1
|
Nie L, Li S, Cao M, Han N, Chen Y. A brief review of preparation and applications of monolithic aerogels in atmospheric environmental purification. J Environ Sci (China) 2025; 149:209-220. [PMID: 39181635 DOI: 10.1016/j.jes.2024.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 08/27/2024]
Abstract
Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.
Collapse
Affiliation(s)
- Linfeng Nie
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuangde Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mengjie Cao
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Han
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Science & Technology on Particle Materials, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
2
|
Qin Z, Jiang Z, Zhou L, Wang W, Zhu M, Chen J, Wang B, Wang C. Construction and Properties of Ultralow Thermal Conductivity and High Strength Zirconia Aerogel Composites by Freeze-Drying. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61026-61035. [PMID: 39437318 DOI: 10.1021/acsami.4c13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Zirconia aerogels possess significant applications, including their use catalyst carriers, thermal insulation materials, and thermal barrier coatings. This is due to their ultrahigh temperature resistance, high porosity, and low thermal conductivity. Nonetheless, the inherent challenges associated with ZrO2 aerogels, such as high brittleness, low compressive strength, and inadequate formability, restrict their potential applications. In this paper, with ultralow thermal conductivity and high strength zirconia aerogel composites with inorganic zirconium salt zirconium carbonate as the raw material, acetic acid as the solvent, polyvinylpyrrolidone (PVP) as the viscosity builder to stabilize the structure of the aerogel during the freeze-drying process. Additionally, yttrium nitrate hexahydrate (Y(NO3)3·6H2O) is employed as a phase stabilizer. The sol-gel method, in conjunction with the freeze-drying process, is utilized to fabricate ZrO2 aerogel composites with an optimized microstructure. The findings indicate that optimal process parameters are achieved with a PVP solution concentration of 2.0 wt % and a zirconium carbonate concentration of 20 wt %. The mechanical properties of the resulting composites reach up to 550 kPa, while the thermal insulation performance exhibits a temperature difference of 207 °C/cm and a thermal conductivity of 0.0504 W/(m·K). This advancement addresses the mechanical stability issues commonly associated with traditional ceramic aerogels and widely used elastic insulating materials, thereby enhancing their applicability as thermal insulation and heat preservation materials.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha 410073, PR China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Lan Zhou
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenjun Wang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jiapeng Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
- Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, National Key Laboratory of Science and Technology on Helicopter Transmission, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Baoxiu Wang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai 201620, China
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
| | - Chaosheng Wang
- Key Laboratory of High Performance Fibers & Products, Ministry of Education, Donghua University, Shanghai 201620, PR China
| |
Collapse
|
3
|
Zhang X, Yu J, Zhao C, Si Y. Elastic SiC Aerogel for Thermal Insulation: A Systematic Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311464. [PMID: 38511588 DOI: 10.1002/smll.202311464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/19/2024] [Indexed: 03/22/2024]
Abstract
SiC aerogels with their lightweight nature and exceptional thermal insulation properties have emerged as the most ideal materials for thermal protection in hypersonic vehicles; However, conventional SiC aerogels are prone to brittleness and mechanical degradation when exposed to complex loads such as shock and mechanical vibration. Hence, preserving the structural integrity of aerogels under the combined influence of thermal and mechanical external forces is crucial not only for stabling their thermal insulation performance but also for determining their practicality in harsh environments. This review focuses on the optimization of design based on the structure-performance of SiC aerogels, providing a comprehensive review of the inherent correlations among structural stability, mechanical properties, and insulation performance. First, the thermal transfer mechanism of aerogels from a microstructural perspective is studied, followed by the relationship between the building blocks of SiC aerogels (0D particles, 1D nanowires/nanofibers) and their compression performance (including compressive resilience, compressive strength, and fatigue resistance). Moreover, the strategy to improve the high-temperature oxidation resistance and insulation performance of SiC aerogels is explored. Lastly, the challenges and future breakthrough directions for SiC aerogels are presented.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
