1
|
Liu Z, Zhang H, Su H, Chen Y, Jing X, Wang D, Li S, Guan H, Meng L. Developing a multifunctional chitosan composite sponge for managing traumatic injuries. Int J Biol Macromol 2024; 280:135895. [PMID: 39343274 DOI: 10.1016/j.ijbiomac.2024.135895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Developing porous hemostatic sponges that are both biosafe and multifunctional remains a complex challenge. Conventional hemostatic techniques often fall short in managing bleeding effectively, leading to severe critical cases such as suboptimal hemostasis, increased infection risk, and complications arising from profuse bleeding. To address these deficits, our study introduces a novel multifunctional nanocomposite sponge that synergistically incorporates chitosan (CS), cellulose (Cel), graphene oxide (GO), and silver (Ag) nanoparticles. The resulting CS/Cel/GO/Ag developed demonstrates a swelling rate exceeding 3000 %, an absorption rate of over 2100 %, and the lowest stress surpassing 20 kPa at an initial 80 % strain. In vitro analyses reveal that the CS/Cel/GO/Ag sponge has excellent cytocompatibility, non-hemolytic nature, and competence in blood cell adherence and bacterial inhibition. In vivo evaluations further demonstrate that compared to conventional hemostatic methods, the sponge substantially enhances hemostatic efficacy, as evidenced by the marked reductions in clotting times and diminished blood loss compared to conventional hemostatic methods. Specifically, the test results of the CS/Cel/GO/Ag sponge across three different models are as follows: for the rat tail amputation model, the clotting time was 99 s, while blood loss was 222 mg; for the rat liver injury model, the clotting time was 129 s. while blood loss was 812 mg; for the rat femoral artery laceration model, the clotting time was 96 s, while blood loss was 758 mg. The compelling attributes of the CS/Cel/GO/Ag sponges position them as a promising solution for the acute management of bleeding. Their excellent performance indicates they have potential role to play in trauma care.
Collapse
Affiliation(s)
- Zhicheng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Huining Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yang Chen
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Xunan Jing
- The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Daquan Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shaohui Li
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China
| | - Hao Guan
- Department of Burns and Cutaneous Surgery, The First Affiliated Hospital, Air Force Medical University, Xi'an 710032, China.
| | - Lingjie Meng
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China; The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, PR China; Instrumental Analysis Center of Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
2
|
Gou H. Microstructural landscape of amorphous carbon. Natl Sci Rev 2024; 11:nwae125. [PMID: 38711545 PMCID: PMC11073543 DOI: 10.1093/nsr/nwae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Affiliation(s)
- Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), China
| |
Collapse
|
3
|
Zhu Y, Fang Z, Zhang Z, Wu H. Discontinuous phase diagram of amorphous carbons. Natl Sci Rev 2024; 11:nwae051. [PMID: 38504723 PMCID: PMC10950053 DOI: 10.1093/nsr/nwae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/16/2024] [Accepted: 02/04/2024] [Indexed: 03/21/2024] Open
Abstract
The short-range order and medium-range order of amorphous carbons demonstrated in experiments allow us to rethink whether there exist intrinsic properties hidden by atomic disordering. Here we presented six representative phases of amorphous carbons (0.1-3.4 g/cm3), namely, disordered graphene network (DGN), high-density amorphous carbon (HDAC), amorphous diaphite (a-DG), amorphous diamond (a-D), paracrystalline diamond (p-D), and nano-polycrystalline diamond (NPD), respectively, classified by their topological features and microstructural characterizations that are comparable with experiments. To achieve a comprehensive physical landscape for amorphous carbons, a phase diagram was plotted in the sp3/sp2 versus density plane, in which the counterintuitive discontinuity originates from the inherent difference in topological microstructures, further guiding us to discover a variety of phase transitions among different amorphous carbons. Intriguingly, the power law, log(sp3/sp2) ∝ ρn, hints at intrinsic topology and hidden order in amorphous carbons, providing an insightful perspective to reacquaint atomic disorder in non-crystalline carbons.
Collapse
Affiliation(s)
- YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - ZhouYu Fang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - ZhongTing Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
4
|
Zhang Z, Fang Z, Wu H, Zhu Y. Temperature-Dependent Paracrystalline Nucleation in Atomically Disordered Diamonds. NANO LETTERS 2024; 24:312-318. [PMID: 38134308 DOI: 10.1021/acs.nanolett.3c04037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Atomically disordered diamonds with medium-range order realized in recent experiments extend our knowledge of atomic disorder in materials. However, the current understanding of amorphous carbons cannot answer why paracrystalline diamond (p-D) can be formed inherently different from other tetrahedral amorphous carbons (ta-Cs), and the emergence of p-D seems to be easily hindered by inappropriate temperatures. Herein, we performed atomistic-based simulations to shed light on temperature-dependent paracrystalline nucleation in atomically disordered diamonds. Using metadynamics and two carefully designed collective variables, reversible phase transitions among different ta-Cs can be presented under different temperatures, evidenced by corresponding local minima on the free energy surface and reaction path along the free energy gradient. We found that p-D is preferred in a narrow range of temperatures, which is comparable to real experimental temperatures under the Arrhenius framework. The insights and related methods should open up a perspective for investigating other amorphous carbons.
