1
|
Nowitzke J, Bista S, Raman S, Dahal N, Stirnemann G, Popa I. Mechanical Unfolding of Network Nodes Drives the Stress Response of Protein-Based Materials. ACS NANO 2024; 18:31031-31043. [PMID: 39487800 DOI: 10.1021/acsnano.4c07352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Biomaterials synthesized from cross-linked folded proteins have untapped potential for biocompatible, resilient, and responsive implementations, but face challenges due to costly molecular refinement and limited understanding of their mechanical response. Under a stress vector, these materials combine the gel-like response of cross-linked networks with the mechanical unfolding and extension of proteins from well-defined 3D structures to unstructured polypeptides. Yet the nanoscale dynamics governing their viscoelastic response remains poorly understood. This lack of understanding is further exacerbated by the fact that the mechanical stability of protein domains depends not only on their structure, but also on the direction of the force vector. To this end, here we propose a coarse-grained network model based on the physical characteristics of polyproteins and combine it with the mechanical unfolding response of protein domains, obtained from single molecule measurements and steered molecular dynamics simulations, to explain the macroscopic response of protein-based materials to a stress vector. We find that domains are about 10-fold more stable when force is applied along their end-to-end coordinate than along the other tethering geometries that are possible inside the biomaterial. As such, the macroscopic response of protein-based materials is mainly driven by the unfolding of the node-domains and rearrangement of these nodes inside the material. The predictions from our models are then confirmed experimentally using force-clamp rheometry. This model is a critical step toward developing protein-based materials with predictable response and that can enable applications for shape memory and energy storage and dissipation.
Collapse
Affiliation(s)
- Joel Nowitzke
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sanam Bista
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Sadia Raman
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Narayan Dahal
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Guillaume Stirnemann
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris 75005, France
| | - Ionel Popa
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
2
|
Mykuliak VV, Rahikainen R, Ball NJ, Bussi G, Goult BT, Hytönen VP. Molecular dynamics simulations reveal how vinculin refolds partially unfolded talin rod helices to stabilize them against mechanical force. PLoS Comput Biol 2024; 20:e1012341. [PMID: 39110765 PMCID: PMC11333002 DOI: 10.1371/journal.pcbi.1012341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024] Open
Abstract
Vinculin binds to specific sites of mechanically unfolded talin rod domains to reinforce the coupling of the cell's exterior to its force generation machinery. Force-dependent vinculin-talin complexation and dissociation was previously observed as contraction or extension of the unfolded talin domains respectively using magnetic tweezers. However, the structural mechanism underlying vinculin recognition of unfolded vinculin binding sites (VBSs) in talin remains unknown. Using molecular dynamics simulations, we demonstrate that a VBS dynamically refolds under force, and that vinculin can recognize and bind to partially unfolded VBS states. Vinculin binding enables refolding of the mechanically strained VBS and stabilizes its folded α-helical conformation, providing resistance against mechanical stress. Together, these results provide an understanding of a recognition mechanism of proteins unfolded by force and insight into the initial moments of how vinculin binds unfolded talin rod domains during the assembly of this mechanosensing meshwork.