4
|
Chang X, Yang Y, Cheng X, Yin X, Yu J, Liu YT, Ding B. Multiphase Symbiotic Engineered Elastic Ceramic-Carbon Aerogels with Advanced Thermal Protection in Extreme Oxidative Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406055. [PMID: 38829267 DOI: 10.1002/adma.202406055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Elastic aerogels can dissipate aerodynamic forces and thermal stresses by reversible slipping or deforming to avoid sudden failure caused by stress concentration, making them the most promising candidates for thermal protection in aerospace applications. However, existing elastic aerogels face difficulties achieving reliable protection above 1500 °C in aerobic environments due to their poor thermomechanical stability and significantly increased thermal conductivity at elevated temperatures. Here, a multiphase sequence and multiscale structural engineering strategy is proposed to synthesize mullite-carbon hybrid nanofibrous aerogels. The heterogeneous symbiotic effect between components simultaneously inhibits ceramic crystalline coarsening and carbon thermal etching, thus ensuring the thermal stability of the nanofiber building blocks. Efficient load transfer and high interfacial thermal resistance at crystalline-amorphous phase boundaries on the microscopic scale, coupled with mesoscale lamellar cellular and locally closed-pore structures, achieve rapid stress dissipation and thermal energy attenuation in aerogels. This robust thermal protection material system is compatible with ultralight density (30 mg cm-3), reversible compression strain of 60%, extraordinary thermomechanical stability (up to 1600 °C in oxidative environments), and ultralow thermal conductivity (50.58 mW m-1 K-1 at 300 °C), offering new options and possibilities to cope with the harsh operating environments faced by space exploration.
Collapse
Affiliation(s)
- Xinyi Chang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yunfei Yang
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaota Cheng
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xia Yin
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| |
Collapse
|
5
|
Ma H, Liu H, Lv T, Xu Y, Zhou X, Zhang L. High-Energy Laser Protection Performance of Fibrous Felt-Reinforced Aerogels with Hierarchical Porous Architectures. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38701180 DOI: 10.1021/acsami.4c02725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Continuous-wave lasers can cause irreversible damage to structured materials in a very short time. Modern high-energy laser protection materials are mainly constructed from ceramic, polymer, and metal constitutions. However, these materials are protected by sacrificing their structural integrity under the irradiation of high-energy lasers. In this contribution, we reported multilayer fibrous felt-reinforced aerogels that can sustain the continuous irradiation of a laser at a power density of 120 MW·m-2 without structural damage. It is found that the exceptional high-energy laser protection performance and the comparable mechanical properties of aerogel nanocomposites are attributed to the unique characteristics of hierarchical porous architectures. In comparison with various preparation methods and other aerogel materials, multilayer fibrous felt-reinforced aerogels exhibit the best performance in high-energy laser protection, arising from the gradual interception and the Raman-Rayleigh scattering cycles of a high-energy laser in the porous aerogels. Furthermore, a near-zero thermal expansion coefficient and extremely low thermal conductivity at high temperature allow the lightweight felt-reinforced aerogels to be applied in extreme conditions. The felt-reinforced aerogels reported herein offer an attractive material that can withstand complex thermomechanical stress and retain excellent insulation properties at extremely high temperature.
