1
|
Ishibashi M, Kawaguchi M, Hibino Y, Yakushiji K, Tsukamoto A, Nakatsuji S, Hayashi M. Decoding the magnetic bit positioning error in a ferrimagnetic racetrack. SCIENCE ADVANCES 2024; 10:eadq0898. [PMID: 39441927 PMCID: PMC11498212 DOI: 10.1126/sciadv.adq0898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Current-driven motion of magnetic domain walls is one of the key technologies for developing storage class memory devices. Extensive studies have revealed a variety of material systems that exhibit high-speed and/or lower power propagation of the domain walls driven by electric current. However, few studies have assessed the reliability of the operations of the memory technology. Here, we decode the errors associated with writing and shifting domain walls using nanosecond current pulses in a ~5-micrometer-wide wire composed of a Pt/GdFeCo bilayer. We find that writing a domain wall at the edge of the wire causes a bit positioning error of ~0.3 micrometers, whereas the shifting process induces an error of ~0.1 micrometers per a 2-nanosecond-long current pulse. The error correlation among successive shifting is negligible when the current drive is sufficiently large. These features allow reliable operation of highly packed domain walls in a ferrimagnetic racetrack.
Collapse
Affiliation(s)
- Mio Ishibashi
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Masashi Kawaguchi
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hibino
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568, Japan
| | - Kay Yakushiji
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8568, Japan
| | - Arata Tsukamoto
- College of Science and Technology, Nihon University, Chiba 274-8501, Japan
| | - Satoru Nakatsuji
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Masamitsu Hayashi
- Department of Physics, The University of Tokyo, Tokyo 113-0033, Japan
- Trans-scale Quantum Science Institute, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Mallick S, Sassi Y, Prestes NF, Krishnia S, Gallego F, M Vicente Arche L, Denneulin T, Collin S, Bouzehouane K, Thiaville A, Dunin-Borkowski RE, Jeudy V, Fert A, Reyren N, Cros V. Driving skyrmions in flow regime in synthetic ferrimagnets. Nat Commun 2024; 15:8472. [PMID: 39349476 PMCID: PMC11443098 DOI: 10.1038/s41467-024-52210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2024] [Indexed: 10/02/2024] Open
Abstract
The last decade has seen significant improvements in our understanding of skyrmions current induced dynamics, along with their room temperature stabilization, however, the impact of local material inhomogeneities still remains an issue that impedes reaching the regime of steady state motion of these spin textures. Here, we study the spin-torque driven motion of skyrmions in synthetic ferrimagnetic multilayers with the aim of achieving high mobility and reduced skyrmion Hall effect. We consider Pt|Co|Tb multilayers of various thicknesses with antiferromagnetic coupling between the Co and Tb magnetization. The increase of Tb thickness in the multilayers reduces the total magnetic moment and increases the spin-orbit torques allowing to reach velocities up to 400 ms-1 for skyrmions with diameters of about 160 nm. We demonstrate that due to reduced skyrmion Hall effect combined with the edge repulsion of the magnetic track, the skyrmions move along the track without any transverse deflection. Further, by comparing the field-induced domain wall motion and current-induced skyrmion motion, we demonstrate that the skyrmions at the largest current densities present all the characteristics of a dynamical flow regime.
