1
|
Yu Q, Duan Y, Liu N, Zhu Z, Sun Y, Yang H, Shi Y, Li X, Zhu WH, Wang L, Wang Q. Fluorescence and photoacoustic (FL/PA) dual-modal probe: Responsive to reactive oxygen species (ROS) for atherosclerotic plaque imaging. Biomaterials 2025; 313:122765. [PMID: 39244824 DOI: 10.1016/j.biomaterials.2024.122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Accurate and early detection of atherosclerosis (AS) is imperative for their effective treatment. However, fluorescence probes for efficient diagnosis of AS often encounter insufficient deep tissue penetration, which hinders the reliable assessment of plaque vulnerability. In this work, a reactive oxygen species (ROS) activated near-infrared (NIR) fluorescence and photoacoustic (FL/PA) dual model probe TPA-QO-B is developed by conjugating two chromophores (TPA-QI and O-OH) and ROS-specific group phenylboronic acid ester. The incorporation of ROS-specific group not only induces blue shift in absorbance, but also inhibits the ICT process of TPA-QO-OH, resulting an ignorable initial FL/PA signal. ROS triggers the convertion of TPA-QO-B to TPA-QO-OH, resulting in the concurrent amplification of FL/PA signal. The exceptional selectivity of TPA-QO-B towards ROS makes it effectively distinguish AS mice from the healthy. The NIR emission can achieve a tissue penetration imaging depth of 0.3 cm. Moreover, its PA775 signal possesses the capability to penetrate tissues up to a thickness of 0.8 cm, ensuring deep in vivo imaging of AS model mice in early stage. The ROS-triggered FL/PA dual signal amplification strategy improves the accuracy and addresses the deep tissue penetration problem simultaneously, providing a promising tool for in vivo tracking biomarkers in life science and preclinical applications.
Collapse
Affiliation(s)
- Qianqian Yu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China
| | - Yi Duan
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, China
| | - Nian Liu
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China.
| | - Ying Sun
- Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, China
| | - Haojian Yang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China
| | - Yiqi Shi
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China
| | - Xiangyu Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China
| | - Lixin Wang
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, China.
| |
Collapse
|
2
|
Moreno-Alcántar G, Drexler M, Casini A. Assembling a new generation of radiopharmaceuticals with supramolecular theranostics. Nat Rev Chem 2024; 8:893-914. [PMID: 39468298 DOI: 10.1038/s41570-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 10/30/2024]
Abstract
Supramolecular chemistry has been used to tackle some of the major challenges in modern science, including cancer therapy and diagnosis. Supramolecular platforms provide synthetic flexibility, rapid generation through self-assembly, facile labelling, unique topologies, tunable reversibility of the enabling noncovalent interactions, and opportunities for host-guest chemistry and mechanical bonding. In this Review, we summarize recent advances in the design and radiopharmaceutical application of discrete self-assembled coordination complexes and mechanically interlocked molecules - namely, metallacages and rotaxanes, respectively - as well as in situ-forming supramolecular aggregates, specifically pinpointing their potential as next-generation radiotheranostic agents. The outlook of such supramolecular constructs for potential applications in the clinic is discussed.
Collapse
Affiliation(s)
- Guillermo Moreno-Alcántar
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Marike Drexler
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany
| | - Angela Casini
- Department of Chemistry, School of Natural Sciences, Technical University of Munich, Garching bei München, Germany.
- Munich Data Science Institute (MDSI), Technical University of Munich, Garching bei München, Germany.
| |
Collapse
|
3
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
4
|
Price S, Que EL. Probing metalloenzyme dynamics in living systems: Contemporary advances in fluorescence imaging tools and applications. Curr Opin Chem Biol 2024; 81:102475. [PMID: 38852500 DOI: 10.1016/j.cbpa.2024.102475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
Metalloenzymes are essential to cellular function, and their overexpression or enhanced activation are potential therapeutic targets. However, the study of metalloenzymes in vitro presents various challenges, leading many to develop tools to study them in their native cellular environment. Small-molecule fluorescence probes are commonly used to monitor metalloenzyme function, activity, and distribution in situ. These include probes that are activity-based (fluorescence is mediated by enzyme activity) or binding-based (fluorescence is mediated by interactions with the enzyme upon binding its metal cofactor). We discuss recent innovations that overcome key design challenges, such as the rapid diffusion of activity-based probes, the difficulty of probing redox-active enzymes, the selectivity of binding-based probes, and the poor penetration depth of fluorescence, and describe novel applications of these tools.
