heat and porosity were the key factors for SO2 and CO2 capture performance of MOF, while the influence of open alkali metal sites also stood out. Furthermore, we established a kinetic model to batch simulate the breakthrough curves of TOP 1000 MOFs to investigate their dynamic adsorption separation performance for SO2/CO2/N2. The TOP 20 MOFs screened by the dynamic performance highly overlap with those screened by the static performance, with 76 % containing open alkali metal sites. This integrated approach of computational screening, machine learning, and dynamic analysis significantly advances the development of efficient MOF adsorbents for flue gas treatment.
Collapse
Affiliation(s)
- Kexin Guan
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Fangyi Xu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yu Li
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yizhen Situ
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - You Chen
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianming Hu
- College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China
| | - Zili Liu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xin Zhu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; College of Economics and Statistics, Guangzhou University, Guangzhou 510006, China.
| | - Yufang Wu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Zhao T, Jiang Y, Luo S, Ying Y, Zhang Q, Tang S, Chen L, Xia J, Xue P, Zhang JJ, Sun SG, Liao HG. On-chip gas reaction nanolab for in situ TEM observation. LAB ON A CHIP 2023; 23:3768-3777. [PMID: 37489871 DOI: 10.1039/d3lc00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The catalysis reaction mechanism at nano/atomic scale attracted intense attention in the past decades. However, most in situ characterization technologies can only reflect the average information of catalysts, which leads to the inability to characterize the dynamic changes of single nanostructures or active sites under operando conditions, and many micro-nanoscale reaction mechanisms are still unknown. The combination of in situ transmission electron microscopy (TEM) holder system with MEMS chips provides a solution for it, where the design and fabrication of MEMS chips are the key factors. Here, with the aid of finite element simulation, an ultra-stable heating chip was developed, which has an ultra-low thermal drift during temperature heating. Under ambient conditions within TEM, atomic resolution imaging was achieved during the heating process or at high temperature up to 1300 °C. Combined with the developed polymer membrane seal technique and nanofluidic control system, it can realize an adjustable pressure from 0.1 bar to 4 bar gas environment around the sample. By using the developed ultra-low drift gas reaction cells, the nanoparticle's structure evolution at atomic scale was identified during reaction.
Collapse
Affiliation(s)
- Tiqing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Youhong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shiwen Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yifan Ying
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Qian Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Shi Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Linzhi Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jing Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Peng Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Jia-Jun Zhang
- Xiamen Chip-Nova Technology Co., Ltd., Xiamen 361005, People's Republic of China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Hong-Gang Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
5
|
Zhu LY, Ou LX, Mao LW, Wu XY, Liu YP, Lu HL. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview. NANO-MICRO LETTERS 2023; 15:89. [PMID: 37029296 PMCID: PMC10082150 DOI: 10.1007/s40820-023-01047-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/25/2023] [Indexed: 06/19/2023]
Abstract
Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Collapse
Affiliation(s)
- Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Wen Mao
- School of Opto-Electronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Xue-Yan Wu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yi-Ping Liu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics and Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
6
|
Zhou Y, Li M, Zhang T, Chen Y, Li X, Jia H, Xu P, Li X. Cooperative Characterization of In Situ TEM and Cantilever-TGA to Optimize Calcination Conditions of MnO 2 Nanowire Precursors. NANO LETTERS 2023; 23:2412-2420. [PMID: 36719107 DOI: 10.1021/acs.nanolett.2c04756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Calcination plays a vital role during material preparation. However, the calcination conditions have often been determined empirically or have been based on trial and error. Herein we present a cooperative characterization approach to optimize calcination conditions by gas-cell in situ TEM in collaboration with microcantilever-based thermogravimetric analysis (cantilever-TGA) techniques. The morphological evolution of precursors under atmospheric conditions is observed with in situ TEM, and the right calcination temperature is provided by cantilever-TGA. The proposed approach successfully optimizes the calcination conditions of fragile MnO2 nanowire precursors with multiple valence products. The cantilever-TGA shows that a calcination temperature above 560 °C is required to transform the MnO2 precursor to Mn3O4 under an N2 atmosphere, but the in situ TEM indicates that the nanowire structure is destroyed within only 30 min under calcination conditions. Our method further suggests that heating the precursor at 400 °C using an H2-containing atmosphere can produce Mn3O4 nanowires with good electrical properties.