Collapse
Affiliation(s)
- Huihuang Ma
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haiyan Liu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Tianxiang Lv
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiqing Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Zhou
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology (Ministry of Education), School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Cheng W, Jiao W, Fei Y, Yang Z, Zhang X, Wu F, Liu Y, Yin X, Ding B. Direct synthesis of ultralight, elastic, high-temperature insulation N-doped TiO 2 ceramic nanofibrous sponges via conjugate electrospinning. NANOSCALE 2024; 16:1135-1146. [PMID: 37999715 DOI: 10.1039/d3nr04987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The design of three-dimensional ceramic nanofibrous materials with high-temperature insulation and flame-retardant characteristics is of significant interest due to the effectively improved mechanical properties. However, achieving a pure ceramic monolith with ultra-low density, high elasticity and toughness remains a great challenge. Herein, a low-cost, scalable strategy to fabricate ultralight and mechanically robust N-doped TiO2 ceramic nanofibrous sponges with a continuous stratified structure by conjugate electrospinning is reported. Remarkably, the introduction of dopamine into the precursor nanofibers is engineered, which realizes the nitrogen doping to inhibit the TiO2 grain growth, endowing single nanofibers with a smoother, less defective surface. Besides, the self-polymerization process of dopamine allows the construction of bonding points between nanofibers and optimizes the distribution of inorganic micelles on polymer templates. Moreover, a rotating disk receiving device under different rotating speeds is designed to obtain N-doped TiO2 sponges with various interlamellar spacings, further affecting the maximum compressive deformation capacity. The resulting ceramic sponges, consisting of fluffy crosslinked nanofiber layers, possess low densities of 12-45 mg cm-3, which can quickly recover under a large strain of 80% and have only 9.2% plastic deformation after 100 compression cycles. In addition, the sponge also exhibits a temperature-invariant superelasticity at 25-800 °C and a low heat conductivity of 0.0285 W m-1 K-1, with an outstanding thermal insulation property, making it an ideal insulation material for high-temperature or harsh conditions.
Collapse
Affiliation(s)
- Wei Cheng
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Wenling Jiao
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Yifan Fei
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Zaihui Yang
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Xiaohua Zhang
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Fan Wu
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Yitao Liu
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Xia Yin
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| | - Bin Ding
- Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles and Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Zhang X, Yu J, Zhao C, Si Y. Engineering Covalent Heterointerface Enables Superelastic Amorphous SiC Meta-Aerogels. ACS NANO 2023; 17:21813-21821. [PMID: 37909358 DOI: 10.1021/acsnano.3c07780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
SiC is an exceptionally competitive material for porous ceramics owing to its excellent high-temperature mechanical stability. However, SiC porous ceramics suffer from serious structural damage and mechanical degradation under thermal shock due to the hard SiC microstructure and weak bonding networks. Here, we report a scalable interface-engineering protocol to reliably assemble flexible amorphous SiC nanofibers into lamellar cellular meta-aerogels by designing a covalent heterointerface. This approach allows the construction of a strong binding architecture within the resilient nanofiber skeleton network, thereby achieving structurally stable, mechanically robust, and durable SiC porous ceramics. The optimized amorphous SiC meta-aerogels (a-SiC MAs) exhibit the integrated properties of ultralight with a density of 4.84 mg cm-3, temperature-invariant superelastic, fatigue-resistant at low 5% permanent deformation after 1000 cycles of compression, and ultralow thermal conductivity (19 mW m-1 K-1). These characteristics provide a-SiC MAs potential application value in the thermal protection field.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Cunyi Zhao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
8
|
Li F, Song J, Niu Y, Zhang H, Niederberger M, Cheng W. Superelastic Cobalt Silicate@Resorcinol Formaldehyde Resin Core-Shell Nanobelt Aerogel Monoliths with Outstanding Fire Retardant and Thermal Insulating Capability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302724. [PMID: 37632322 DOI: 10.1002/smll.202302724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/01/2023] [Indexed: 08/27/2023]
Abstract
The practical applications of resorcinol formaldehyde resin (RFR) aerogels are prevented by their poor mechanical properties. Herein, a facile template-directed method is reported to produce macroscopic free-standing cobalt silicate (CS)@RFR core-shell nanobelt aerogels that display superelastic behavior and outstanding thermal insulating and fire-resistant capability. The synthesis relies on the polymerization of RFR on pre-formed CS nanobelts which leads to in situ formation of hydrogel monoliths that can be transformed to corresponding aerogels by a freeze-drying method. The composite nanobelt aerogel can withstand a compressive load of more than 4000 times of its own weight and fully recover after the removal of the weight. It can also sustain 1000 compressive cycles with 6.9% plastic deformation and 91.8% of the maximum stress remaining, with a constant energy loss coefficient as low as 0.16, at the set strain of 30%. The extraordinary mechanical properties are believed to be associated with the structural flexibility of the nanobelts and the RFR-reinforced joints between the crosslinked nanobelts. These inorganic-organic composite aerogels also show good thermal insulation and excellent fire-proof capability. This work provides an effective strategy for fabricating superelastic RFR-based aerogels which show promising applications in fields such as thermal insulation, energy storage, and catalyst support.