Collapse
Affiliation(s)
- Sougata Mallick
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| | - Yanis Sassi
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | | | - Sachin Krishnia
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Fernando Gallego
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Luis M Vicente Arche
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Thibaud Denneulin
- Forschungszentrum Jülich, ER-C for Microscopy and Spectroscopy with Electrons, Jülich, Germany
| | - Sophie Collin
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Karim Bouzehouane
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - André Thiaville
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France
| | - Rafal E Dunin-Borkowski
- Forschungszentrum Jülich, ER-C for Microscopy and Spectroscopy with Electrons, Jülich, Germany
| | - Vincent Jeudy
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, Orsay, France
| | - Albert Fert
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Nicolas Reyren
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France
| | - Vincent Cros
- Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
| |
Collapse
|
3
|
Pham VT, Sisodia N, Di Manici I, Urrestarazu-Larrañaga J, Bairagi K, Pelloux-Prayer J, Guedas R, Buda-Prejbeanu LD, Auffret S, Locatelli A, Menteş TO, Pizzini S, Kumar P, Finco A, Jacques V, Gaudin G, Boulle O. Fast current-induced skyrmion motion in synthetic antiferromagnets. Science 2024; 384:307-312. [PMID: 38635712 DOI: 10.1126/science.add5751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/14/2024] [Indexed: 04/20/2024]
Abstract
Magnetic skyrmions are topological magnetic textures that hold great promise as nanoscale bits of information in memory and logic devices. Although room-temperature ferromagnetic skyrmions and their current-induced manipulation have been demonstrated, their velocity has been limited to about 100 meters per second. In addition, their dynamics are perturbed by the skyrmion Hall effect, a motion transverse to the current direction caused by the skyrmion topological charge. Here, we show that skyrmions in compensated synthetic antiferromagnets can be moved by current along the current direction at velocities of up to 900 meters per second. This can be explained by the cancellation of the net topological charge leading to a vanishing skyrmion Hall effect. Our results open an important path toward the realization of logic and memory devices based on the fast manipulation of skyrmions in tracks.
Collapse
Affiliation(s)
- Van Tuong Pham
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
- Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Naveen Sisodia
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
- Department of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, Gujarat, India
| | - Ilaria Di Manici
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| | | | - Kaushik Bairagi
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| | | | - Rodrigo Guedas
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
- Instituto de Sistemas Optoelectrónicos y Microtecnología (ISOM), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Stéphane Auffret
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| | - Andrea Locatelli
- Elettra-Sincrotrone Trieste S.C.p.A., 34149 Basovizza, Trieste, Italy
| | | | - Stefania Pizzini
- Université Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Pawan Kumar
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Aurore Finco
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Vincent Jacques
- Laboratoire Charles Coulomb, Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Gilles Gaudin
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| | - Olivier Boulle
- Université Grenoble Alpes, CNRS, CEA, SPINTEC, 38054 Grenoble, France
| |
Collapse
|
4
|
Urrestarazu Larrañaga J, Sisodia N, Guedas R, Pham VT, Di Manici I, Masseboeuf A, Garello K, Disdier F, Fernandez B, Wintz S, Weigand M, Belmeguenai M, Pizzini S, Sousa RC, Buda-Prejbeanu LD, Gaudin G, Boulle O. Electrical Detection and Nucleation of a Magnetic Skyrmion in a Magnetic Tunnel Junction Observed via Operando Magnetic Microscopy. NANO LETTERS 2024; 24:3557-3565. [PMID: 38499397 DOI: 10.1021/acs.nanolett.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Magnetic skyrmions are topological spin textures which are envisioned as nanometer scale information carriers in magnetic memory and logic devices. The recent demonstrations of room temperature skyrmions and their current induced manipulation in ultrathin films were first steps toward the realization of such devices. However, important challenges remain regarding the electrical detection and the low-power nucleation of skyrmions, which are required for the read and write operations. Here, we demonstrate, using operando magnetic microscopy experiments, the electrical detection of a single magnetic skyrmion in a magnetic tunnel junction (MTJ) and its nucleation and annihilation by gate voltage via voltage control of magnetic anisotropy. The nucleated skyrmion can be manipulated by both gate voltages and external magnetic fields, leading to tunable intermediate resistance states. Our results unambiguously demonstrate the readout and voltage controlled write operations in a single MTJ device, which is a major milestone for low power skyrmion based technologies.
