1
|
Li B, Yu Z, Chen H, Chen X, Lin YS. Microelectromechanical System-Based Reconfigurable Terahertz Metamaterial for Polarization Filter, Switch, and Logic Modulator Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45771-45777. [PMID: 39161260 DOI: 10.1021/acsami.4c10972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The terahertz (THz) metamaterials integrated with microelectromechanical systems (MEMS) have led to the realization of dynamic control in amplitude, phase, polarization, and spin angular momentum of the THz wave. In this study, we demonstrate an MEMS-based reconfigurable THz metamaterial (RTM) composed of a split ring resonator (SRR) for real-time modulation of THz wave. By gradually increasing the polarization angle of the incident THz wave, the resonant frequency of SRR switches from 0.74 to 1.16 THz, and the maximum modulation depth is more than 70%. When the MEMS-based RTM is actuated by different DC bias voltages, the polarization-dependent transmission intensity and resonant frequency of the device can be actively tuned. MEMS-based RTM shows logical function characteristics that can be used for logic modulators by performing the driving voltages and polarization states as 2-bit input signals and quantizing the transmission response as "on" and "off" states. The logic gates of "NAND" are at 0.439 THz and "AND" is at 0.732 THz. These results offer potential applications for the proposed MEMS-based RTM in tunable and reconfigurable polarization filters, optical switches, programmable logic modulators, and so on.
Collapse
Affiliation(s)
- Binghui Li
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhenshan Yu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China
| | - Hao Chen
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Xuequan Chen
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou 510700, China
| | - Yu-Sheng Lin
- Sichuan University - Pittsburgh Institute, Chengdu 610207, China
| |
Collapse
|
2
|
Li D, Xu C, Xie J, Lee C. Research Progress in Surface-Enhanced Infrared Absorption Spectroscopy: From Performance Optimization, Sensing Applications, to System Integration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2377. [PMID: 37630962 PMCID: PMC10458771 DOI: 10.3390/nano13162377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Infrared absorption spectroscopy is an effective tool for the detection and identification of molecules. However, its application is limited by the low infrared absorption cross-section of the molecule, resulting in low sensitivity and a poor signal-to-noise ratio. Surface-Enhanced Infrared Absorption (SEIRA) spectroscopy is a breakthrough technique that exploits the field-enhancing properties of periodic nanostructures to amplify the vibrational signals of trace molecules. The fascinating properties of SEIRA technology have aroused great interest, driving diverse sensing applications. In this review, we first discuss three ways for SEIRA performance optimization, including material selection, sensitivity enhancement, and bandwidth improvement. Subsequently, we discuss the potential applications of SEIRA technology in fields such as biomedicine and environmental monitoring. In recent years, we have ushered in a new era characterized by the Internet of Things, sensor networks, and wearable devices. These new demands spurred the pursuit of miniaturized and consolidated infrared spectroscopy systems and chips. In addition, the rise of machine learning has injected new vitality into SEIRA, bringing smart device design and data analysis to the foreground. The final section of this review explores the anticipated trajectory that SEIRA technology might take, highlighting future trends and possibilities.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Junsheng Xie
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (D.L.); (C.X.); (J.X.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| |
Collapse
|
3
|
Li K, Lin YS. Tunable MEMS-based metamaterial nanograting coupler for C-band optical communication application. DISCOVER NANO 2023; 18:71. [PMID: 37382772 PMCID: PMC10409950 DOI: 10.1186/s11671-023-03843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/29/2023] [Indexed: 06/30/2023]
Abstract
A tunable metamaterial nanograting coupler (MNC) is presented that is composed of a one-dimensional surface nanograting coupler with a bottom reflector and the metamaterial atop. For a single nanograting coupler, by introducing a reflector and optimizing nanograting parameters, the spatial coupling efficiency exceeds 97% around near-infrared wavelength of 1.43 μm. The metamaterial can be tuned by using micro-electro-mechanical system (MEMS) technique. The relative height or lateral offset between metamaterial and coupling nanograting can be controlled, that the light-emitting efficiency can be separated into two different directions. In addition, the coupling efficiency is as high as 91% at the optical C-band communication window. Therefore, the proposed MEMS-based MNC not only has the possibility of coupling optical fibers with high-density integrated optoelectronic chips, but also has potential application prospects in light path switching, variable optical attenuation, and optical switch.