Collapse
Affiliation(s)
- Fuzhong Li
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
- Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, China
| | - Jiabei Song
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Yutong Niu
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Hewei Zhang
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland
| | - Wei Cheng
- Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
- Key Laboratory of High Performance Ceramics Fibers (Xiamen University), Ministry of Education, China
| |
Collapse
|
9
|
Zhuang L, Lu D, Zhang J, Guo P, Su L, Qin Y, Zhang P, Xu L, Niu M, Peng K, Wang H. Highly cross-linked carbon tube aerogels with enhanced elasticity and fatigue resistance. Nat Commun 2023; 14:3178. [PMID: 37264018 DOI: 10.1038/s41467-023-38664-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Carbon aerogels are elastic, mechanically robust and fatigue resistant and are known for their promising applications in the fields of soft robotics, pressure sensors etc. However, these aerogels are generally fragile and/or easily deformable, which limits their applications. Here, we report a synthesis strategy for fabricating highly compressible and fatigue-resistant aerogels by assembling interconnected carbon tubes. The carbon tube aerogels demonstrate near-zero Poisson's ratio, exhibit a maximum strength over 20 MPa and a completely recoverable strain up to 99%. They show high fatigue resistance (less than 1.5% permanent degradation after 1000 cycles at 99% strain) and are thermally stable up to 2500 °C in an Ar atmosphere. Additionally, they possess tunable conductivity and electromagnetic shielding. The combined mechanical and multi-functional properties offer an attractive material for the use in harsh environments.
Collapse
Affiliation(s)
- Lei Zhuang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - De Lu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Jijun Zhang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Pengfei Guo
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Yuanbin Qin
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Peng Zhang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Liang Xu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Kang Peng
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of Materials Xi'an Jiaotong University, 710049, Xi'an, China.
| |
Collapse
|
10
|
Lu D, Zhuang L, Zhang J, Su L, Niu M, Yang Y, Xu L, Guo P, Cai Z, Li M, Peng K, Wang H. Lightweight and Strong Ceramic Network with Exceptional Damage Tolerance. ACS NANO 2022; 17:1166-1173. [PMID: 36521017 DOI: 10.1021/acsnano.2c08679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lightweight materials such as porous ceramics have attracted increasing attention for applications in energy conservation, aerospace and automobile industries. However, porous ceramics are usually weak and brittle; in particular, tiny defects could cause catastrophic failure, which affects their reliability and limits the potential use greatly. Here we report a SiC/SiO2 nanowire network constructed from numerous well-bonded SiC nanowires coated by a biphasic structure consisting of amorphous SiO2 and nanocrystal SiC. The as-obtained SiC/SiO2 nanowire network is lightweight (360 ± 10 mg cm-3), mechanically strong (compressive strength of 16 MPa), and damage-tolerant. The high strength of the network is attributed to the biphasic mixed structure of the binding coating which can restrict the deformation of nanowires upon compression. The lightweight and strong SiC/SiO2 nanowire network shows potential for engineering applications in harsh environments.
