1
|
Dore MD, Laurent Q, Lachance-Brais C, Das T, Luo X, Sleiman HF. DNA Hierarchical Superstructures from Micellar Units: Stiff Hydrogels and Anisotropic Nanofibers. Chemistry 2024; 30:e202401453. [PMID: 38951115 DOI: 10.1002/chem.202401453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/03/2024]
Abstract
Supramolecular materials have been assembled using a wide range of interactions, including the hydrophobic effect, DNA base-pairing, and hydrogen bonding. Specifically, DNA amphiphiles with a hydrophobic building block self-assemble into diverse morphologies depending on the length and composition of both blocks. Herein, we take advantage of the orthogonality of different supramolecular interactions - the hydrophobic effect, Watson-Crick-Franklin base pairing and RNA kissing loops - to create hierarchical self-assemblies with controlled morphologies on both the nanometer and the micrometer scales. Assembly through base-pairing leads to the formation of hybrid, multi-phasic hydrogels with high stiffness and self-healing properties. Assembly via hydrophobic core interactions gives anisotropic, discrete assemblies, where DNA fibers with one sequence are terminated with DNA spheres bearing different sequences. This work opens new avenues for the bottom-up construction of DNA-based materials, with promising applications in drug delivery, tissue engineering, and the creation of complex DNA structures from a minimum array of components.
Collapse
Affiliation(s)
- Michael D Dore
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Quentin Laurent
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | | | - Trishalina Das
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Xin Luo
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, H3A 0B8, Montréal, QC, Canada
| |
Collapse
|
2
|
Afting C, Walther T, Drozdowski OM, Schlagheck C, Schwarz US, Wittbrodt J, Göpfrich K. DNA microbeads for spatio-temporally controlled morphogen release within organoids. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01779-y. [PMID: 39251862 DOI: 10.1038/s41565-024-01779-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024]
Abstract
Organoids are transformative in vitro model systems that mimic features of the corresponding tissue in vivo. However, across tissue types and species, organoids still often fail to reach full maturity and function because biochemical cues cannot be provided from within the organoid to guide their development. Here we introduce nanoengineered DNA microbeads with tissue mimetic tunable stiffness for implementing spatio-temporally controlled morphogen gradients inside of organoids at any point in their development. Using medaka retinal organoids and early embryos, we show that DNA microbeads can be integrated into embryos and organoids by microinjection and erased in a non-invasive manner with light. Coupling a recombinant surrogate Wnt to the DNA microbeads, we demonstrate the spatio-temporally controlled morphogen release from the microinjection site, which leads to morphogen gradients resulting in the formation of retinal pigmented epithelium while maintaining neuroretinal cell types. Thus, we bioengineered retinal organoids to more closely mirror the cell type diversity of in vivo retinae. Owing to the facile, one-pot fabrication process, the DNA microbead technology can be adapted to other organoid systems for improved tissue mimicry.
Collapse
Affiliation(s)
- Cassian Afting
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Tobias Walther
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Oliver M Drozdowski
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
- HeiKa Graduate School on "Functional Materials", Heidelberg, Germany
| | - Ulrich S Schwarz
- BioQuant Center, Heidelberg University, Heidelberg, Germany
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies Heidelberg (COS), Heidelberg University, Heidelberg, Germany.
| | - Kerstin Göpfrich
- Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany.
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany.
| |
Collapse
|
3
|
Xuan J, Wang Z, Huang Y, Liu Y, Han Y, Li M, Xiao M. DNA response element-based smart drug delivery systems for precise drug release. Biomater Sci 2024; 12:3550-3564. [PMID: 38832670 DOI: 10.1039/d4bm00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Smart drug delivery systems (DDSs) that respond to, interact with, or are actuated by biological signals or pathological abnormalities (e.g., the tumor microenvironment) for controllable drug release are appealing therapeutic platforms for cancer treatment. Owing to their inherent self-assembled nature, nucleic acids have emerged as programmable materials for the development of multifunctional structures. In response to external environmental stimuli, DNA response elements can serve as switches to trigger conformational changes in DNA structures. Their stimulus-responsive properties make them promising candidates for constructing smart DDSs, and advancements in DNA response element-based DDSs in the field of biomedicine have been made. This review summarizes different types of DNA response elements, including DNA aptamers, DNAzymes, disulfide bond-modified DNA, pH-responsive DNA motifs, and photocleavable DNA building blocks, and highlights the advancements in DNA response element-based smart DDSs for precise drug release. Finally, future challenges and perspectives in this field are discussed.
