1
|
Zhang Y, Zhou YY, Zhang S, Cai H, Tong LH, Liao WY, Zou RJ, Xue SM, Tian Y, Chen T, Tian Q, Zhang C, Wang Y, Zou X, Liu X, Hu Y, Ren YN, Zhang L, Zhang L, Wang WX, He L, Liao L, Qin Z, Yin LJ. Layer-dependent evolution of electronic structures and correlations in rhombohedral multilayer graphene. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01822-y. [PMID: 39537827 DOI: 10.1038/s41565-024-01822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
The recent discovery of superconductivity and magnetism in trilayer rhombohedral graphene (RG) establishes an ideal, untwisted platform to study strong correlation electronic phenomena. However, the correlated effects in multilayer RG have received limited attention, and, particularly, the evolution of the correlations with increasing layer number remains an unresolved question. Here we show the observation of layer-dependent electronic structures and correlations-under surprising liquid nitrogen temperature-in RG multilayers from 3 to 9 layers by using scanning tunnelling microscopy and spectroscopy. We explicitly determine layer-enhanced low-energy flat bands and interlayer coupling strengths. The former directly demonstrates the further flattening of low-energy bands in thicker RG, and the latter indicates the presence of varying interlayer interactions in RG multilayers. Moreover, we find significant splittings of the flat bands, ranging from ~50 meV to 80 meV, at 77 K when they are partially filled, indicating the emergence of interaction-induced strongly correlated states. Particularly, the strength of the correlated states is notably enhanced in thicker RG and reaches its maximum in the six-layer, validating directly theoretical predictions and establishing abundant new candidates for strongly correlated systems. Our results provide valuable insights into the layer dependence of the electronic properties in RG and demonstrate it as a suitable system for investigating robust and highly accessible correlated phases.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Yue-Ying Zhou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Shihao Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Hao Cai
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Ling-Hui Tong
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Wei-Yu Liao
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Ruo-Jue Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Si-Min Xue
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
- Research Institute of Hunan University in Chongqing, Chongqing, China
| | - Yuan Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Tongtong Chen
- College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang, China
| | - Qiwei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Chen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Yiliu Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Xingqiang Liu
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Yuanyuan Hu
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Ya-Ning Ren
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, China
| | - Li Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Lijie Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China
| | - Wen-Xiao Wang
- College of Physics and Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang, China.
| | - Lin He
- Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University, Beijing, China
| | - Lei Liao
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, China
| | - Zhihui Qin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China.
| | - Long-Jing Yin
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education and Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, China.
- Research Institute of Hunan University in Chongqing, Chongqing, China.
| |
Collapse
|
2
|
Han X, Liu Q, Wang Y, Niu R, Qu Z, Wang Z, Li Z, Han C, Watanabe K, Taniguchi T, Song Z, Liu J, Mao J, Han Z, Chittari BL, Jung J, Gan Z, Lu J. Engineering the Band Topology in a Rhombohedral Trilayer Graphene Moiré Superlattice. NANO LETTERS 2024; 24:6286-6295. [PMID: 38747346 DOI: 10.1021/acs.nanolett.4c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Moiré superlattices have become a fertile playground for topological Chern insulators, where the displacement field can tune the quantum geometry and Chern number of the topological band. However, in experiments, displacement field engineering of spontaneous symmetry-breaking Chern bands has not been demonstrated. Here in a rhombohedral trilayer graphene moiré superlattice, we use a thermodynamic probe and transport measurement to monitor the Chern number evolution as a function of the displacement field. At a quarter filling of the moiré band, a novel Chern number of three is unveiled to compete with the well-established number of two upon turning on the electric field and survives when the displacement field is sufficiently strong. The transition can be reconciled by a nematic instability on the Fermi surface due to the pseudomagnetic vector field potentials associated with moiré strain patterns. Our work opens more opportunities to active control of Chern numbers in van der Waals moiré systems.