Collapse
Affiliation(s)
- De Lu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Zhuang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Jijun Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Lei Su
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Min Niu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Yuhang Yang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Liang Xu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Pengfei Guo
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Zhixin Cai
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Mingzhu Li
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Kang Peng
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| | - Hongjie Wang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
11
|
Zheng R, Cheng Y, Jiang X, Lin T, Chen W, Deng G, Miras HN, Song YF. Fiber Templated Epitaxially Grown Composite Membranes: From Thermal Insulation to Infrared Stealth. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27214-27221. [PMID: 35653141 DOI: 10.1021/acsami.2c05906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Thermal insulation materials show a substantial impact on civil and military fields for applications. Fabrication of efficient, flexible, and comfortable composite materials for thermal insulation is thereby of significance. Herein, a "fiber templated epitaxial growth" strategy was adopted to construct PAN@LDH (PAN = polyacrylonitrile; LDH = layered double hydroxides) composite membranes with a three-dimensional (3D) network structure. The PAN@LDH showed an impressive temperature difference of 28.1 °C as a thermal insulation material in the hot stage of 80 °C with a thin layer of 0.6 mm. Moreover, when a human hand was covered with 3 layers of the PAN@LDH-70% composite membrane, it was rendered invisible under infrared radiation. Such excellent performance can be attributed to the following reasons: (1) the hierarchical interfaces of the PAN@LDH composite membrane reduced thermal conduction, (2) the 3D network structure of the PAN@LDH composite membranes restricted thermal convection, and (3) the selective infrared absorption of LDHs decreased thermal radiation. When modified with Dodecyltrimethoxysilane (DTMS), the resulting PAN@LDH@DTMS membrane can be used under high humidity conditions with excellent thermal insulation properties. As such, this work provides a facile strategy for the development of high-performance thermal insulation functional membranes.
Collapse
Affiliation(s)
- Ruoxuan Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Beijing Graphene Institute (BGI), Beijing 100095, P. R. China
| | - Xiao Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tong Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gaofeng Deng
- State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013, P. R. China
| | - Haralampos N Miras
- WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
12
|
Hypocrystalline ceramic aerogels for thermal insulation at extreme conditions. Nature 2022; 606:909-916. [PMID: 35768591 PMCID: PMC9242853 DOI: 10.1038/s41586-022-04784-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/20/2022] [Indexed: 01/07/2023]
Abstract
Thermal insulation under extreme conditions requires materials that can withstand complex thermomechanical stress and retain excellent thermal insulation properties at temperatures exceeding 1,000 degrees Celsius1–3. Ceramic aerogels are attractive thermal insulating materials; however, at very high temperatures, they often show considerably increased thermal conductivity and limited thermomechanical stability that can lead to catastrophic failure4–6. Here we report a multiscale design of hypocrystalline zircon nanofibrous aerogels with a zig-zag architecture that leads to exceptional thermomechanical stability and ultralow thermal conductivity at high temperatures. The aerogels show a near-zero Poisson’s ratio (3.3 × 10−4) and a near-zero thermal expansion coefficient (1.2 × 10−7 per degree Celsius), which ensures excellent structural flexibility and thermomechanical properties. They show high thermal stability with ultralow strength degradation (less than 1 per cent) after sharp thermal shocks, and a high working temperature (up to 1,300 degrees Celsius). By deliberately entrapping residue carbon species in the constituent hypocrystalline zircon fibres, we substantially reduce the thermal radiation heat transfer and achieve one of the lowest high-temperature thermal conductivities among ceramic aerogels so far—104 milliwatts per metre per kelvin at 1,000 degrees Celsius. The combined thermomechanical and thermal insulating properties offer an attractive material system for robust thermal insulation under extreme conditions. Hypocrystalline ceramic aerogels with a zig-zag architecture show high thermal stability under thermal shock and exposure to high temperature, providing a reliable material system for thermal insulation at extreme conditions.
Collapse
|
13
|
Yan M, Zhang H, Fu Y, Pan Y, Lun Z, Zhang Z, He P, Cheng X. Implementing an Air Suction Effect Induction Strategy to Create Super Thermally Insulating and Superelastic SiC Aerogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201039. [PMID: 35419970 DOI: 10.1002/smll.202201039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Silicon carbide (SiC) aerogels are promising thermal insulators that are lightweight and possess high thermal stability. However, their application is hindered by their brittleness. Herein, an air suction effect induction (ASEI) strategy is proposed to fabricate a super thermally insulating SiC aerogel (STISA). The ASEI strategy exploits the air suction effect to subtly regulate the directional flow of the SiO gas, which can induce directional growth and assembly of SiC nanowires to form a directional lamellar structure. The sintering time is significantly reduced by >90%. Significant improvements in the compression and elasticity performance of the STISA are achieved upon the formation of a directional lamellar structure through the ASEI strategy. Moreover, the lamellar structure endows the STISA with an ultralow thermal conductivity of 0.019 W m-1 K-1 . The ASEI strategy paves the way for structural design of advanced ceramic aerogels for super thermal insulation.