Collapse
Affiliation(s)
- Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Xinyu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
7
|
Xu P, Li X, Zhou Y, Chen Y, Wang X, Jia H, Li M, Yu H, Li X. Microcantilever-Based In Situ Temperature-Programmed Desorption (TPD) Technique. J Phys Chem Lett 2023; 14:567-575. [PMID: 36633431 DOI: 10.1021/acs.jpclett.2c02836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Temperature-programmed desorption (TPD) is an essential technique for characterizing the fundamental properties of advanced catalysts like catalytic activity and kinetics. However, the available TPD instruments are bulky and use ex situ detectors to measure the probe molecules in the elution gas flow. Herein, we demonstrate an in situ TPD technique by developing a silicon microcantilever that integrates functional elements for mass measuring and programmable sample heating. An only nanogram-level sample is required to load on the microcantilever free end, where the integrated microheater provides programmed temperatures and the desorption-induced mass change can be measured in situ. In situ TPD can continuously measure the number of desorbed molecules from the catalyst during programmed heating, without the need for ex situ detectors. With a single-time in situ TPD measurement, the desorption activation energy can be directly calculated. The proposed in situ TPD method outperforms the existing TPD techniques and is expected to enable next-generation TPD applications.
Collapse
Affiliation(s)
- Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Xinyu Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Xuefeng Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Hao Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Li X, Xu P, Zhou Y, Chen Y, Jia H, Yu H, Li X. In Situ Hydrogen Temperature-Programmed Reduction Technology Based on the Integrated Microcantilever for Metal Oxide Catalyst Analysis. Anal Chem 2022; 94:16502-16509. [DOI: 10.1021/acs.analchem.2c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinyu Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhou
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jia
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haitao Yu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yang D, Zhu Y, Li J, Yue Z, Zhou J, Wang X. Degradable, antibacterial and ultrathin filtrating electrospinning membranes of Ag-MOFs/poly(l-lactide) for air pollution control and medical protection. Int J Biol Macromol 2022; 212:182-192. [PMID: 35598727 DOI: 10.1016/j.ijbiomac.2022.05.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/07/2023]
Abstract
The widely used melt-blown polypropylene (PP) non-woven fabrics had no antibacterial functions and its large-scale use also increased the burden on the environment owing to its non-degradable property. Herein, silver (I) metal organic frameworks (Ag-2MI) were prepared with AgNO3 and 2-methylimidazole and embedded into degradable poly(l-lactide) (PLLA) to make an ultrathin filtration and antibacterial membrane by electrospinning technology with low loading of Ag-2MI. The morphology, mechanical properties, adsorption performance and antibacterial activities of the prepared films were tested and the results indicated that the addition of Ag-2MI could reduce the diameter of PLLA fibers from 910 nm to 520 nm (1.8 wt% of Ag-2MI), while the tensile strength, elongation at break of the membrane and the contact angle of the films were enhanced. Although the thickness of the prepared membranes was only about one-third of that of commercially available melt-blown cloth, they exhibited better filtering performances than the melt-blown cloth. The fiber membrane with low loading of 1.8 wt% Ag-2MI showed 99.99% inhibition rate against Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Dangsha Yang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yanyan Zhu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jiangen Li
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
10
|
Yao F, Xu P, Li M, Wang X, Jia H, Chen Y, Li X. Microreactor-Based TG-TEM Synchronous Analysis. Anal Chem 2022; 94:9009-9017. [PMID: 35652373 DOI: 10.1021/acs.analchem.2c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is challenging to measure the heating-induced mass change of the material during its morphological/structural evolution process. Herein, a silicon microreactor is developed for thermogravimetric-transmission electron microscopy synchronous analysis (TG-TEM synchronous analysis). A self-heating resonant microcantilever for mass-change detection and a dummy microcantilever with electron-beam transparent SiNx windows for in situ TEM imaging are integrated back-to-back inside the microreactor. The TEM resolution of the microreactor reaches the Ångström level in an air atmosphere of 100 mbar, and the TGA function is realized by the heatable resonant microcantilever. The TG-TEM synchronous analysis has been successfully used to characterize two Ni(OH)2 samples. During the in situ TEM observing process, the desorption of the intercalated H2O molecules and dehydration of the lattice OH groups in the amorphous Ni(OH)2·xH2O nanosheets can be clearly distinguished from the microcantilever-based TGA. For single-crystal Ni(OH)2 nanosheets, the TG-TEM synchronous analysis can distinguish the desorption of physiosorbed water, the condensation of surface OH groups, and the dehydration of lattice OH groups. The amorphous Ni(OH)2 nanosheets transformed to polycrystalline NiO completed at 290 °C, and the decomposition from the single-crystalline Ni(OH)2 nanoplates to NiO at 315 °C is also clearly recognized. The proposed microreactor-based TG-TEM synchronous analysis provides an interrelated characterization platform to obtain more comprehensive information on materials.