Collapse
Affiliation(s)
- Jinnan Xuan
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| | - Zhen Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Yuting Huang
- Department of Radiotherapy, Chaohu Hospital of Anhui Medical University, 64 Chaohu North Road, Chaohu 238000, P. R. China
| | - Yisi Liu
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Yuqiang Han
- Hubei Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Hubei Normal University, 11 Cihu Road, Huangshi 435002, P. R. China
| | - Man Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China.
| |
Collapse
|
4
|
Abraham GR, Chaderjian AS, N Nguyen AB, Wilken S, Saleh OA. Nucleic acid liquids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:066601. [PMID: 38697088 DOI: 10.1088/1361-6633/ad4662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
The confluence of recent discoveries of the roles of biomolecular liquids in living systems and modern abilities to precisely synthesize and modify nucleic acids (NAs) has led to a surge of interest in liquid phases of NAs. These phases can be formed primarily from NAs, as driven by base-pairing interactions, or from the electrostatic combination (coacervation) of negatively charged NAs and positively charged molecules. Generally, the use of sequence-engineered NAs provides the means to tune microsopic particle properties, and thus imbue specific, customizable behaviors into the resulting liquids. In this way, researchers have used NA liquids to tackle fundamental problems in the physics of finite valence soft materials, and to create liquids with novel structured and/or multi-functional properties. Here, we review this growing field, discussing the theoretical background of NA liquid phase separation, quantitative understanding of liquid material properties, and the broad and growing array of functional demonstrations in these materials. We close with a few comments discussing remaining open questions and challenges in the field.
Collapse
Affiliation(s)
- Gabrielle R Abraham
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Aria S Chaderjian
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
| | - Anna B N Nguyen
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
| | - Sam Wilken
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| | - Omar A Saleh
- Physics Department,University of California, Santa Barbara, CA 93106, United States of America
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, United States of America
- Materials Department, University of California, Santa Barbara, CA 93106, United States of America
| |
Collapse
|
5
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
6
|
Yang GQ, Cai W, Zhang Z, Wang Y. Progress in Programmable DNA-Aided Self-Assembly of the Master Frame of a Drug Delivery System. ACS APPLIED BIO MATERIALS 2023; 6:5125-5144. [PMID: 38011318 DOI: 10.1021/acsabm.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every year cancer causes approximately 10 million deaths globally. Researchers have developed numerous targeted drug delivery systems (DDSs) with nanoparticles, polymers, and liposomes, but these synthetic materials have poor degradability and low biocompatibility. Because DNA nanostructures have good degradability and high biocompatibility, extensive studies have been performed to construct DDSs with DNA nanostructures as the molecular-layer master frame (MF) assembled via programmable DNA-aided self-assembly for targeted drug release. To learn the progressing trend of self-assembly techniques and keep pace with their recent rapid advancements, it is crucial to provide an overview of their past and recent progress. In this review article, we first present the techniques to assemble the MF of a DDS with solely DNA strands; to assemble MFs with one or more additional type of construction materials, e.g., polymers (including RNA and protein), inorganic nanoparticle, or metal ions, in addition to DNA strands; and to assemble the more complex DNA nanocomplexes. It is observed that both the techniques used and the MFs constructed have become increasingly complex and that the DDS constructed has an increasing number of advanced functions. From our focused review, we anticipate that DDSs with the MF of multiple building materials and DNA nanocomplexes will attract an increasing number of researchers' interests. On the basis of knowledge about materials and functional components (e.g., targeting aptamers/peptides/antibodies and stimuli for drug release) obtained from previously performed studies, researchers can combine more materials with DNA strands to assemble more powerful MFs and incorporate more components to endow DDSs with improved or additional properties/functions, thereby subsequently contributing to cancer prevention.