Collapse
Affiliation(s)
- Mingyuan Yan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Heping Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Yangyang Fu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Yuelei Pan
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Zhiyi Lun
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Zhongxin Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Pan He
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Xudong Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| |
Collapse
|
14
|
Wang C, Rong Y, Zhang B, Yang J. Facile Method for Preparing Hierarchical Al 2O 3-Glass Foam Ceramics with Superior Thermal Insulating Property. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1141-1150. [PMID: 35016499 DOI: 10.1021/acs.langmuir.1c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Porous ceramics are good candidates for thermal-insulating materials. Glass is a low-cost material that possesses low intrinsic thermal conductivity of less than 10 W·m-1·K-1. However, the mechanical strength of a homogeneous glass material is fairly low. We, in this work, have fabricated Al2O3-hollow glass sphere (HGS) foam ceramics with a facile particle-stabilized foaming method. The obtained foam ceramic presents a hierarchical microstructure that is rare to be seen elsewhere using this foaming technique. The foaming system contains two types of particles having opposite charges, and the particle-stabilized foaming mechanism is hence discussed. The optimal sample possesses a porosity above 94% with a thermal conductivity as low as 0.0244 W/m·K, which reaches the level of superinsulating materials. The compressive strengths of the foam ceramics range from 0.07 to 0.83 MPa. The effective medium theory model is used to calculate the thermal conductivities as reference. The deviation of the theoretical values from the experimental ones are derived from the effect of the hierarchical microstructure of the foams. The results of this work may deepen one's understanding and pave new ways for the particle-stabilized foaming technique. The unique microstructure of the ceramic may also shed some light on fabricating superior thermal-insulating ceramic materials.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yedong Rong
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Boran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jinlong Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Zhang Z, Wang C, Yao Y, Zhang H, Na J, Zhou Y, Zhu Z, Qi J, Eguchi M, Yamauchi Y, Li J. Modular Assembly of MOF-derived Carbon Nanofibers into Macroarchitectures for Water Treatment. Chem Sci 2022; 13:9159-9164. [PMID: 36093027 PMCID: PMC9384821 DOI: 10.1039/d2sc02619h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
The organized assembly of nanoparticles into complex macroarchitectures opens up a promising pathway to create functional materials. Here, we demonstrate a scalable strategy to fabricate macroarchitectures with high compressibility and elasticity from hollow particle-based carbon nanofibers. This strategy causes zeolitic imidazolate framework (ZIF-8)-polyacrylonitrile nanofibers to assemble into centimetre-sized aerogels (ZIF-8/NFAs) with expected shapes and tunable functions on a large scale. On further carbonization of ZIF-8/NFAs, ZIF-8 nanoparticles are transformed into a hollow structure to form the carbon nanofiber aerogels (CNFAs). The resulting CNFAs integrate the properties of zero-dimensional hollow structures, one-dimensional nanofibers, and three-dimensional carbon aerogels, and exhibit a low density of 7.32 mg cm−3, high mechanical strength (rapid recovery from 80% strain), outstanding adsorption capacity, and excellent photo-thermal conversion potential. These results provide a platform for the future development of macroarchitectured assemblies from nanometres to centimetres and facilitate the design of multifunctional materials. A scalable strategy is established to generate macroarchitectures based on MOF-related nanofibers. The modular assembly of macroarchitectures with luffa-like structures exhibits high mechanical strength and low densities.![]()
Collapse
Affiliation(s)
- Zishi Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Chaohai Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Yiyuan Yao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Hao Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- Materials Architecturing Research Center, Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Yujun Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Zhigao Zhu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Junwen Qi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, Faculty of Engineering, The University of Queensland Brisbane Queensland 4072 Australia
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology Nanjing 210094 People's Republic of China
| |
Collapse
|
16
|
Han L, Dong L, Li F, Duan H, Zhang H, Li G, Jia Q, Zhang S. Preparation of Si3N4-BCxN-TiN composite ceramic aerogels via foam-gelcasting. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.01.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|