Collapse
Affiliation(s)
- Kunye Li
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yu-Sheng Lin
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Zhou J, Zhang Z, Dong B, Ren Z, Liu W, Lee C. Midinfrared Spectroscopic Analysis of Aqueous Mixtures Using Artificial-Intelligence-Enhanced Metamaterial Waveguide Sensing Platform. ACS NANO 2023; 17:711-724. [PMID: 36576121 DOI: 10.1021/acsnano.2c10163] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As miniaturized solutions, mid-infrared (MIR) waveguide sensors are promising for label-free compositional detection of mixtures leveraging plentiful absorption fingerprints. However, the quantitative analysis of liquid mixtures is still challenging using MIR waveguide sensors, as the absorption spectrum overlaps for multiple organic components accompanied by strong water absorption background. Here, we present an artificial-intelligence-enhanced metamaterial waveguide sensing platform (AIMWSP) for aqueous mixture analysis in the MIR. With the sensitivity-improved metamaterial waveguide and assistance of machine learning, the MIR absorption spectra of a ternary mixture in water can be successfully distinguished and decomposed to single-component spectra for predicting concentration. A classification accuracy of 98.88% for 64 mixing ratios and 92.86% for four concentrations below the limit of detection (972 ppm, based on 3σ) with steps of 300 ppm are realized. Besides, the mixture concentration prediction with root-mean-squared error varying from 0.107 vol % to 1.436 vol % is also achieved. Our work indicates the potential of further extending this sensing platform to MIR spectrometer-on-chip aiming for the data analytics of multiple organic components in aqueous environments.
Collapse
Affiliation(s)
- Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, Singapore117608
- NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore119077
| |
Collapse
|
5
|
Lai WH, Li B, Fu SH, Lin YS. Tunable MEMS-Based Terahertz Metamaterial for Pressure Sensing Application. MICROMACHINES 2023; 14:169. [PMID: 36677230 PMCID: PMC9861420 DOI: 10.3390/mi14010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In this study, a tunable terahertz (THz) metamaterial using the micro-electro-mechanical system (MEMS) technique is proposed to demonstrate pressure sensing application. This MEMS-based tunable metamaterial (MTM) structure is composed of gold (Au) split-ring resonators (SRRs) on patterned silicon (Si) substrate with through Si via (TSV). SRR is designed as a cantilever on the TSV structure. When the airflow passes through the TSV from bottom to up and then bends the SRR cantilever, the SRR cantilever will bend upward. The electromagnetic responses of MTM show the tunability and polarization-dependent characteristics by bending the SRR cantilever. The resonances can both be blue-shifted from 0.721 THz to 0.796 THz with a tuning range of 0.075 THz in transverse magnetic (TM) mode and from 0.805 THz to 0.945 THz with a tuning range of 0.140 THz in transverse electric (TE) mode by changing the angle of SRR cantilever from 10° to 45°. These results provide the potential applications and possibilities of MTM design for use in pressure and flow rate sensors.
Collapse
|
6
|
Wu Q, Ma C, Chen L, Sun Y, Wei X, Ma C, Zhao H, Yang X, Ma X, Zhang C, Duan G. A Tissue Paper/Hydrogel Composite Light-Responsive Biomimetic Actuator Fabricated by In Situ Polymerization. Polymers (Basel) 2022; 14:polym14245454. [PMID: 36559822 PMCID: PMC9785941 DOI: 10.3390/polym14245454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Stimulus-responsive hydrogels are an important member of smart materials owing to their reversibility, soft/wet properties, and biocompatibility, which have a wide range of applications in the field of intelligent actuations. However, poor mechanical property and complicated fabrication process limit their further applications. Herein, we report a light-responsive tissue paper/hydrogel composite actuator which was developed by combining inkjet-printed tissue paper with poly(N-isopropylacrylamide) (PNIPAM) hydrogel through simple in situ polymerization. Due to the high strength of natural tissue paper and the strong interaction within the interface of the bilayer structure, the mechanical property of the composite actuator was highly enhanced, reaching 1.2 MPa of tensile strength. Furthermore, the light-responsive actuation of remote manipulation can be achieved because of the stamping graphite with high efficiency of photothermal conversion. Most importantly, we also made a few remotely controlled biomimetic actuating devices based on the near-infrared (NIR) light response of this composite actuator. This work provides a simple strategy for the construction of biomimetic anisotropic actuators and will inspire the exploration of new intelligent materials.