Collapse
Affiliation(s)
- Sky Price
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Emily L Que
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Cai X, Xu W, Ren C, Zhang L, Zhang C, Liu J, Yang C. Recent progress in quantitative analysis of self-assembled peptides. EXPLORATION (BEIJING, CHINA) 2024; 4:20230064. [PMID: 39175887 PMCID: PMC11335468 DOI: 10.1002/exp.20230064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 08/24/2024]
Abstract
Self-assembled peptides have been among the important biomaterials due to its excellent biocompatibility and diverse functions. Over the past decades, substantial progress and breakthroughs have been made in designing self-assembled peptides with multifaceted biomedical applications. The techniques for quantitative analysis, including imaging-based quantitative techniques, chromatographic technique and computational approach (molecular dynamics simulation), are becoming powerful tools for exploring the structure, properties, biomedical applications, and even supramolecular assembly processes of self-assembled peptides. However, a comprehensive review concerning these quantitative techniques remains scarce. In this review, recent progress in techniques for quantitative investigation of biostability, cellular uptake, biodistribution, self-assembly behaviors of self-assembled peptide etc., are summarized. Specific applications and roles of these techniques are highlighted in detail. Finally, challenges and outlook in this field are concluded. It is believed that this review will provide technical guidance for researchers in the field of peptide-based materials and pharmaceuticals, and facilitate related research for newcomers in this field.
Collapse
Affiliation(s)
- Xiaoyao Cai
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Wei Xu
- Department of PathologyCharacteristic Medical Center of Chinese People's Armed Police ForcesTianjinP. R. China
| | - Chunhua Ren
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Liping Zhang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Congrou Zhang
- Metabolomics and Analytics Center, Leiden Academic Centre of Drug ResearchLeiden UniversityLeidenThe Netherlands
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| | - Cuihong Yang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinP. R. China
| |
Collapse
|
6
|
Zhao C, Sun W, Huang X, Liu Y, Wang HY. Alkaline Phosphatase Activated Near-Infrared Frequency Upconversion Photosensitizers for Tumor Photodynamic Therapy. J Med Chem 2024. [PMID: 39057921 DOI: 10.1021/acs.jmedchem.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Photodynamic therapy (PDT) is a promising anticancer method due to its noninvasive features, high efficiency, and superior accuracy. The activated near-infrared upconversion photosensitizer has a high tissue penetration depth and could be explicitly released with minimal side effects. Therefore, we designed and synthesized a series of Br-substituted compounds (NFh-Br) based on the near-infrared upconversion hemicyanine dye. The heavy atomic effect improves the generation of 1O2 and upconversion luminous efficiency. Especially, NFh-Br11 exhibited an excellent 1O2 generation rate under 808 nm excitation and effectively killed tumor cells in vitro, and the alkaline phosphatase (ALP)-activatable photosensitizer (NFh-ALP) was obtained by modifying the NFh-Br11. NFh-ALP could be activated by ALP and release NFh-Br11, which induces apoptosis of tumor cells and has outstanding anticancer effects in vitro and in vivo. This work could provide a strategy for designing activatable upconversion photosensitizers.
Collapse
Affiliation(s)
- Chao Zhao
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wanlu Sun
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyan Huang
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hai-Yan Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
7
|
Wen X, Zhang C, Tian Y, Miao Y, Liu S, Xu JJ, Ye D, He J. Smart Molecular Imaging and Theranostic Probes by Enzymatic Molecular In Situ Self-Assembly. JACS AU 2024; 4:2426-2450. [PMID: 39055152 PMCID: PMC11267545 DOI: 10.1021/jacsau.4c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Enzymatic molecular in situ self-assembly (E-MISA) that enables the synthesis of high-order nanostructures from synthetic small molecules inside a living subject has emerged as a promising strategy for molecular imaging and theranostics. This strategy leverages the catalytic activity of an enzyme to trigger probe substrate conversion and assembly in situ, permitting prolonging retention and congregating many molecules of probes in the targeted cells or tissues. Enhanced imaging signals or therapeutic functions can be achieved by responding to a specific enzyme. This E-MISA strategy has been successfully applied for the development of enzyme-activated smart molecular imaging or theranostic probes for in vivo applications. In this Perspective, we discuss the general principle of controlling in situ self-assembly of synthetic small molecules by an enzyme and then discuss the applications for the construction of "smart" imaging and theranostic probes against cancers and bacteria. Finally, we discuss the current challenges and perspectives in utilizing the E-MISA strategy for disease diagnoses and therapies, particularly for clinical translation.