Collapse
Affiliation(s)
- Fanglan Yao
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xuefeng Wang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Hao Jia
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Ying Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Xue C, Zhang Y, Liu B, Gao S, Yang H, Li P, Hoa ND, Xu Y, Zhang Z, Niu J, Liao X, Cui D, Jin H. Smartphone Case-Based Gas Sensing Platform for On-site Acetone Tracking. ACS Sens 2022; 7:1581-1592. [PMID: 35536008 DOI: 10.1021/acssensors.2c00603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas sensor-embedded smartphones would offer the opportunity of on-site tracking of gas molecules for various applications, for example, harmful air pollutant alarms or noninvasive assessment of health status. Nevertheless, high power consumption and difficulty in replacing malfunctioned sensors as well as limited space in the smartphone to host the sensor restrain the relevant advancements. In this article, we create a smartphone case-based sensing platform by integrating the functional units into a smartphone case, which performs a low detection limit of 117 ppb to acetone and high specificity. Particularly, dimming glass-regulated light fidelity (Li-Fi) communication is successfully developed, allowing the sensing platform to operate with relatively low power consumption (around 217 mW). Experimental proof on harmful gas sensing and potential clinic application is implemented with the sensing platform, demonstrating satisfactory sensing performance and acceptable health risk pre-warning accuracy (87%). Thus, the developed smartphone case-based sensing platform would be a good candidate for realizing harmful gas alarms and noninvasive assessment of health status.
Collapse
Affiliation(s)
- Cuili Xue
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yuna Zhang
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Bin Liu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Hao Yang
- State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing 100071, China
| | - Peng Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nguyen Duc Hoa
- International Training Institute for Material Science, Hanoi University of Science and Technology, Hanoi 112400, Vietnam
| | - Yuli Xu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhenghu Zhang
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiaqi Niu
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | | | - Daxiang Cui
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| | - Han Jin
- Institute of Micro-Nano Science and Technology, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center for Nanotechnology, Shanghai 200241, P. R. China
| |
Collapse
|
12
|
Wang X, Li M, Xu P, Chen Y, Yu H, Li X. In Situ TEM Technique Revealing the Deactivation Mechanism of Bimetallic Pd-Ag Nanoparticles in Hydrogen Sensors. NANO LETTERS 2022; 22:3157-3164. [PMID: 35191710 DOI: 10.1021/acs.nanolett.1c05018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bimetallic Pd-Ag alloy nanoparticles exhibit satisfactory H2-sensing improvements and show application potential for H2 sensor construction. However, the long-term stability of the H2 sensor with Pd-Ag nanoparticles as the catalyst is found to dramatically decrease during operation. Herein, gas-cell in situ transmission electron microscopy (TEM) is used to investigate the failure mechanisms of Pd-Ag nanoparticles under operation conditions. Based on the in situ TEM results, the Pd-Ag nanoparticles have two failure mechanisms: particles coalescence at 300 °C and phase segregation at 500 °C. Guided by the failure mechanisms, the H2 sensor is comprehensively optimized based on the working temperature and the amount of Pd-Ag alloy nanoparticles. The optimized sensor exhibits satisfactory H2-sensing properties, and the response decline of the sensor after 1 month is negligible. The revealing of the failure mechanisms with in situ TEM technology provides a valuable route for developing gas sensors with high long-term stability.