Collapse
Affiliation(s)
- Vasyl V. Mykuliak
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Rolle Rahikainen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Neil J. Ball
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, Trieste, Italy
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| |
Collapse
|
3
|
Tapia-Rojo R, Mora M, Garcia-Manyes S. Single-molecule magnetic tweezers to probe the equilibrium dynamics of individual proteins at physiologically relevant forces and timescales. Nat Protoc 2024; 19:1779-1806. [PMID: 38467905 PMCID: PMC7616092 DOI: 10.1038/s41596-024-00965-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/18/2023] [Indexed: 03/13/2024]
Abstract
The reversible unfolding and refolding of proteins is a regulatory mechanism of tissue elasticity and signalling used by cells to sense and adapt to extracellular and intracellular mechanical forces. However, most of these proteins exhibit low mechanical stability, posing technical challenges to the characterization of their conformational dynamics under force. Here, we detail step-by-step instructions for conducting single-protein nanomechanical experiments using ultra-stable magnetic tweezers, which enable the measurement of the equilibrium conformational dynamics of single proteins under physiologically relevant low forces applied over biologically relevant timescales. We report the basic principles determining the functioning of the magnetic tweezer instrument, review the protein design strategy and the fluid chamber preparation and detail the procedure to acquire and analyze the unfolding and refolding trajectories of individual proteins under force. This technique adds to the toolbox of single-molecule nanomechanical techniques and will be of particular interest to those interested in proteins involved in mechanosensing and mechanotransduction. The procedure takes 4 d to complete, plus an additional 6 d for protein cloning and production, requiring basic expertise in molecular biology, surface chemistry and data analysis.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK.
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK.
| |
Collapse
|
4
|
Panagaki F, Tapia-Rojo R, Zhu T, Milmoe N, Paracuellos P, Board S, Mora M, Walker J, Rostkova E, Stannard A, Infante E, Garcia-Manyes S. Structural anisotropy results in mechano-directional transport of proteins across nuclear pores. NATURE PHYSICS 2024; 20:1180-1193. [PMID: 39036650 PMCID: PMC11254768 DOI: 10.1038/s41567-024-02438-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/08/2024] [Indexed: 07/23/2024]
Abstract
The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.
Collapse
Affiliation(s)
- Fani Panagaki
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Tong Zhu
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Natalie Milmoe
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Patricia Paracuellos
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Stephanie Board
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Jane Walker
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elena Rostkova
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Andrew Stannard
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Elvira Infante
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, London, UK
| |
Collapse
|
5
|
Tapia-Rojo R, Alonso-Caballero A, Badilla CL, Fernandez JM. Identical sequences, different behaviors: Protein diversity captured at the single-molecule level. Biophys J 2024; 123:814-823. [PMID: 38409780 PMCID: PMC10995423 DOI: 10.1016/j.bpj.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024] Open
Abstract
The classical "one sequence, one structure, one function" paradigm has shaped much of our intuition of how proteins work inside the cell. Partially due to the insight provided by bulk biochemical assays, individual biomolecules are often assumed to behave as identical entities, and their characterization relies on ensemble averages that flatten any conformational diversity into a unique phenotype. While the emergence of single-molecule techniques opened the gates to interrogating individual molecules, technical shortcomings typically limit the duration of these measurements, which precludes a complete characterization of an individual protein and, hence, capturing the heterogeneity among molecular populations. Here, we introduce an ultrastable magnetic tweezers design, which enables us to measure the folding dynamics of a single protein during several uninterrupted days with high temporal and spatial resolution. Thanks to this instrumental development, we fully characterize the nanomechanics of two proteins with a very distinct force response, the talin R3IVVI domain and protein L. Days-long recordings on the same protein individual accumulate thousands of folding transitions with submicrosecond resolution, allowing us to reconstruct their free energy landscapes and describe how they evolve with force. By mapping the nanomechanical identity of many different protein individuals, we directly capture their molecular diversity as a quantifiable dispersion on their force response and folding kinetics. By significantly expanding the measurable timescales, our instrumental development offers a tool for profiling individual molecules, opening the gates to directly characterizing biomolecular heterogeneity.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, New York.
