1
|
Liu R, Tang B, Fan F. Enhanced Spin Polarization from Biaxially Strained Colloidal Quantum Dots. J Phys Chem Lett 2024; 15:869-873. [PMID: 38237051 DOI: 10.1021/acs.jpclett.3c03495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Electron and hole spin polarization is crucial for quantum dots to be used in spin lasers and quantum information processing. However, the degree of spin polarization in II-VI and III-V semiconductor quantum dots is low because of the degenerated valence band. Here, we increase the light and heavy hole degeneracy by introducing biaxial strain into CdSe-based quantum dots, enabling the degree of spin polarization to be increased from 20% to 50% under photoexcitation. The optical gain threshold measurement further reveals that the increase in polarization helps to reduce the gain threshold.
Collapse
Affiliation(s)
- Ruixiang Liu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Beibei Tang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Liu Y, Li Y, Gao K, Zhu J, Wu K. Sub-Single-Exciton Optical Gain in Lead Halide Perovskite Quantum Dots Revealed by Exciton Polarization Spectroscopy. J Am Chem Soc 2023; 145:25864-25873. [PMID: 37971813 DOI: 10.1021/jacs.3c10281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Optical gain of colloidal quantum dots (QDs) is often attained in the multiexciton regime, which strongly complicates their lasing applications as the gain lifetime is limited by nonradiative Auger recombination occurring typically on the picosecond time scale. In principle, low-threshold gain can be achieved if the gain-active emission has a sizable red shift compared to the absorption. But, this mechanism has been rarely observed in typical QDs featuring small Stokes shift due to their weak electron-phonon coupling. Here, we report the observation of sub-single-exciton gain in CsPbI3 and CsPbBr3 perovskite QDs, which is unequivocally established through pinpointing the stimulated emission and biexciton absorption signatures using polarization-controlled femtosecond transient absorption spectroscopy. The soft lattice of perovskite QDs and hence strong electron-phonon coupling lead to two stimulated emission features from free and self-trapped excitons, respectively. In monodisperse QDs of varying sizes, the Stokes shift of the self-trapped exciton emission is sufficiently large to overcome the biexciton absorption loss and the inhomogeneous line width, enabling optical gain with average exciton occupancy down to <10%.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Yuxuan Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaimin Gao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Kaifeng Wu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Abstract
Lasers and optical amplifiers based on solution-processable materials have been long-desired devices for their compatibility with virtually any substrate, scalability, and ease of integration with on-chip photonics and electronics. These devices have been pursued across a wide range of materials including polymers, small molecules, perovskites, and chemically prepared colloidal semiconductor nanocrystals, also commonly referred to as colloidal quantum dots. The latter materials are especially attractive for implementing optical-gain media as in addition to being compatible with inexpensive and easily scalable chemical techniques, they offer multiple advantages derived from a zero-dimensional character of their electronic states. These include a size-tunable emission wavelength, low optical gain thresholds, and weak sensitivity of lasing characteristics to variations in temperature. Here we review the status of colloidal nanocrystal lasing devices, most recent advances in this field, outstanding challenges, and the ongoing progress toward technological viable devices including colloidal quantum dot laser diodes.
Collapse
Affiliation(s)
- Namyoung Ahn
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Clément Livache
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Valerio Pinchetti
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor I Klimov
- Nanotechnology and Advanced Spectroscopy Team, C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
4
|
Chen W, Wang L, Liu R, Shen H, Du J, Fan F. Self-Assembled and Wavelength-Tunable Quantum Dot Whispering-Gallery-Mode Lasers for Backlight Displays. NANO LETTERS 2023; 23:437-443. [PMID: 36630612 DOI: 10.1021/acs.nanolett.2c03409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Thanks to the narrow line width and high brightness, colloidal quantum dot (CQD) lasers show promising applications in next-generation displays. However, CQD laser-based displays have yet to be demonstrated because of two challenges in integrating red, green, and blue (RGB) lasers: absorption from red CQDs deteriorates the optical gain of blue and green CQDs, and imbalanced white spectra lack blue lasing due to the high lasing threshold of blue CQDs. Herein, we introduce a facile surfactant-free self-assembly method to assemble RGB CQDs into high-quality whispering-gallery-mode (WGM) RGB lasers with close lasing thresholds among them. Moreover, these RGB lasers can lase nearly independently even when they are closely integrated, and they can construct an ultrawide color space whose color gamut is 105% of that of the BT.2020 standard. These combined strategies allow us to demonstrate the first full-color liquid crystal displays using CQD lasers as the backlight source.