Collapse
Affiliation(s)
- Xidan Wen
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Chao Zhang
- Department
of Neurosurgery, Zhujiang Hospital, Southern
Medical University, Guangzhou 510282, China
| | - Yuyang Tian
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Yinxing Miao
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Shaohai Liu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Deju Ye
- State
Key Laboratory of Analytical Chemistry for Life Science, Chemistry
and Biomedicine Innovation Center (ChemBIC), School of Chemistry and
Chemical Engineering, Nanjing University, 163 Xianlin Road, Nanjing 210023, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital
of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
8
|
Gao X, Wang Q, Yang X, Fang J, Li H, Xi H, Lin J, Qiu L. Legumain-Triggered Macrocyclization of Radiofluorinated Tracer for Enhanced PET Imaging. Bioconjug Chem 2024; 35:665-673. [PMID: 38598424 DOI: 10.1021/acs.bioconjchem.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Enhancing the accumulation and retention of small-molecule probes in tumors is an important way to achieve accurate cancer diagnosis and therapy. Enzyme-stimulated macrocyclization of small molecules possesses great potential for enhanced positron emission tomography (PET) imaging of tumors. Herein, we reported an 18F-labeled radiotracer [18F]AlF-RSM for legumain detection in vivo. The tracer was prepared by a one-step aluminum-fluoride-restrained complexing agent ([18F]AlF-RESCA) method with high radiochemical yield (RCY) (88.35 ± 3.93%) and radiochemical purity (RCP) (>95%). More notably, the tracer can be transformed into a hydrophobic macrocyclic molecule under the joint action of legumain and reductant. Simultaneously, the tracer could target legumain-positive tumors and enhance accumulation and retention in tumors, resulting in the amplification of PET imaging signals. The enhancement of radioactivity enables PET imaging of legumain activity with high specificity. We envision that, by combining this highly efficient 18F-labeled strategy with our intramolecular macrocyclization reaction, a range of radiofluorinated tracers can be designed for tumor PET imaging and early cancer diagnosis in the future.
Collapse
Affiliation(s)
- Xiaoqing Gao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Qianhui Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Xiaofeng Yang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jing Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Huirong Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, PR China
| |
Collapse
|
9
|
Yu K, Zhou P, Wang M, Zou P, Wang H, Liu Y, Xie M. β-Galactosidase-guided self-assembled 68Ga nanofibers probe for micro-PET tumor imaging. Bioorg Med Chem Lett 2024; 104:129727. [PMID: 38582132 DOI: 10.1016/j.bmcl.2024.129727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-galactosidase (β-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, β-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a β-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that β-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting β-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of β-gal activity.
Collapse
Affiliation(s)
- Kangxia Yu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Peng Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meimei Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Minhao Xie
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
10
|
Fang J, Liu Q, Liu Y, Li K, Qiu L, Xi H, Cai S, Zou P, Lin J. β-Galactosidase-Activated and Red Light-Induced RNA Modification Strategy for Prolonged NIR Fluorescence/PET Bimodality Imaging. Anal Chem 2024; 96:1707-1716. [PMID: 38241523 DOI: 10.1021/acs.analchem.3c04845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Improving the retention of small-molecule-based therapeutic agents in tumors is crucial to achieve precise diagnosis and effective therapy of cancer. Herein, we propose a β-galactosidase (β-Gal)-activated and red light-induced RNA modification (GALIRM) strategy for prolonged tumor imaging. A β-Gal-activatable near-infrared (NIR) fluorescence (FL) and positron emission tomography (PET) bimodal probe 68Ga-NOTA-FCG consists of a triaaza triacetic acid chelator NOTA for 68Ga-labeling, a β-Gal-activated photosensitizer CyGal, and a singlet oxygen (1O2)-susceptible furan group for RNA modification. Studies have demonstrated that the probe emits an activated NIR FL signal upon cleavage by endogenous β-Gal overexpressed in the lysosomes, which is combined with the PET imaging signal of 68Ga allowing for highly sensitive imaging of ovarian cancer. Moreover, the capability of 68Ga-NOTA-FCG generating 1O2 under 690 nm illumination could be simultaneously unlocked, which can trigger the covalent cross-linking between furan and nucleotides of cytoplasmic RNAs. The formation of the probe-RNA conjugate can effectively prevent exocytosis and prolong retention of the probe in tumors. We thus believe that this GALIRM strategy may provide entirely new insights into long-term tumor imaging and efficient tumor treatment.