Collapse
Affiliation(s)
- ZhongTing Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - ZhouYu Fang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
5
|
Zhu M, Zhou J, He Z, Zhang Y, Wu H, Chen J, Zhu Y, Hou Y, Wu H, Lu Y. Ductile amorphous boron nitride microribbons. MATERIALS HORIZONS 2023; 10:4914-4921. [PMID: 37603385 DOI: 10.1039/d3mh00845b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The broad applications of ceramic materials in functional devices are often limited by their intrinsic brittleness. Amorphous boron nitride (a-BN), as a promising ceramic has shown high thermal stability and excellent dielectric properties that can be applied to microfabricated aerogel and nano dielectric layers, while its mechanical properties at small scales are yet to be studied. Here we report synthesized a-BN microribbons can have a uniform elongation at a breaking strain of more than 50% upon tension, exhibiting outstanding ductility. Such a-BN microribbons with lengths ranging from tens to hundreds of micro-meters were prepared via the small molecule precursors sol-gel method. Through in situ uniaxial tensile measurements, we demonstrated that a-BN microribbons also display a surprising flaw-tolerance behaviour. Combining high-resolution atomic characterization with molecular dynamics simulations, we reveal that the large tensile plasticity of a-BN originates from the topological deformation induced multiple energy-dissipation mechanisms including unfolding and reorientation of local curly h-BN layers and their interlayer debonding, slippage as well as the intralayer tearing. Our findings provide new insights to develop ductile amorphous covalent-bonded materials for emerging applications.
Collapse
Affiliation(s)
- Mengya Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China.
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China.
| | - Zezhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yang Zhang
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hao Wu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China.
| | - Juzheng Chen
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China.
| | - Yinbo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China.
| | - Hengan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong SAR, China.
| |
Collapse
|
6
|
He XX, Lai WH, Liang Y, Zhao JH, Yang Z, Peng J, Liu XH, Wang YX, Qiao Y, Li L, Wu X, Chou SL. Achieving All-Plateau and High-Capacity Sodium Insertion in Topological Graphitized Carbon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302613. [PMID: 37390487 DOI: 10.1002/adma.202302613] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 07/02/2023]
Abstract
Hard carbon anodes with all-plateau capacities below 0.1 V are prerequisites to achieve high-energy-density sodium-ion storage, which holds promise for future sustainable energy technologies. However, challenges in removing defects and improving the insertion of sodium ions head off the development of hard carbon to achieve this goal. Herein, a highly cross-linked topological graphitized carbon using biomass corn cobs through a two-step rapid thermal-annealing strategy is reported. The topological graphitized carbon constructed with long-range graphene nanoribbons and cavities/tunnels provides a multidirectional insertion of sodium ions whilst eliminating defects to absorb sodium ions at the high voltage region. Evidence from advanced techniques including in situ XRD, in situ Raman, and in situ/ex situ transmission electron microscopy (TEM) indicates that the sodium ions' insertion and Na cluster formation occurred between curved topological graphite layers and in the topological cavity of adjacent graphite band entanglements. The reported topological insertion mechanism enables outstanding battery performance with a single full low-voltage plateau capacity of 290 mAh g-1 , which is almost 97% of the total capacity.
Collapse
Affiliation(s)
- Xiang-Xi He
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yaru Liang
- School of Materials Science and Engineering, Xiangtan University, 411105, Hunan, China
| | - Jia-Hua Zhao
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Zhuo Yang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Xiao-Hao Liu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2500, Australia
| | - Yun Qiao
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
| | - Li Li
- School of Environmental and Chemical Engineering, Shanghai University, 200444, Shanghai, China
- Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Xingqiao Wu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| | - Shu-Lei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
- Wenzhou Key Laboratory of Sodium-Ion Batteries, Wenzhou University Technology Innovation Institute for Carbon Neutralization, Wenzhou, Zhejiang, 325035, China
| |
Collapse
|
7
|
Qi P, Zhu H, Borodich F, Peng Q. A Review of the Mechanical Properties of Graphene Aerogel Materials: Experimental Measurements and Computer Simulations. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1800. [PMID: 36902915 PMCID: PMC10004370 DOI: 10.3390/ma16051800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/01/2023] [Accepted: 02/20/2023] [Indexed: 06/15/2023]
Abstract
Graphene aerogels (GAs) combine the unique properties of two-dimensional graphene with the structural characteristics of microscale porous materials, exhibiting ultralight, ultra-strength, and ultra-tough properties. GAs are a type of promising carbon-based metamaterials suitable for harsh environments in aerospace, military, and energy-related fields. However, there are still some challenges in the application of graphene aerogel (GA) materials, which requires an in-depth understanding of the mechanical properties of GAs and the associated enhancement mechanisms. This review first presents experimental research works related to the mechanical properties of GAs in recent years and identifies the key parameters that dominate the mechanical properties of GAs in different situations. Then, simulation works on the mechanical properties of GAs are reviewed, the deformation mechanisms are discussed, and the advantages and limitations are summarized. Finally, an outlook on the potential directions and main challenges is provided for future studies in the mechanical properties of GA materials.
Collapse
Affiliation(s)
- Penghao Qi
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Hanxing Zhu
- School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
| | - Feodor Borodich
- College of Aerospace Engineering, Chongqing University, Chongqing 400044, China
| | - Qing Peng
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Cai J, Chen H, Li Y, Akbarzadeh A. Lessons from Nature for Carbon‐Based Nanoarchitected Metamaterials. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Jun Cai
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Haoyu Chen
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Youjian Li
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
| | - Abdolhamid Akbarzadeh
- Department of Bioresource Engineering McGill University Montreal QC H9X 3V9 Canada
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|