| | | | - Carmen L Badilla
- Department of Biological Sciences, Columbia University, New York, New York
| | - Julio M Fernandez
- Department of Biological Sciences, Columbia University, New York, New York
| |
Collapse
|
6
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
7
|
Meadows J, Röder K. The Effect of Pulling and Twisting Forces on Chameleon Sequence Peptides. Chemphyschem 2023; 24:e202300351. [PMID: 37818741 DOI: 10.1002/cphc.202300351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chameleon sequences are amino acid sequences found in several distinct configurations in experiment. They challenge our understanding of the link between sequence and structure, and provide insight into structural competition in proteins. Here, we study the energy landscapes for three such sequences, and interrogate how pulling and twisting forces impact the available structural ensembles. Chameleon sequences do not necessarily exhibit multiple structural ensembles on a multifunnel energy landscape when we consider them in isolation. The application of even small forces leads to drastic changes in the energy landscapes. For pulling forces, we observe transitions from helical to extended structures in a very small span of forces. For twisting forces, the picture is much more complex, and highly dependent on the magnitude and handedness of the applied force as well as the reference angle for the twist. Depending on these parameters, more complex and more simplistic energy landscapes are observed alongside more and less diverse structural ensembles. The impact of even small forces is significant, confirming their likely role in folding events. In addition, small forces exerted by the remaining scaffold of a protein may be sufficient to lead to the adoption of a specific structural ensemble by a chameleon sequence.
Collapse
Affiliation(s)
- James Meadows
- Department of Chemistry, Durham University, Stockton Road, Durham, DH1 3LE, UK
- Previous affiliation: Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Konstantin Röder
- Randall Centre for Cell & Molecular Biophysics, King's College London, Guy's Campus, Great Maze Pond, London, SE1 1UL, UK
- Previous affiliation: Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
8
|
Sahakyan H, Nazaryan K, Mushegian A, Sorokina I. A Study of a Protein-Folding Machine: Transient Rotation of the Polypeptide Backbone Facilitates Rapid Folding of Protein Domains in All-Atom Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:10049. [PMID: 37373197 DOI: 10.3390/ijms241210049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Molecular dynamics simulations of protein folding typically consider the polypeptide chain at equilibrium and in isolation from the cellular components. We argue that in order to understand protein folding as it occurs in vivo, it should be modeled as an active, energy-dependent process, in which the cellular protein-folding machine directly manipulates the polypeptide. We conducted all-atom molecular dynamics simulations of four protein domains, whose folding from the extended state was augmented by the application of rotational force to the C-terminal amino acid, while the movement of the N-terminal amino acid was restrained. We have shown earlier that such a simple manipulation of peptide backbone facilitated the formation of native structures in diverse α-helical peptides. In this study, the simulation protocol was modified, to apply the backbone rotation and movement restriction only for a short time at the start of simulation. This transient application of a mechanical force to the peptide is sufficient to accelerate, by at least an order of magnitude, the folding of four protein domains from different structural classes to their native or native-like conformations. Our in silico experiments show that a compact stable fold may be attained more readily when the motions of the polypeptide are biased by external forces and constraints.
Collapse
Affiliation(s)
- Harutyun Sahakyan
- Institute of Molecular Biology, Academy of Sciences of Republic of Armenia, Yerevan 0014, Armenia
| | - Karen Nazaryan
- Institute of Molecular Biology, Academy of Sciences of Republic of Armenia, Yerevan 0014, Armenia
| | - Arcady Mushegian
- Division of Molecular and Cellular Biosciences, National Science Foundation, Alexandria, VA 22314, USA
| | | |
Collapse
|
9
|