Collapse
Affiliation(s)
- Xueqing Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Pengcheng Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Hu J, Zhang T, Chen Y, Xu P, Zheng D, Li X. Area-Selective, In-Situ Growth of Pd-Modified ZnO Nanowires on MEMS Hydrogen Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1001. [PMID: 35335814 PMCID: PMC8950579 DOI: 10.3390/nano12061001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/04/2022]
Abstract
Nanomaterials are widely utilized as sensing materials in semiconductor gas sensors. As sensor sizes continue to shrink, it becomes increasingly challenging to construct micro-scale sensing materials on a micro-sensor with good uniformity and stability. Therefore, in-situ growth with a desired pattern in the tiny sensing area of a microsensor is highly demanded. In this work, we combine area-selective seed layer formation and hydrothermal growth for the in-situ growth of ZnO nanowires (NWs) on Micro-electromechanical Systems (MEMS)-based micro-hotplate gas sensors. The results show that the ZnO NWs are densely grown in the sensing area. With Pd nano-particles' modification of the ZnO NWs, the sensor is used for hydrogen (H2) detection. The sensors with Pd-ZnO NWs show good repeatability as well as a reversible and uniform response to 2.5 ppm-200 ppm H2. Our approach offers a technical route for designing various kinds of gas sensors.
Collapse
Affiliation(s)
- Jiahao Hu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.H.); (T.Z.)
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (P.X.); (X.L.)
| | - Tao Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.H.); (T.Z.)
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (P.X.); (X.L.)
| | - Ying Chen
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (P.X.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengcheng Xu
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (P.X.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (J.H.); (T.Z.)
| | - Xinxin Li
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (P.X.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Wei J, Zhao M, Wang C, Wang J, Ye JM, Wei YC, Li ZY, Zhao R, Liu GZ, Geng YH, Wang R, Xiao HD, Li Y, Li CY, Gao ZQ, Gao J. Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. SENSORS 2022; 22:s22031014. [PMID: 35161761 PMCID: PMC8839427 DOI: 10.3390/s22031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
Gas sensing performance characterization systems are essential for the research and development of gas sensing materials and devices. Although existing systems are almost completely automatically operated, the accuracies of gas concentration control and of pressure control and the ability to simultaneously detect different sensor signals still require improvement. In this study, a high-precision gas sensing material characterization system is developed based on vacuum technology, with the objective of enabling the precise and simultaneous measurement of electrical responses. Because of the implementation of vacuum technology, the gas concentration control accuracy is improved more than 1600 times, whereas the pressure of the test ambient condition can be precisely adjusted between vacuum and 1.2 bar. The vacuum-assisted gas-exchanging mechanism also enables the sensor response time to be determined more accurately. The system is capable of performing sensitivity, selectivity, and stability tests and can control the ambient relative humidity in a precise manner. More importantly, the levels of performance of three different optical signal measurement set-ups were investigated and compared in terms of detection range, linearity, noise, and response time, based on which of their scopes of application were proposed. Finally, single-period and cyclical tests were performed to examine the ability of the system to detect optical and electrical responses simultaneously, both at a single wavelength and in a spectral region.
Collapse
Affiliation(s)
- Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
- Correspondence: (M.Z.); (C.W.)
| | - Cong Wang
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
- Correspondence: (M.Z.); (C.W.)
| | - Jun Wang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Jian-Min Ye
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Yu-Chen Wei
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Zhe-Yi Li
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Run Zhao
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Guo-Zhen Liu
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Yan-Hong Geng
- Suzhou Institute of Metrology, Suzhou 215009, China; (Y.-H.G.); (R.W.)
| | - Rui Wang
- Suzhou Institute of Metrology, Suzhou 215009, China; (Y.-H.G.); (R.W.)