Collapse
Affiliation(s)
- Weiguo Chen
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lei Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Ruixiang Liu
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Huaibin Shen
- Key Laboratory for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High-Efficiency Display and Lighting Technology, Henan University, Kaifeng 475004, China
| | - Jiangfeng Du
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Fengjia Fan
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, Chinese Academy of Sciences Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Mu Y, He Z, Wang K, Pi X, Zhou S. Recent progress and future prospects on halide perovskite nanocrystals for optoelectronics and beyond. iScience 2022; 25:105371. [PMID: 36345343 PMCID: PMC9636552 DOI: 10.1016/j.isci.2022.105371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As an emerging new class of semiconductor nanomaterials, halide perovskite (ABX3, X = Cl, Br, or I) nanocrystals (NCs) are attracting increasing attention owing to their great potential in optoelectronics and beyond. This field has experienced rapid breakthroughs over the past few years. In this comprehensive review, halide perovskite NCs that are either freestanding or embedded in a matrix (e.g., perovskites, metal-organic frameworks, glass) will be discussed. We will summarize recent progress on the synthesis and post-synthesis methods of halide perovskite NCs. Characterizations of halide perovskite NCs by using a variety of techniques will be present. Tremendous efforts to tailor the optical and electronic properties of halide perovskite NCs in terms of manipulating their size, surface, and component will be highlighted. Physical insights gained on the unique optical and charge-carrier transport properties will be provided. Importantly, the growing potential of halide perovskite NCs for advancing optoelectronic applications and beyond including light-emitting devices (LEDs), solar cells, scintillators and X-ray imaging, lasers, thin-film transistors (TFTs), artificial synapses, and light communication will be extensively discussed, along with prospecting their development in the future.
Collapse
Affiliation(s)
- Yuncheng Mu
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ziyu He
- Department of Material Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, UK
| | - Kun Wang
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Shu Zhou
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
6
|
Zheng D, Volovitch P, Pauporté T. What Can Glow Discharge Optical Emission Spectroscopy (GD-OES) Technique Tell Us about Perovskite Solar Cells? SMALL METHODS 2022; 6:e2200633. [PMID: 36228109 DOI: 10.1002/smtd.202200633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
The emerging broad range of applications of the glow discharge optical emission spectroscopy (GD-OES) technique in the field of perovskite solar cells (PSCs) research is reviewed. It can provide a large palette of information by easily and quickly tracking the depth distribution of light to heavy elements. After a discussion of the advantages and the limitations of the technique and a comparison with other analytical techniques, how GD-OES is employed to give structural information on perovskite solar cells is shown. GD-OES has allowed the full perovskite film formation process investigation, from the initial precursor layers containing soaking and complexed solvent to the final crystallized 3D perovskite layers. The A-site elemental cations distribution is followed-up during the film formation. In addition, this technique gives a deep insight into the action mechanism of additives and their effects on the film formation. It provides fruitful information on optimized light absorbing layers and on the selective contact layers which ensure the charge transport in PSCs. It allows to directly visualize halide ions migration and their blocking by ad-hoc chemical engineering and to study the films and PSCs ageing. GD-OES opens new perspectives to explain the final performances of the devices.
Collapse
Affiliation(s)
- Daming Zheng
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 75005, Paris, France
- Nanophotonics Research Center, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology & Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Polina Volovitch
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 75005, Paris, France
| | - Thierry Pauporté
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 75005, Paris, France
| |
Collapse
|