Collapse
Affiliation(s)
| | - Naveen Sisodia
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Rodrigo Guedas
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Van Tuong Pham
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Ilaria Di Manici
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Aurélien Masseboeuf
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Kevin Garello
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Florian Disdier
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Bruno Fernandez
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Sebastian Wintz
- Max Planck Institute for Intelligent Systems, Heisenbergstraße 3, 70569 Stuttgart, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
| | - Markus Weigand
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, D-14109 Berlin, Germany
| | - Mohamed Belmeguenai
- LSPM (CNRS-UPR 3407), Université Paris 13, Sorbonne Paris Cité, 99 Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
| | - Stefania Pizzini
- Univ. Grenoble Alpes, CNRS, Institut Néel, 38042 Grenoble, France
| | - Ricardo C Sousa
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | | | - Gilles Gaudin
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| | - Olivier Boulle
- Univ. Grenoble Alpes, CNRS, CEA, Grenoble INP, SPINTEC, 38000 Grenoble, France
| |
Collapse
|
5
|
He B, Tomasello R, Luo X, Zhang R, Nie Z, Carpentieri M, Han X, Finocchio G, Yu G. All-Electrical 9-Bit Skyrmion-Based Racetrack Memory Designed with Laser Irradiation. NANO LETTERS 2023; 23:9482-9490. [PMID: 37818857 DOI: 10.1021/acs.nanolett.3c02978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Racetrack memories with magnetic skyrmions have recently been proposed as a promising storage technology. To be appealing, several challenges must still be faced for the deterministic generation of skyrmions, their high-fidelity transfer, and accurate reading. Here, we realize the first proof-of-concept of a 9-bit skyrmion racetrack memory with all-electrical controllable functionalities implemented in the same device. The key ingredient is the generation of a tailored nonuniform distribution of magnetic anisotropy via laser irradiation in order to (i) create a well-defined skyrmion nucleation center, (ii) define the memory cells hosting the information coded as the presence/absence of skyrmions, and (iii) improve the signal-to-noise ratio of anomalous Hall resistance measurements. This work introduces a strategy to unify previous findings and predictions for the development of a generation of racetrack memories with robust control of skyrmion nucleation and position, as well as effective skyrmion electrical detection.
Collapse
Affiliation(s)
- Bin He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Riccardo Tomasello
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xuming Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ran Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Zhuyang Nie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mario Carpentieri
- Department of Electrical and Information Engineering, Politecnico of Bari, Bari 70125, Italy
| | - Xiufeng Han
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Giovanni Finocchio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina 98166, Italy
| | - Guoqiang Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
6
|
Xu T, Zhang Y, Wang Z, Bai H, Song C, Liu J, Zhou Y, Je SG, N'Diaye AT, Im MY, Yu R, Chen Z, Jiang W. Systematic Control of Ferrimagnetic Skyrmions via Composition Modulation in Pt/Fe 1-xTb x/Ta Multilayers. ACS NANO 2023; 17:7920-7928. [PMID: 37010987 DOI: 10.1021/acsnano.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Magnetic skyrmions are topological spin textures that can be used as memory and logic components for advancing the next generation spintronics. In this regard, control of nanoscale skyrmions, including their sizes and densities, is of particular importance for enhancing the storage capacity of skyrmionic devices. Here, we propose a viable route for engineering ferrimagnetic skyrmions via tuning the magnetic properties of the involved ferrimagnets Fe1-xTbx. Via tuning the composition of Fe1-xTbx that alters the magnetic anisotropy and the saturation magnetization, the size of the ferrimagnetic skyrmion (ds) and the average density (ηs) can be effectively tailored in [Pt/Fe1-xTbx/Ta]10 multilayers. In particular, a stabilization of sub-50 nm skyrmions with a high density is demonstrated at room temperature. Our work provides an effective approach for designing ferrimagnetic skyrmions with the desired size and density, which could be useful for enabling high-density ferrimagnetic skyrmionics.
Collapse
Affiliation(s)
- Teng Xu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yuxuan Zhang
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zidong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Hao Bai
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Chengkun Song
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Jiahao Liu
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
| | - Yan Zhou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Soong-Geun Je
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Alpha T N'Diaye
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Mi-Young Im
- Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, California 94720, United States
| | - Rong Yu
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Zhen Chen
- School of Materials Science and Engineering, The State Key Laboratory of New Ceramics and Fine Processing, MOE Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084, China
| | - Wanjun Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|