Collapse
Affiliation(s)
- Jing Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ke Li
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Ling Qiu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hongjie Xi
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Shuyue Cai
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
11
|
Zhang H, Su Y, Zhao J, Song H, Zhou X. A ratiometric fluorescence assay for the detection of DNA methylation based on an alkaline phosphatase triggered in situ fluorogenic reaction. Analyst 2024; 149:507-514. [PMID: 38073500 DOI: 10.1039/d3an01854g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The accurate and sensitive quantification of DNA methylation is significant for the early diagnosis of cancer. In this work, an alkaline phosphatase (ALP) triggered in situ fluorogenic reaction between ascorbic acid (AA) and 2,3-DAN was employed as a ratiometric fluorescent probe for the accurate and sensitive detection of DNA methylation with the assistance of ALP encapsulated liposomes. The quinoxaline derivative with a yellow fluorescence emission (I525) was generated from the reaction between AA and 2,3-DAN. Meanwhile, the consumption of 2,3-DAN declined its fluorescence intensity (I386). A ratiometric fluorescent probe (I525/I386) constructed by the above in situ fluorogenic reaction was applied for the accurate detection of DNA methylation. The methylated DNA was first captured by its complementary DNA in 96-well plates. Then, 5mC antibody (Ab) linked liposomes that were encapsulated with ALP recognized and combined with the methylation sites of the target DNA. After the liposomes were lysed by Triton X-100, the released ALP triggered the hydrolysis of ascorbic acid diphosphate (AAP) to form AA, participating in the fluorogenic reaction with 2,3-DAN to produce a quinoxaline derivative. Thus, the ratiometric fluorescence detection of DNA methylation was achieved using I525/I386 values. Using the ALP-enzyme catalyzed reaction and liposomes as signal amplifiers, a low detection limit of 82 fM was obtained for DNA methylation detection. Moreover, the accuracy of the assay could be improved using ratiometric fluorescent probes. We hope that the proposed assay will pave a new way for the accurate determination of low-abundance biomarkers.
Collapse
Affiliation(s)
- Hongding Zhang
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Yinhui Su
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Jiamiao Zhao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Huixi Song
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| | - Xiaohong Zhou
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, PR China.
| |
Collapse
|
12
|
Li Z, Liang PZ, Ren TB, Yuan L, Zhang XB. Orderly Self-Assembly of Organic Fluorophores for Sensing and Imaging. Angew Chem Int Ed Engl 2023; 62:e202305742. [PMID: 37219959 DOI: 10.1002/anie.202305742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Fluorescence imaging utilizing traditional organic fluorophores is extensively applied in both cellular and in vivo studies. However, it faces significant obstacles, such as low signal-to-background ratio (SBR) and spurious positive/negative signals, primarily due to the facile diffusion of these fluorophores. To cope with this challenge, orderly self-assembled functionalized organic fluorophores have gained significant attention in the past decades. These fluorophores can create nanoaggregates via a well-ordered self-assembly process, thus prolonging their residency time within cells and in vivo settings. The development of self-assembled-based fluorophores is an emerging field, and as such, in this review, we present a summary of the progress and challenges of self-assembly fluorophores, focusing on their development history, self-assembly mechanisms, and biomedical applications. We hope that the insights provided herein will assist scientists in further developing functionalized organic fluorophores for in situ imaging, sensing, and therapy.