Tapia-Rojo R, Mora M, Board S, Walker J, Boujemaa-Paterski R, Medalia O, Garcia-Manyes S. Enhanced statistical sampling reveals microscopic complexity in the talin mechanosensor folding energy landscape. NATURE PHYSICS 2023; 19:52-60. [PMID: 36660164 PMCID: PMC7614079 DOI: 10.1038/s41567-022-01808-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Statistical mechanics can describe the major conformational ensembles determining the equilibrium free-energy landscape of a folding protein. The challenge is to capture the full repertoire of low-occurrence conformations separated by high kinetic barriers that define complex landscapes. Computationally, enhanced sampling methods accelerate the exploration of molecular rare events. However, accessing the entire protein's conformational space in equilibrium experiments requires technological developments to enable extended observation times. We developed single-molecule magnetic tweezers to capture over a million individual transitions as a single talin protein unfolds and refolds under force in equilibrium. When observed at classically-probed timescales, talin folds in an apparently uncomplicated two-state manner. As the sampling time extends from minutes to days, the underlying energy landscape exhibits gradually larger signatures of complexity, involving a finite number of well-defined rare conformations. A fluctuation analysis allows us to propose plausible structures of each low-probability conformational state. The physiological relevance of each distinct conformation can be connected to the binding of the cytoskeletal protein vinculin, suggesting an extra layer of complexity in talin-mediated mechanotransduction. More generally, our experiments directly test the fundamental notion that equilibrium dynamics depend on the observation timescale.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| | - Marc Mora
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| | - Stephanie Board
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - Jane Walker
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
| | - Rajaa Boujemaa-Paterski
- Department of Biochemistry, Zurich University, Winterhurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, Zurich University, Winterhurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Sergi Garcia-Manyes
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Corresponding authors: , ,
| |
Collapse
|
10
|
Beedle AEM, Garcia-Manyes S. The role of single protein elasticity in mechanobiology. NATURE REVIEWS. MATERIALS 2023; 8:10-24. [PMID: 37469679 PMCID: PMC7614781 DOI: 10.1038/s41578-022-00488-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 07/21/2023]
Abstract
In addition to biochemical signals and genetic considerations, mechanical forces are rapidly emerging as a master regulator of human physiology. Yet the molecular mechanisms that regulate force-induced functionalities across a wide range of scales, encompassing the cell, tissue or organ levels, are comparatively not so well understood. With the advent, development and refining of single molecule nanomechanical techniques, enabling to exquisitely probe the conformational dynamics of individual proteins under the effect of a calibrated force, we have begun to acquire a comprehensive knowledge on the rich plethora of physicochemical principles that regulate the elasticity of single proteins. Here we review the major advances underpinning our current understanding of how the elasticity of single proteins regulates mechanosensing and mechanotransduction. We discuss the present limitations and future challenges of such a prolific and burgeoning field.
Collapse
Affiliation(s)
- Amy EM Beedle
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), 08028 Barcelona, Spain
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King’s College London, Strand, WC2R 2LS London, United Kingdom
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, London, UK
| |
Collapse
|
11
|
Goult BT, von Essen M, Hytönen VP. The mechanical cell - the role of force dependencies in synchronising protein interaction networks. J Cell Sci 2022; 135:283155. [PMID: 36398718 PMCID: PMC9845749 DOI: 10.1242/jcs.259769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The role of mechanical signals in the proper functioning of organisms is increasingly recognised, and every cell senses physical forces and responds to them. These forces are generated both from outside the cell or via the sophisticated force-generation machinery of the cell, the cytoskeleton. All regions of the cell are connected via mechanical linkages, enabling the whole cell to function as a mechanical system. In this Review, we define some of the key concepts of how this machinery functions, highlighting the critical requirement for mechanosensory proteins, and conceptualise the coupling of mechanical linkages to mechanochemical switches that enables forces to be converted into biological signals. These mechanical couplings provide a mechanism for how mechanical crosstalk might coordinate the entire cell, its neighbours, extending into whole collections of cells, in tissues and in organs, and ultimately in the coordination and operation of entire organisms. Consequently, many diseases manifest through defects in this machinery, which we map onto schematics of the mechanical linkages within a cell. This mapping approach paves the way for the identification of additional linkages between mechanosignalling pathways and so might identify treatments for diseases, where mechanical connections are affected by mutations or where individual force-regulated components are defective.