Collapse
Affiliation(s)
- Gary Q Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Weibin Cai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, P. R. China
| | - Zhiwen Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yujun Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Raguseo F, Wang Y, Li J, Petrić Howe M, Balendra R, Huyghebaert A, Vadukul DM, Tanase DA, Maher TE, Malouf L, Rubio-Sánchez R, Aprile FA, Elani Y, Patani R, Di Michele L, Di Antonio M. The ALS/FTD-related C9orf72 hexanucleotide repeat expansion forms RNA condensates through multimolecular G-quadruplexes. Nat Commun 2023; 14:8272. [PMID: 38092738 PMCID: PMC10719400 DOI: 10.1038/s41467-023-43872-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that exist on a clinico-pathogenetic spectrum, designated ALS/FTD. The most common genetic cause of ALS/FTD is expansion of the intronic hexanucleotide repeat (GGGGCC)n in C9orf72. Here, we investigate the formation of nucleic acid secondary structures in these expansion repeats, and their role in generating condensates characteristic of ALS/FTD. We observe significant aggregation of the hexanucleotide sequence (GGGGCC)n, which we associate to the formation of multimolecular G-quadruplexes (mG4s) by using a range of biophysical techniques. Exposing the condensates to G4-unfolding conditions leads to prompt disassembly, highlighting the key role of mG4-formation in the condensation process. We further validate the biological relevance of our findings by detecting an increased prevalence of G4-structures in C9orf72 mutant human motor neurons when compared to healthy motor neurons by staining with a G4-selective fluorescent probe, revealing signal in putative condensates. Our findings strongly suggest that RNA G-rich repetitive sequences can form protein-free condensates sustained by multimolecular G-quadruplexes, highlighting their potential relevance as therapeutic targets for C9orf72 mutation-related ALS/FTD.
Collapse
Affiliation(s)
- Federica Raguseo
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
- Imperial College London, Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Yiran Wang
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Jessica Li
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rubika Balendra
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anouk Huyghebaert
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- Imperial College London, Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Devkee M Vadukul
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Diana A Tanase
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Thomas E Maher
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- Imperial College London, Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Layla Malouf
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Roger Rubio-Sánchez
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Francesco A Aprile
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
- Imperial College London, Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK
| | - Yuval Elani
- Imperial College London, Department of Chemical Engineering, South Kensington, London, SW7 2AZ, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.
| | - Lorenzo Di Michele
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK.
- University of Cambridge, Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK.
| | - Marco Di Antonio
- Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK.
- Imperial College London, Institute of Chemical Biology, Molecular Sciences Research Hub, 82 Wood Lane, London, W12 0BZ, UK.
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
8
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
9
|
Rodriguez A, Gandavadi D, Mathivanan J, Song T, Madhanagopal BR, Talbot H, Sheng J, Wang X, Chandrasekaran AR. Self-Assembly of DNA Nanostructures in Different Cations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300040. [PMID: 37264756 PMCID: PMC10538431 DOI: 10.1002/smll.202300040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/10/2023] [Indexed: 06/03/2023]
Abstract
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions that restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions are used so far (typically Mg2+ and Na+ ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (~134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca2+ , Ba2+ , Na+ , K+ and Li+ and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na+ , K+ and Li+ ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg2+ , Ca2+ and Ba2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.
Collapse
Affiliation(s)
- Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Dhanush Gandavadi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Johnsi Mathivanan
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Tingjie Song
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
10
|
Rubio-Sánchez R, Mognetti BM, Cicuta P, Di Michele L. DNA-Origami Line-Actants Control Domain Organization and Fission in Synthetic Membranes. J Am Chem Soc 2023; 145:11265-11275. [PMID: 37163977 PMCID: PMC10214452 DOI: 10.1021/jacs.3c01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Indexed: 05/12/2023]
Abstract
Cells can precisely program the shape and lateral organization of their membranes using protein machinery. Aiming to replicate a comparable degree of control, here we introduce DNA-origami line-actants (DOLAs) as synthetic analogues of membrane-sculpting proteins. DOLAs are designed to selectively accumulate at the line-interface between coexisting domains in phase-separated lipid membranes, modulating the tendency of the domains to coalesce. With experiments and coarse-grained simulations, we demonstrate that DOLAs can reversibly stabilize two-dimensional analogues of Pickering emulsions on synthetic giant liposomes, enabling dynamic programming of membrane lateral organization. The control afforded over membrane structure by DOLAs extends to three-dimensional morphology, as exemplified by a proof-of-concept synthetic pathway leading to vesicle fission. With DOLAs we lay the foundations for mimicking, in synthetic systems, some of the critical membrane-hosted functionalities of biological cells, including signaling, trafficking, sensing, and division.