Collapse
Affiliation(s)
- Xiangyan Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Qianling Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yijie Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ruirui Niu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuangzhuang Qu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhiyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuoxian Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunrui Han
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Zhida Song
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jianpeng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 200031, China
| | - Jinhai Mao
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Bheema Lingam Chittari
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Jeil Jung
- Department of Physics, University of Seoul, Seoul 02504, Korea
- Department of Smart Cities, University of Seoul, Seoul 02504, Korea
| | - Zizhao Gan
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jianming Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wang C, Du Y, Zhao Y, He Z, Wang S, Zhang Y, Jiang Y, Du Y, Wu J, Jiang Z, Liu M. Solar-Powered Switch of Antiferromagnetism/Ferromagnetism in Flexible Spintronics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3158. [PMID: 38133055 PMCID: PMC10745959 DOI: 10.3390/nano13243158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
The flexible electronics have application prospects in many fields, including as wearable devices and in structural detection. Spintronics possess the merits of a fast response and high integration density, opening up possibilities for various applications. However, the integration of miniaturization on flexible substrates is impeded inevitably due to the high Joule heat from high current density (1012 A/m2). In this study, a prototype flexible spintronic with device antiferromagnetic/ferromagnetic heterojunctions is proposed. The interlayer coupling strength can be obviously altered by sunlight soaking via direct photo-induced electron doping. With the assistance of a small magnetic field (±125 Oe), the almost 180° flip of magnetization is realized. Furthermore, the magnetoresistance changes (15~29%) of flexible spintronics on fingers receiving light illumination are achieved successfully, exhibiting the wearable application potential. Our findings develop flexible spintronic sensors, expanding the vision for the novel generation of photovoltaic/spintronic devices.
Collapse
Affiliation(s)
- Chenying Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Yujing Du
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Yifan Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Instrument Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Zhexi He
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Song Wang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Yaxin Zhang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Yuxuan Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Yongjun Du
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Jingen Wu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (S.W.); (Y.Z.); (Z.J.)
| | - Ming Liu
- State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China; (Y.D.); (Z.H.); (Y.J.); (Y.D.); (J.W.)
| |
Collapse
|
4
|
Chen H, Arora A, Song JCW, Loh KP. Gate-tunable anomalous Hall effect in Bernal tetralayer graphene. Nat Commun 2023; 14:7925. [PMID: 38040749 PMCID: PMC10692167 DOI: 10.1038/s41467-023-43796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Large spin-orbit coupling is often thought to be critical in realizing magnetic order-locked charge transport such as the anomalous Hall effect (AHE). Recently, artificial stacks of two-dimensional materials, e.g., magic-angle twisted bilayer graphene on hexagonal boron-nitride heterostructures and dual-gated rhombohedral trilayer graphene, have become platforms for realizing AHE without spin-orbit coupling. However, these stacking arrangements are not energetically favorable, impeding experiments and further device engineering. Here we report an anomalous Hall effect in Bernal-stacked tetralayer graphene devices (BTG), the most stable configuration of four-layer graphene. BTG AHE is switched on by a displacement field and is most pronounced at low carrier densities. The onset of AHE occurs in tandem with a full metal to a broken isospin transition indicating an orbital origin of the itinerant ferromagnetism. At lowest densities, BTG exhibits an unconventional hysteresis with step-like anomalous Hall plateaus. Persisting to several tens of kelvin, AHE in BTG demonstrates the ubiquity and robustness of magnetic order in readily available and stable multilayer Bernal graphene stacks-a new venue for intrinsic non-reciprocal responses.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Arpit Arora
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Justin C W Song
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Kian Ping Loh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Han X, Liu Q, Wang Y, Niu R, Qu Z, Wang Z, Li Z, Han C, Watanabe K, Taniguchi T, Song Z, Mao J, Han ZV, Gan Z, Lu J. Chemical Potential Characterization of Symmetry-Breaking Phases in a Rhombohedral Trilayer Graphene. NANO LETTERS 2023; 23:6875-6882. [PMID: 37466217 DOI: 10.1021/acs.nanolett.3c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Rhombohedral trilayer graphene has recently emerged as a natural flat-band platform for studying interaction-driven symmetry-breaking phases. The displacement field (D) can further flatten the band to enhance the density of states, thereby controlling the electronic correlation that tips the energy balance between spin and valley degrees of freedom. To characterize the energy competition, chemical potential measurement─a direct thermodynamic probe of Fermi surfaces─is highly demanding to be conducted under a constant D. In this work, we characterize D-dependent isospin flavor polarization, where electronic states with isospin degeneracies of one and two can be identified. We also developed a method to measure the chemical potential at a fixed D, allowing for the extraction of energy variation during phase transitions. Furthermore, symmetry breaking could also be invoked in Landau levels, manifesting as quantum Hall ferromagnetism. Our work opens more opportunities for the thermodynamic characterization of displacement-field tuned van der Waals heterostructures.
Collapse
Affiliation(s)
- Xiangyan Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Qianling Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yijie Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ruirui Niu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuangzhuang Qu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhiyu Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Zhuoxian Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunrui Han
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Zhida Song
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jinhai Mao
- School of Physical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Vitto Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Zizhao Gan
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Jianming Lu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|