Collapse
Affiliation(s)
- Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, Kent, UK,Authors for correspondence (; )
| | - Magdaléna von Essen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33100 Tampere, Finland,Fimlab Laboratories, FI-33520 Tampere, Finland,Authors for correspondence (; )
| |
Collapse
|
12
|
Dahal N, Sharma S, Phan B, Eis A, Popa I. Mechanical regulation of talin through binding and history-dependent unfolding. SCIENCE ADVANCES 2022; 8:eabl7719. [PMID: 35857491 PMCID: PMC11581128 DOI: 10.1126/sciadv.abl7719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Talin is a force-sensing multidomain protein and a major player in cellular mechanotransduction. Here, we use single-molecule magnetic tweezers to investigate the mechanical response of the R8 rod domain of talin. We find that under various force cycles, the R8 domain of talin can display a memory-dependent behavior: At the same low force (<10 pN), the same protein molecule shows vastly different unfolding kinetics. This history-dependent behavior indicates the evolution of a unique force-induced native state. We measure through mechanical unfolding that talin R8 domain binds one of its ligands, DLC1, with much higher affinity than previously reported. This strong interaction can explain the antitumor response of DLC1 by regulating inside-out activation of integrins. Together, our results paint a complex picture for the mechanical unfolding of talin in the physiological range and a new mechanism of function of DLC1 to regulate inside-out activation of integrins.
Collapse
Affiliation(s)
| | | | - Binh Phan
- Department of Physics, University of Wisconsin-Milwaukee, 3135 N. Maryland Ave., Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
13
|
Chakraborty S, Chaudhuri D, Chaudhuri D, Singh V, Banerjee S, Chowdhury D, Haldar S. Connecting conformational stiffness of the protein with energy landscape by a single experiment. NANOSCALE 2022; 14:7659-7673. [PMID: 35546109 DOI: 10.1039/d1nr07582a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The structure-function dynamics of a protein as a flexible polymer is essential to describe its biological functions. Here, using single-molecule magnetic tweezers, we have studied the effect of ionic strength on the folding mechanics of protein L, and probed its folding-associated physical properties by re-measuring the same protein in a range of ammonium sulfate concentrations from 150 mM to 650 mM. We observed an electrolyte-dependent conformational dynamics and folding landscape of the protein in a single experiment. Salt increases the refolding kinetics, while decreasing the unfolding kinetics under force, which in turn modifies the barrier heights towards the folded state. Additionally, salt enhances the molecular compaction by decreasing the Kuhn length of the protein polymer from 1.18 nm to 0.58 nm, which we have explained by modifying the freely jointed chain model. Finally, we correlated polymer chain physics to the folding dynamics, and thus provided an analytical framework for understanding compaction-induced folding mechanics across a range of ionic strengths from a single experiment.
Collapse
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Deep Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Dyuti Chaudhuri
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Vihan Singh
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Debojyoti Chowdhury
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
14
|
Freitag M, Kamp D, Synakewicz M, Stigler J. Identification and correction of miscalibration artifacts based on force noise for optical tweezers experiments. J Chem Phys 2021; 155:175101. [PMID: 34742205 DOI: 10.1063/5.0063690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-molecule force spectroscopy using optical tweezers continues to provide detailed insights into the behavior of nanoscale systems. Obtaining precise measurements of their mechanical properties is highly dependent on accurate instrument calibration. Therefore, instrumental drift or inaccurate calibration may prevent reaching an accuracy at the theoretical limit and may lead to incorrect conclusions. Commonly encountered sources of error include inaccuracies in the detector sensitivity and trap stiffness and neglecting the non-harmonicity of an optical trap at higher forces. Here, we first quantify the impact of these artifacts on force-extension data and find that a small deviation of the calibration parameters can already have a significant downstream effect. We then develop a method to identify and remove said artifacts based on differences in the theoretical and measured noise of bead fluctuations. By applying our procedure to both simulated and experimental data, we can show how effects due to miscalibration and trap non-linearities can be successfully removed. Most importantly, this correction can be performed post-measurement and could be adapted for data acquired using any force spectroscopy technique.
Collapse
Affiliation(s)
- Marvin Freitag
- Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | - Dieter Kamp
- Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| | - Marie Synakewicz
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Johannes Stigler
- Gene Center, Ludwig-Maximilians-University, Munich 81377, Germany
| |
Collapse
|