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-Zhao Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
13
|
Duan QJ, Zhao ZY, Zhang YJ, Fu L, Yuan YY, Du JZ, Wang J. Activatable fluorescent probes for real-time imaging-guided tumor therapy. Adv Drug Deliv Rev 2023; 196:114793. [PMID: 36963569 DOI: 10.1016/j.addr.2023.114793] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
Surgery and drug therapy are the two principal options for cancer treatment. However, their clinical benefits are hindered by the difficulty of accurate location of the tumors and timely monitoring of the treatment efficacy of drugs, respectively. Rapid development of imaging techniques provides promising tools to address these challenges. Compared with conventional imaging techniques such as magnetic resonance imaging and computed tomography etc., fluorescence imaging exhibits high spatial resolution, real-time imaging capability, and relatively low costs devices. The advancements in fluorescent probes further accelerate the implementation of fluorescence imaging in tumor diagnosis and treatment monitoring. In particular, the emergence of site-specifically activatable fluorescent probes fits the demands of tumor delineation and real-time feedback of the treatment efficacy. A variety of small molecule probes or nanoparticle-based probes have been developed and explored for the above-mentioned applications. This review will discuss recent advances in fluorescent probes with a special focus on activatable nanoprobes and highlight the potential implementation of activatable nanoprobes in fluorescence imaging-guided surgery as well as imaging-guided drug therapy.
Collapse
Affiliation(s)
- Qi-Jia Duan
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Zhong-Yi Zhao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yao-Jun Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Liangbing Fu
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China
| | - You-Yong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| | - Jin-Zhi Du
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Biomedical Engineering, and Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
14
|
Jin Z, Li Y, Li K, Zhou J, Yeung J, Ling C, Yim W, He T, Cheng Y, Xu M, Creyer MN, Chang YC, Fajtová P, Retout M, Qi B, Li S, O'Donoghue AJ, Jokerst JV. Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing. Angew Chem Int Ed Engl 2023; 62:e202214394. [PMID: 36409652 PMCID: PMC9852014 DOI: 10.1002/anie.202214394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ)x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro , a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ke Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuxuan Ling
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Hu P, Huang R, Xu Y, Li T, Yin J, Yang Y, Liang Y, Mao X, Ding L, Shu C. A novel and sensitive ratiometric fluorescent quantum dot-based biosensor for alkaline phosphatase detection in biological samples via the inner-filter effect. RSC Adv 2023; 13:2311-2317. [PMID: 36741147 PMCID: PMC9841509 DOI: 10.1039/d2ra06956c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Alkaline phosphatase (ALP) is an important biomarker whose abnormal level in activity is associated with hepatobiliary, skeletal, and renal diseases as well as cancer. Herein, we synthesized ZnSe@ZnS quantum dots (ZnSe@ZnS QDs) and Mn-doped ZnS quantum dots (Mn:ZnS QDs) as fluorophores to establish the ratiometric fluorescent assay for ALP activity detection in biological samples. p-Nitrophenyl phosphate (PNPP) was used as a substrate for ALP, and the overlaps between absorption spectra of PNPP and excitation spectra of QDs resulted in sharp fluorescence quenching. Under the catalysis of ALP, PNPP was hydrolyzed into p-nitrophenol (PNP), which caused a red shift of absorption band of PNPP and fluorescence recovery of Mn:ZnS QDs (585 nm). However, the overlaps between absorption spectra of PNP and emission spectra of ZnSe@ZnS QDs led a further quenching of ZnSe@ZnS QDs (405 nm). Therefore, the ratiometric fluorescent signals (F 585/F 405) were associated with activity of ALP based on bidirectional responses of QDs to the concentration of PNPP. Under the optimum conditions, the method exhibited a good linear relationship from 4 to 96 U per L (R 2 = 0.9969) with the detection limit of 0.57 U per L. Moreover, the method was successfully applied for detecting the ALP activity in a complex biological matrix (human serum and HepG2 cells) with impressive specificity. In particular, the complicated chemical modifications of QDs and pretreatments of biological samples were not required in the whole detection procedures. Therefore, it not only provided a sensitive, specific and simple approach to clinical ALP activity detection, but it also provided support for early diagnosis of diseases.