Collapse
Affiliation(s)
- Roger Rubio-Sánchez
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, United Kingdom
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bortolo Matteo Mognetti
- Interdisciplinary
Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles (ULB), Campus Plaine, CP 231, Boulevard
du Triomphe, B-1050 Brussels, Belgium
| | - Pietro Cicuta
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, United
Kingdom
- fabriCELL,
Molecular Sciences Research Hub, Imperial
College London, London W12 0BZ, United Kingdom
- Biological
and Soft Systems, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
11
|
Rodriguez A, Gandavadi D, Mathivanan J, Song T, Madhanagopal BR, Talbot H, Sheng J, Wang X, Chandrasekaran AR. Self-assembly of DNA nanostructures in different cations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539416. [PMID: 37205441 PMCID: PMC10187274 DOI: 10.1101/2023.05.04.539416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The programmable nature of DNA allows the construction of custom-designed static and dynamic nanostructures, and assembly conditions typically require high concentrations of magnesium ions which restricts their applications. In other solution conditions tested for DNA nanostructure assembly, only a limited set of divalent and monovalent ions have been used so far (typically Mg 2+ and Na + ). Here, we investigate the assembly of DNA nanostructures in a wide variety of ions using nanostructures of different sizes: a double-crossover motif (76 bp), a three-point-star motif (∼134 bp), a DNA tetrahedron (534 bp) and a DNA origami triangle (7221 bp). We show successful assembly of a majority of these structures in Ca 2+ , Ba 2+ , Na + , K + and Li + and provide quantified assembly yields using gel electrophoresis and visual confirmation of a DNA origami triangle using atomic force microscopy. We further show that structures assembled in monovalent ions (Na + , K + and Li + ) exhibit up to a 10-fold higher nuclease resistance compared to those assembled in divalent ions (Mg 2+ , Ca 2+ and Ba 2+ ). Our work presents new assembly conditions for a wide range of DNA nanostructures with enhanced biostability.
Collapse
Affiliation(s)
- Arlin Rodriguez
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Dhanush Gandavadi
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Johnsi Mathivanan
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Tingjie Song
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Hannah Talbot
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jia Sheng
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, USA
| | - Xing Wang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Holonyak Micro and Nanotechnology Lab (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
12
|
Liu X, Ma M, Tian S, Wang W, Li X. "Domino" cascade reactor based on DNA hydrogel for synergistic treatment of malignant tumor. Eur J Med Chem 2023; 256:115441. [PMID: 37182333 DOI: 10.1016/j.ejmech.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
The action pathways of starvation therapy and photodynamic therapy (PDT) do not exist in isolation and are usually related to tumor cell metabolism and immune regulation, which are of great significance in the treatment of malignant tumors. Here, a cancer-targeted "domino" cascade reactor is constructed for synergistic starvation therapy and amplifies photodynamic therapy by assembling hemin and glucose oxidase (GOx) into DNA hydrogel load with hypoxia-inducible factor 1α (HIF-1α) and photosensitizer chlorin e6 (Ce6). The cascade reactor has excellent biocompatibility and tumor targeting, which promotes PDT by reducing HIF-1α. At the same time, the G-quadruplex of AS1411 combined with hemin (AH) catalyzes the generation of oxygen from hydrogen peroxide to further improve the efficiency of PDT. The synergistic therapeutic effect of the cascade reactor is evaluated through in vivo and in vitro experiments, indicating that this cascade reactor has great potential advantages in the synergistic treatment of cancer.
Collapse
Affiliation(s)
- Xiaofan Liu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Minghui Ma
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Shuo Tian
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Weicai Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China
| | - Xuemei Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China.