| | - Hui-Dong Xiao
- Changchun New Industries Optoelectronics Technology Co., Ltd., Changchun 130103, China;
| | - Ying Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Chao-Ya Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Zhi-Qiang Gao
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Ju Gao
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
- School for Optoelectronic Engineering, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
15
|
Zhang G, Zeng H, Liu J, Nagashima K, Takahashi T, Hosomi T, Tanaka W, Yanagida T. Nanowire-based sensor electronics for chemical and biological applications. Analyst 2021; 146:6684-6725. [PMID: 34667998 DOI: 10.1039/d1an01096d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Detection and recognition of chemical and biological species via sensor electronics are important not only for various sensing applications but also for fundamental scientific understanding. In the past two decades, sensor devices using one-dimensional (1D) nanowires have emerged as promising and powerful platforms for electrical detection of chemical species and biologically relevant molecules due to their superior sensing performance, long-term stability, and ultra-low power consumption. This paper presents a comprehensive overview of the recent progress and achievements in 1D nanowire synthesis, working principles of nanowire-based sensors, and the applications of nanowire-based sensor electronics in chemical and biological analytes detection and recognition. In addition, some critical issues that hinder the practical applications of 1D nanowire-based sensor electronics, including device reproducibility and selectivity, stability, and power consumption, will be highlighted. Finally, challenges, perspectives, and opportunities for developing advanced and innovative nanowire-based sensor electronics in chemical and biological applications are featured.
Collapse
Affiliation(s)
- Guozhu Zhang
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Hao Zeng
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan. .,Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|
16
|
Abstract
As an emerging class of hybrid nanoporous materials, metal-organic frameworks (MOFs) have attracted significant attention as promising multifunctional building blocks for the development of highly sensitive and selective gas sensors due to their unique properties, such as large surface area, highly diversified structures, functionalizable sites and specific adsorption affinities. Here, we provide a review of recent advances in the design and fabrication of MOF nanomaterials for the low-temperature detection of different gases for air quality and environmental monitoring applications. The impact of key structural parameters including surface morphologies, metal nodes, organic linkers and functional groups on the sensing performance of state-of-the-art sensing technologies are discussed. This review is concluded by summarising achievements and current challenges, providing a future perspective for the development of the next generation of MOF-based nanostructured materials for low-temperature detection of gas molecules in real-world environments.
Collapse
|
17
|
Chen X, Leishman M, Bagnall D, Nasiri N. Nanostructured Gas Sensors: From Air Quality and Environmental Monitoring to Healthcare and Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1927. [PMID: 34443755 PMCID: PMC8398721 DOI: 10.3390/nano11081927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/26/2022]
Abstract
In the last decades, nanomaterials have emerged as multifunctional building blocks for the development of next generation sensing technologies for a wide range of industrial sectors including the food industry, environment monitoring, public security, and agricultural production. The use of advanced nanosensing technologies, particularly nanostructured metal-oxide gas sensors, is a promising technique for monitoring low concentrations of gases in complex gas mixtures. However, their poor conductivity and lack of selectivity at room temperature are key barriers to their practical implementation in real world applications. Here, we provide a review of the fundamental mechanisms that have been successfully implemented for reducing the operating temperature of nanostructured materials for low and room temperature gas sensing. The latest advances in the design of efficient architecture for the fabrication of highly performing nanostructured gas sensing technologies for environmental and health monitoring is reviewed in detail. This review is concluded by summarizing achievements and standing challenges with the aim to provide directions for future research in the design and development of low and room temperature nanostructured gas sensing technologies.
Collapse
Affiliation(s)
- Xiaohu Chen
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Michelle Leishman
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Darren Bagnall
- School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| | - Noushin Nasiri
- NanoTech Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia;
| |
Collapse
|
18
|
Jia H, Xu P, Li X. Integrated Resonant Micro/Nano Gravimetric Sensors for Bio/Chemical Detection in Air and Liquid. MICROMACHINES 2021; 12:mi12060645. [PMID: 34073049 PMCID: PMC8227694 DOI: 10.3390/mi12060645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Resonant micro/nanoelectromechanical systems (MEMS/NEMS) with on-chip integrated excitation and readout components, exhibit exquisite gravimetric sensitivities which have greatly advanced the bio/chemical sensor technologies in the past two decades. This paper reviews the development of integrated MEMS/NEMS resonators for bio/chemical sensing applications mainly in air and liquid. Different vibrational modes (bending, torsional, in-plane, and extensional modes) have been exploited to enhance the quality (Q) factors and mass sensing performance in viscous media. Such resonant mass sensors have shown great potential in detecting many kinds of trace analytes in gas and liquid phases, such as chemical vapors, volatile organic compounds, pollutant gases, bacteria, biomarkers, and DNA. The integrated MEMS/NEMS mass sensors will continuously push the detection limit of trace bio/chemical molecules and bring a better understanding of gas/nanomaterial interaction and molecular binding mechanisms.
Collapse
|