Collapse
Affiliation(s)
- Penghui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ruiyan Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Ye Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Tengfei Li
- Department of Clinical Pharmacology, School of Pharmacy, Sir Run Run Hospital, Nanjing Medical UniversityNanjing 211166China
| | - Jun Yin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yu Yang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Yuan Liang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Xiaohan Mao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical UniversityNanjing 211198China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of EducationNanjing 210009China,Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University24 TongjiaxiangNanjing211198P. R. China
| |
Collapse
|
16
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
17
|
Qin L, Ren X, Hu K, Wu D, Guo Z, Wang S, Jiang L, Hu Y. Supramolecular host-guest interaction-driven electrochemical recognition for pyrophosphate and alkaline phosphatase analysis. Chembiochem 2022; 23:e202200413. [PMID: 35997506 DOI: 10.1002/cbic.202200413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/20/2022] [Indexed: 11/10/2022]
Abstract
Herein, we report an electrochemical biosensor based on the supramolecular host-guest recognition between cucurbit[7]uril (CB[7]) and L -Phenylalanine-Cu(II) Complex for pyrophosphate (PPi) and alkaline phosphatase (ALP) analysis. First, L -Phe-Cu(II) Complex is simply synthesized by the complexation of Cu(II) (metal node) with L -Phe (bioorganic ligand), which can be immobilized onto CB[7] modified electrode via host-guest interaction of CB[7] and L -Phe. In this process, the signal of the Complex triggered electro-catalytic reduction of H 2 O 2 can be captured. Next, in the view of strong chelation between PPi and Cu(II), a biosensing system of the model "PPi and Cu(II) premixing, then adding L -Phe" is designed and the platform can be applied for PPi analysis well by hampering the formation of L -Phe-Cu(II) Complex. Along with ALP introduction, PPi can be hydrolyzed into orthophosphate (Pi), where abundant Cu(II) ions are released to form L -Phe-Cu(II) Complex, which gives rise to the catalytic reaction of Complex to H 2 O 2 reduction. The quantitative analysis of H 2 O 2 , PPi and ALP activity is achieved successfully and the detection of limits are 0.067 μM, 0.42 μM and 0.09 mU/mL ( S / N =3), respectively. With the merits of high sensitivity and selectivity, cost-effectiveness, and simplification, our developed analytical system has great potential to act on diagnosis and treatment of ALP-related diseases.
Collapse
Affiliation(s)
| | | | | | - Di Wu
- Ningbo College of Health Sciences, Chemistry, CHINA
| | | | - Sui Wang
- Ningbo University, Chemistry, CHINA
| | | | - Yufang Hu
- Ningbo University, Chemistry, 818 Fenghua Road,Jiangbei,Ningbo,Zhejiang, 315211, Ningbo, CHINA
| |
Collapse
|
18
|
Li Q, Xue X, Wang J, Ye Y, Li J, Ren Y, Wang D, Liu B, Li Y, Zhao L, Xu Q. Tumor-Targeting NIRF/MR Dual-Modal Molecular Imaging Probe for Surgery Navigation. Anal Chem 2022; 94:11255-11263. [PMID: 35921653 DOI: 10.1021/acs.analchem.2c01790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multimodality imaging recognized as a promising monitoring strategy can serve the needs of accurate diagnosis and treatment of cancer by providing molecular and anatomic information about tumor sites. However, the probes based on multiple imaging modalities for surgery navigation remain limited due to poor biocompatibility and tumor targeting specificity. Herein, we present a small-molecule near-infrared fluorescence/magnetic resonance (NIRF/MR) imaging probe, Gd-NMC-3, covalently coupled with DCDSTCY and Gd-DOTA via butane diamine, for precise detection and intraoperative visualization. The in vitro and in vivo studies demonstrated that Gd-NMC-3 could be effectively accumulated in tumor sites as a bimodal imaging molecule exhibiting significant fluorescence accumulation and reasonable relaxation property in tumors with low cytotoxicity and good biocompatibility. Furthermore, Gd-NMC-3 was successfully applied to provide real-time visual navigation in LM3 orthotopic and subcutaneous tumor models to guide the resection of tumors. Importantly, no more fluorescence was observed in mice after operation, implying the total removal of tumor tissues. In conclusion, Gd-NMC-3 has great potential to be applied in the clinic based on its high resolution and sensitivity in tumor imaging.