Collapse
Affiliation(s)
- Qijun Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chao Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Lian Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xianshuo Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Hongliang Zhao
- Key Laboratory of Quality Safe Evaluation and Research of Degradable Material for State Market Regulation, Products Quality Supervision and Testing Institute of Hainan Province, Haikou 570203, China
| | - Xiuling Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaofan Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (C.M.); (C.Z.); (G.D.)
| |
Collapse
|
7
|
Wang Y, Huang W, Lin YS, Yang BR. A tunable color filter using a hybrid metasurface composed of ZnO nanopillars and Ag nanoholes. NANOSCALE ADVANCES 2022; 4:3624-3633. [PMID: 36134352 PMCID: PMC9400519 DOI: 10.1039/d2na00286h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 06/16/2023]
Abstract
We propose the design of symmetrical and asymmetrical tunable color filters (TCFs) by using hybrid metasurface nanostructures in the visible wavelength range. They are composed of circular zinc oxide (ZnO) nanopillars and silver (Ag) nanoholes on a silica substrate. These TCFs exhibit ultrahigh transmission intensity over 90%, different tuning ranges, and polarization-dependent/independent characteristics. By changing the distance between the ZnO nanopillars and silica substrate, the resonant wavelength of TCFs could be tuned remarkably. Moreover, we also demonstrate the stability of TCFs under different disturbances and angles of incident light. Furthermore, the resonant wavelengths are red-shifted by increasing the ambient refraction index. TCFs exhibit great tunability and ultrahigh transmission intensity up to 100%. This design opens up an avenue to widespread optoelectronic applications, such as ultrahigh resolution color displays, high-efficiency biosensors, pressure sensors, and selective color filters.
Collapse
Affiliation(s)
- Yicheng Wang
- School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 China
| | - Weikai Huang
- School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 China
| | - Yu-Sheng Lin
- School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 China
| | - Bo-Ru Yang
- School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
8
|
Liu W, Ma Y, Liu X, Zhou J, Xu C, Dong B, Lee C. Larger-Than-Unity External Optical Field Confinement Enabled by Metamaterial-Assisted Comb Waveguide for Ultrasensitive Long-Wave Infrared Gas Spectroscopy. NANO LETTERS 2022; 22:6112-6120. [PMID: 35759415 DOI: 10.1021/acs.nanolett.2c01198] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanophotonic waveguides that implement long optical pathlengths on chips are promising to enable chip-scale gas sensors. Nevertheless, current absorption-based waveguide sensors suffer from weak interactions with analytes, limiting their adoptions in most demanding applications such as exhaled breath analysis and trace-gas monitoring. Here, we propose an all-dielectric metamaterial-assisted comb (ADMAC) waveguide to greatly boost the sensing capability. By leveraging large longitudinal electric field discontinuity at periodic high-index-contrast interfaces in the subwavelength grating metamaterial and its unique features in refractive index engineering, the ADMAC waveguide features strong field delocalization into the air, pushing the external optical field confinement factor up to 113% with low propagation loss. Our sensor operates in the important but underdeveloped long-wave infrared spectral region, where absorption fingerprints of plentiful chemical bonds are located. Acetone absorption spectroscopy is demonstrated using our sensor around 7.33 μm, showing a detection limit of 2.5 ppm with a waveguide length of only 10 mm.
Collapse
Affiliation(s)
- Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Yiming Ma
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Jingkai Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Cheng Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
| |
Collapse
|
9
|
Yang Z, You W, Xiong X, Zhang R, Wu Z, Zhao B, Wang M, Liu X, Zhang X, Che R. Morphology-Evolved Succulent-like FeCo Microarchitectures with Magnetic Configuration Regulation for Enhanced Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32369-32378. [PMID: 35816054 DOI: 10.1021/acsami.2c06767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The regulation of magnetic configuration through diverse morphologies to achieve a rapid magnetic response has attracted considerable academic favor on account of the unique application prospects in various fields. Herein, porous FeCo alloys with morphology evolved from spheres to succulent-like microstructures are successfully constructed via a facile hydrothermal reaction-hydrogen reduction synthetic strategy. A multiple balance/competition mechanism is proposed, including the coexistence of the dissolution-precipitation balance of hydroxides and the dissociation-stability balance of coordination compounds, the Fe3+-Co2+ competition, and the precipitation-coordination reaction contest. As the morphology evolves to a succulent-like assembly, the multidomain features with a stable combination of vortex states and the violent motion of magnetic vectors contribute to the improvement of magnetic storage capacity and loss capability, which are evidenced by the off-axis electron holography and micromagnetic simulation. Consequently, the succulent-like FeCo exhibits enhanced permeability and microwave absorption performance. The effective absorption bandwidth reaches 5.68 GHz, and the maximum reflection loss is elevated to -53.81 dB. This work sheds considerable insight into the microstructure regulation with an application in microwave absorption and offers guidance in research for the topological magnetic configuration and dynamic response mechanism of magnetic alloys.