| |
Collapse
|
13
|
Walczak M, Brady RA, Leathers A, Kotar J, Di Michele L. Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. J Chem Phys 2023; 158:084501. [PMID: 36859089 DOI: 10.1063/5.0132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional crystalline frameworks with nanoscale periodicity are valuable for many emerging technologies, from nanophotonics to nanomedicine. DNA nanotechnology has emerged as a prime route for constructing these materials, with most approaches taking advantage of the structural rigidity and bond directionality programmable for DNA building blocks. Recently, we have introduced an alternative strategy reliant on flexible, amphiphilic DNA junctions dubbed C-stars, whose ability to crystallize is modulated by design parameters, such as nanostructure topology, conformation, rigidity, and size. While C-stars have been shown to form ordered phases with controllable lattice parameter, response to stimuli, and embedded functionalities, much of their vast design space remains unexplored. Here, we investigate the effect of changing the chemical nature of the hydrophobic modifications and the structure of the DNA motifs in the vicinity of these moieties. While similar design variations should strongly alter key properties of the hydrophobic interactions between C-stars, such as strength and valency, only limited differences in self-assembly behavior are observed. This finding suggests that long-range order in C-star crystals is likely imposed by structural features of the building block itself rather than the specific characteristics of the hydrophobic tags. Nonetheless, we find that altering the hydrophobic regions influences the ability of C-star crystals to uptake hydrophobic molecular cargoes, which we exemplify by studying the encapsulation of antibiotic penicillin V. Besides advancing our understanding of the principles governing the self-assembly of amphiphilic DNA building blocks, our observations thus open up new routes to chemically program the materials without affecting their structure.
Collapse
Affiliation(s)
- Michal Walczak
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ryan A Brady
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom
| | - Adrian Leathers
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jurij Kotar
- Department of Physics-Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lorenzo Di Michele
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
14
|
Su M, Ruan L, Dong X, Tian S, Lang W, Wu M, Chen Y, Lv Q, Lei L. Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review. Int J Biol Macromol 2023; 227:472-492. [PMID: 36549612 DOI: 10.1016/j.ijbiomac.2022.12.148] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Because intelligent hydrogels have good biocompatibility, a rapid response, and good degradability as well as a stimulus response mode that is rich, hydrophilic, and similar to the softness and elasticity of living tissue, they have received widespread attention and are widely used in biomedical engineering. In this article, we conduct a systematic review of the use of smart hydrogels in biomedical engineering. First, we introduce the properties and applications of hydrogels and compare the similarities and differences between traditional hydrogels and smart hydrogels. Secondly, we summarize the intelligent hydrogel types, the mechanisms of action used by different hydrogels, and the materials for preparing different types of hydrogels, such as the materials for the preparation of temperature-responsive hydrogels, which mainly include gelatin, carrageenan, agarose, amylose, etc.; summarize the morphologies of different hydrogels, such as films, fibers and microspheres; and summarize the application of smart hydrogels in biomedical engineering, such as for the delivery of proteins, antibiotics, deoxyribonucleic acid, etc. Finally, we summarize the shortcomings of current research and present future prospects for smart hydrogels. The purpose of this paper is to provide researchers engaged in related fields with a systematic review of the application of intelligent hydrogels in biomedical engineering. We hope that they will get some inspiration from this work to provide new directions for the development of related fields.
Collapse
Affiliation(s)
- Mengrong Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Xiaoyu Dong
- Institute of Medicine Nursing, Hubei University of Medicine, Shiyan 442000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Wen Lang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Minhui Wu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.
| | - Lanjie Lei
- Jiangxi Provincial Key Lab of System Biomedicine, Jiujiang University, Jiujiang 332000, China.
| |
Collapse
|
15
|
Leathers A, Walczak M, Brady RA, Al Samad A, Kotar J, Booth MJ, Cicuta P, Di Michele L. Reaction–Diffusion Patterning of DNA-Based Artificial Cells. J Am Chem Soc 2022; 144:17468-17476. [PMID: 36103297 PMCID: PMC9523701 DOI: 10.1021/jacs.2c06140] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Biological cells display complex internal architectures
with distinct
micro environments that establish the chemical heterogeneity needed
to sustain cellular functions. The continued efforts to create advanced
cell mimics, namely, artificial cells, demands strategies for constructing
similarly heterogeneous structures with localized functionalities.
Here, we introduce a platform for constructing membraneless artificial
cells from the self-assembly of synthetic DNA nanostructures in which
internal domains can be established thanks to prescribed reaction–diffusion
waves. The method, rationalized through numerical modeling, enables
the formation of up to five distinct concentric environments in which
functional moieties can be localized. As a proof-of-concept, we apply
this platform to build DNA-based artificial cells in which a prototypical
nucleus synthesizes fluorescent RNA aptamers that then accumulate
in a surrounding storage shell, thus demonstrating the spatial segregation
of functionalities reminiscent of that observed in biological cells.