Collapse
Affiliation(s)
- Qiyi Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Xin Xue
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jintao Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuting Ye
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jia Li
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yanwei Ren
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Dandan Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Bing Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
19
|
Lian J, Wang Y, Sun X, Shi Q, Meng F. Progress on Multifunction Enzyme-Activated Organic Fluorescent Probes for Bioimaging. Front Chem 2022; 10:935586. [PMID: 35910747 PMCID: PMC9326025 DOI: 10.3389/fchem.2022.935586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022] Open
Abstract
Bioimaging techniques are of increasing importance in clinical and related fields, which also have been successfully applied in the in vivo/in vitro imaging system. Due to the vital factor of enzymes in biological systems, enzyme-activated fluorophores, which could turn “on” the fluorescence signal from an “off” state, offer non-invasive and effective potential for the accurate bioimaging of particular cells, tissues, or bacteria. Comparing with the traditional imaging probes, enzyme-activated organic small fluorophores can visualize living cells within small animals with high sensitivity, high imaging resolution, non-invasiveness, and real-time feedback. In this mini review, well-designed enzyme-activated organic fluorescent probes with multiple functions are exclusively reviewed through the latest development and progress, focusing on probe design strategy, fluorescence property, enzyme activation process, and bioimaging applications. It is worth noting that multi-enzyme-activated strategies, which could avoid the production of “false-positive” signals in complex biological systems, effectively provide high selective and real-time bioimaging, indicating the exciting potential of intraoperative fluorescence imaging and diagnosis tools.
Collapse
Affiliation(s)
- Jie Lian
- College of Criminal Investigation, People’s Public Security University of China, Beijing, China
| | - Yipeng Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Xiaomeng Sun
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Quanshi Shi
- Department of Burns and Plastic Surgery, Zaozhuang Hospital of Shandong Healthcare Industry Development Group, Zaozhuang, China
| | - Fanda Meng
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- *Correspondence: Fanda Meng,
| |
Collapse
|
20
|
Wang Y, Bai H, Miao Y, Weng J, Huang Z, Fu J, Zhang Y, Lin J, Ye D. Tailoring a Near‐Infrared Macrocyclization Scaffold Allows the Control of In Situ Self‐Assembly for Photoacoustic/PET Bimodal Imaging. Angew Chem Int Ed Engl 2022; 61:e202200369. [DOI: 10.1002/anie.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - He Bai
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - Yinxing Miao
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - Jiayu Fu
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| | - Jianguo Lin
- NHC Key Laboratory of Nuclear Medicine Jiangsu Key Laboratory of Molecular Nuclear Medicine Jiangsu Institute of Nuclear Medicine Wuxi 214063 China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University Nanjing 210023 China
| |
Collapse
|
21
|
Zheng F, Huang X, Ding J, Bi A, Wang S, Chen F, Zeng W. NIR-I Dye-Based Probe: A New Window for Bimodal Tumor Theranostics. Front Chem 2022; 10:859948. [PMID: 35402374 PMCID: PMC8984032 DOI: 10.3389/fchem.2022.859948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Near-infrared (NIR, 650-1700 nm) bioimaging has emerged as a powerful strategy in tumor diagnosis. In particular, NIR-I fluorescence imaging (650-950 nm) has drawn more attention, benefiting from the high quantum yield and good biocompatibility. Since their biomedical applications are slightly limited by their relatively low penetration depth, NIR-I fluorescence imaging probes have been under extensive development in recent years. This review summarizes the particular application of the NIR-I fluorescent dye-contained bimodal probes, with emphasis on related nanoprobes. These probes have enabled us to overcome the drawbacks of individual imaging modalities as well as achieve synergistic imaging. Meanwhile, the application of these NIR-I fluorescence-based bimodal probes for cancer theranostics is highlighted.
Collapse
Affiliation(s)
- Fan Zheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xueyan Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jipeng Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shifen Wang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| |
Collapse
|
22
|
Wang Y, Bai H, Miao Y, Weng J, Huang Z, Fu J, Zhang Y, Lin J, Ye D. Tailoring a Near‐Infrared Macrocyclization Scaffold Allows the Control of In Situ Self‐assembly for Photoacoustic/PET Bimodal Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yuqi Wang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - He Bai
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Yinxing Miao
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jianhui Weng
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Zheng Huang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jiayu Fu
- Jiangsu Institute of Nuclear Medicine Molecular Nuclear Medicine CHINA
| | - Yan Zhang
- Nanjing University School of Chemistry and Chemical Engineering CHINA
| | - Jianguo Lin
- Jiangsu Institute of Nuclear Medicine Molecular Nuclear Medicine CHINA
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Chemistry 163 Xianlin Road, 210023 Nanjing CHINA
| |
Collapse
|