Collapse
Affiliation(s)
- Ziqi Yang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Wenbin You
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xuhui Xiong
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Ruixuan Zhang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Zhengchen Wu
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Biao Zhao
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Min Wang
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
| | - Xianhu Liu
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Ministry of Education, Zhengzhou 450002, P. R. China
| | - Xuefeng Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Department of Materials Science, Fudan University, Shanghai 200438, P. R. China
- Joint-Research Center for Computational Materials, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
10
|
Abstract
Terahertz (THz) electromagnetic spectrum ranging from 0.1THz to 10THz has become critical for sixth generation (6G) applications, such as high-speed communication, fingerprint chemical sensing, non-destructive biosensing, and bioimaging. However, the limited response of naturally existing materials THz waves has induced a gap in the electromagnetic spectrum, where a lack of THz functional devices using natural materials has occurred in this gap. Metamaterials, artificially composed structures that can engineer the electromagnetic properties to manipulate the waves, have enabled the development of many THz devices, known as "metadevices". Besides, the tunability of THz metadevices can be achieved by tunable structures using microelectromechanical system (MEMS) technologies, as well as tunable materials including phase change materials (PCMs), electro-optical materials (EOMs), and thermo-optical materials (TOMs). Leveraging various tuning mechanisms together with metamaterials, tremendous research works have demonstrated reconfigurable functional THz devices, playing an important role to fill the THz gap toward the 6G applications. This review introduces reconfigurable metadevices from fundamental principles of metamaterial resonant system to the design mechanisms of functional THz metamaterial devices and their related applications. Moreover, we provide perspectives on the future development of THz photonic devices for state-of-the-art applications.
Collapse
|
11
|
Xu X, Xu R, Lin YS. A voltage-controllable VO 2 based metamaterial perfect absorber for CO 2 gas sensing application. NANOSCALE 2022; 14:2722-2728. [PMID: 35112692 DOI: 10.1039/d1nr07746e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Vanadium dioxide (VO2) based metamaterial perfect absorbers (MPAs) have high potential application values in sensing gas molecules. However, a tuning mechanism via temperature manipulation lacks the compatibility with electronic devices. In this study, a voltage-controllable device is proposed by integrating an MPA and micro-electro-mechanical system (MEMS) based microheater for CO2 gas sensing application. The MPA is composed of a metal-dielectric-metal (MDM) structure and tailored to form an H-shaped metamaterial. The central bar of the H-shaped metamaterial is composed of a VO2 material, which exhibits perfect absorption in the CO2 gas absorption spectrum, i.e., at a wavelength of 2.70 μm. The intergated microheater is patterned by using fractal theory to provide high heating temperature and high uniformity of surface temperature. By precisely driving a DC bias voltage on the microheater, the MPA is heated and it can exhibit switchable optical properties with high efficiency. These results provide a strategy to open an avenue for sensors, absorbers, switches, and programmable devices in infrared wavelength range applications.
Collapse
Affiliation(s)
- Xiaocan Xu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Ruijia Xu
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yu-Sheng Lin
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Abstract
In recent years, tunable metamaterials have attracted intensive research interest due to their outstanding characteristics, which are dependent on the geometrical dimensions rather than the material composition of the nanostructure. Among tuning approaches, micro-electro-mechanical systems (MEMS) is a well-known technology that mechanically reconfigures the metamaterial unit cells. In this study, the development of MEMS-based metamaterial is reviewed and analyzed based on several types of actuators, including electrothermal, electrostatic, electromagnetic, and stretching actuation mechanisms. The moveable displacement and driving power are the key factors in evaluating the performance of actuators. Therefore, a comparison of actuating methods is offered as a basic guideline for selecting micro-actuators integrated with metamaterial. Additionally, by exploiting electro-mechanical inputs, MEMS-based metamaterials make possible the manipulation of incident electromagnetic waves, including amplitude, frequency, phase, and the polarization state, which enables many implementations of potential applications in optics. In particular, two typical applications of MEMS-based tunable metamaterials are reviewed, i.e., logic operation and sensing. These integrations of MEMS with metamaterial provide a novel route for the enhancement of conventional optical devices and exhibit great potentials in innovative applications, such as intelligent optical networks, invisibility cloaks, photonic signal processing, and so on.