Collapse
Affiliation(s)
- Adrian Leathers
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Michal Walczak
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Ryan A. Brady
- Department of Chemistry, Faculty of Natural and Mathematical Sciences, King’s College London, London SE1 1DB, U.K
| | - Assala Al Samad
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Jurij Kotar
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
- Department of Chemistry, University College London, London WC1H 0AJ, U.K
| | - Pietro Cicuta
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
| | - Lorenzo Di Michele
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K
- fabriCELL, Imperial College London, Molecular Sciences Research Hub, London W12 0BZ, U.K
| |
Collapse
|
16
|
Abstract
Recent years have seen substantial efforts aimed at constructing artificial cells from various molecular components with the aim of mimicking the processes, behaviours and architectures found in biological systems. Artificial cell development ultimately aims to produce model constructs that progress our understanding of biology, as well as forming the basis for functional bio-inspired devices that can be used in fields such as therapeutic delivery, biosensing, cell therapy and bioremediation. Typically, artificial cells rely on a bilayer membrane chassis and have fluid aqueous interiors to mimic biological cells. However, a desire to more accurately replicate the gel-like properties of intracellular and extracellular biological environments has driven increasing efforts to build cell mimics based on hydrogels. This has enabled researchers to exploit some of the unique functional properties of hydrogels that have seen them deployed in fields such as tissue engineering, biomaterials and drug delivery. In this Review, we explore how hydrogels can be leveraged in the context of artificial cell development. We also discuss how hydrogels can potentially be incorporated within the next generation of artificial cells to engineer improved biological mimics and functional microsystems.
Collapse
|
17
|
Rothenbühler S, Gonzalez A, Iacovache I, Langenegger SM, Zuber B, Häner R. Tetraphenylethylene-DNA conjugates: influence of sticky ends and DNA sequence length on the supramolecular assembly of AIE-active vesicles. Org Biomol Chem 2022; 20:3703-3707. [PMID: 35262542 PMCID: PMC9092531 DOI: 10.1039/d2ob00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The supramolecular assembly of DNA conjugates, functionalized with tetraphenylethylene (TPE) sticky ends, into vesicular structures is described. The aggregation-induced emission (AIE) active TPE units allow monitoring the assembly process by fluorescence spectroscopy. The number of TPE modifications in the overhangs of the conjugates influences the supramolecular assembly behavior. A minimum of two TPE residues on each end are required to ensure a well-defined assembly process. The design of the presented DNA-based nanostructures offers tailored functionalization with applications in DNA nanotechnology. The supramolecular assembly of tetraphenylethylene (TPE)–DNA conjugates is presented. The length of the TPE sticky ends exerts a pronounced effect on the formation of aggregation-induced emission (AIE)-active vesicles.![]()
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Adrian Gonzalez
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Ioan Iacovache
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M Langenegger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
18
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
19
|
Chen Y, Shi S. Advances and prospects of dynamic DNA nanostructures in biomedical applications. RSC Adv 2022; 12:30310-30320. [PMID: 36337940 PMCID: PMC9590593 DOI: 10.1039/d2ra05006d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has broken many limitations of static DNA nanostructures, making precise, remote, and reversible control possible. DDNs are intelligent nanostructures with certain dynamic behaviors that are capable of responding to specific stimuli. The responsible stimuli of DDNs include exogenous metal ions, light, pH, etc., as well as endogenous small molecules such as GSH, ATP, etc. Due to the excellent stimulus responsiveness and other superior physiological characteristics of DDNs, they are now widely used in biomedical fields. For example, they can be applied in the fields of biosensing and bioimaging, which are able to detect biomarkers with greater spatial and temporal precision to help disease diagnosis and live cell physiological function studies. Moreover, they are excellent intelligent carriers for drug delivery in treating cancer and other diseases, achieving controlled release of drugs. And they can promote tissue regeneration and regulate cellular behaviors. Although some challenges need further study, such as the practical value in clinical applications, DDNs have shown great potential applications in the biomedical field. With the rapid development of DNA nanotechnology, the emergence of stimulus-responsive dynamic DNA nanostructures (DDNs) has great potential applications in the biomedical field.![]()
Collapse
Affiliation(s)
- Yiling Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan UniversityChengdu 610041P. R. China
| |
Collapse
|