Collapse
|
13
|
Silalahi HM, Shih YH, Lin SH, Chen YT, Wei WY, Chao PL, Huang CY. Electrically controllable terahertz metamaterials with large tunabilities and low operating electric fields using electrowetting-on-dielectric cells. OPTICS LETTERS 2021; 46:5962-5965. [PMID: 34851934 DOI: 10.1364/ol.444842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
A simple method that is compatible with all geometrical structures of terahertz (THz) metamaterials for increasing their frequency tunabilities and decreasing their operating electric fields is proposed. This method uses the displacement of glycerol droplets with various volumes to tune the resonance frequency of a THz metamaterial in an electrowetting-on-dielectric (EWOD) cell. The experimental results reveal that the THz metamaterial has a large frequency tunability of 28% at an operating electric field that is smaller than 0.2 V/µm as the glycerol droplets move in and out of the path of a THz beam. The frequency tunability is large because the near field of the metamaterial "experiences" a large difference between the refractive indices of glycerol and air. The EWOD cell with the THz metamaterial is a great achievement for developing electrically controllable band-stop filters with large frequency tunabilities and small operating electric fields.
Collapse
|
14
|
Design of Tunable Terahertz Metamaterial Sensor with Single- and Dual-Resonance Characteristic. NANOMATERIALS 2021; 11:nano11092212. [PMID: 34578528 PMCID: PMC8471471 DOI: 10.3390/nano11092212] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/22/2022]
Abstract
We present two types of refractive index sensors by using tunable terahertz (THz) metamaterial (TTM) based on two concentric split-ring resonators (SRRs) with different splits. By modifying the distance between SRRs and substrate, TTM shows tunable single- and dual-resonance characteristic. The maximum tuning range of resonance is 0.432 THz from 0.958 THz to 1.390 THz. To demonstrate a great flexibility of TTM in real application, TTM device is exposed on the surrounding ambient with different refractive index (n). The sensitivity of TTM can be enhanced by increasing SRR height, which is increased from 0.18 THz/RIU to 1.12 THz/RIU under the condition of n = 1.1. These results provide a strategy to improve the sensing performance of the metamaterial-based sensing device by properly arranging the geometric position of meta-atoms. The proposed TTM device can be used for tunable filters, frequency-selective detectors, and tunable high-efficiency sensors in the THz frequency range.
Collapse
|
15
|
Zhong J, Xu X, Lin YS. Tunable Terahertz Metamaterial with Electromagnetically Induced Transparency Characteristic for Sensing Application. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2175. [PMID: 34578491 PMCID: PMC8470984 DOI: 10.3390/nano11092175] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/25/2022]
Abstract
We present and demonstrate a MEMS-based tunable terahertz metamaterial (TTM) composed of inner triadius and outer electric split-ring resonator (eSRR) structures. With the aim to explore the electromagnetic responses of TTM device, different geometrical parameters are compared and discussed to optimize the suitable TTM design, including the length, radius, and height of TTM device. The height of triadius structure could be changed by using MEMS technique to perform active tunability. TTM shows the polarization-dependent and electromagnetic induced transparency (EIT) characteristics owing to the eSRR configuration. The electromagnetic responses of TTM exhibit tunable characteristics in resonance, polarization-dependent, and electromagnetically induced transparency (EIT). By properly tailoring the length and height of the inner triadius structure and the radius of the outer eSRR structure, the corresponding resonance tuning range reaches 0.32 THz. In addition to the above optical characteristics of TTM, we further investigate its potential application in a refraction index sensor. TTM is exposed on the surrounding ambient with different refraction indexes. The corresponding key sensing performances, such as figure of merit (FOM), sensitivity (S), and quality factor (Q-factor) values, are calculated and discussed, respectively. The calculated sensitivity of TTM is 0.379 THz/RIU, while the average values of Q-factor and FOM are 66.01 and 63.83, respectively. These characteristics indicate that the presented MEMS-based TTM device could be widely used in tunable filters, perfect absorbers, high-efficient environmental sensors, and optical switches applications for THz-wave optoelectronics.
Collapse
Affiliation(s)
| | | | - Yu-Sheng Lin
- School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China; (J.Z.); (X.X.)
| |
Collapse
|