1
|
Karsakov GV, Shirobokov VP, Kulakova A, Milichko VA. Prediction of Metal-Organic Frameworks with Phase Transition via Machine Learning. J Phys Chem Lett 2024; 15:3089-3095. [PMID: 38470071 DOI: 10.1021/acs.jpclett.3c03639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Metal-organic frameworks (MOFs) possess a virtually unlimited number of potential structures. Although the latter enables an efficient route to control the structure-related functional properties of MOFs, it still complicates the prediction and searching for an optimal structure for specific application. Next to prediction of the MOFs for gas sorption/separation and catalysis via machine learning (ML), we report on ML to find MOFs demonstrating a phase transition (PT). On the basis of an available QMOF database (7463 frameworks), we create and train the autoencoder followed by training the classifier of MOFs from a unique database with experimentally confirmed PT. This makes it possible to identify MOFs with a high potential for PT and evaluate the most likely stimulus for it (guest molecules or temperature/pressure). The formed list of available MOFs for PT allows us to discuss their structural features and opens an opportunity to search for phase change MOFs for diverse physical/chemical application.
Collapse
Affiliation(s)
- Grigory V Karsakov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Alena Kulakova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Université de Lorraine, Centre National de la Recherche Scientifique (CNRS), F-54000 Nancy, France
| |
Collapse
|
2
|
Nominé AV, Gunina EV, Bachinin SV, Solomonov AI, Rybin MV, Shipilovskikh SA, Benrazzouq SE, Ghanbaja J, Gries T, Bruyère S, Nominé A, Belmonte T, Milichko VA. FeAu mixing for high-temperature control of light scattering at the nanometer scale. NANOSCALE 2024; 16:2289-2294. [PMID: 38164662 DOI: 10.1039/d3nr05117j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Control of the optical properties of a nanoparticle (NP) through its structural changes underlies optical data processing, dynamic coloring, and smart sensing at the nanometer scale. Here, we report on the concept of controlling the light scattering by a NP through mixing of weakly miscible chemical elements (Fe and Au), supporting a thermal-induced phase transformation. The transformation corresponds to the transition from a homogeneous metastable solid solution phase of the (Fe,Au) NP towards an equilibrium biphasic Janus-type NP. We demonstrate that the phase transformation is thermally activated by laser heating up to a threshold of 800 °C (for NPs with a size of hundreds of nm), leading to the associated changes in the light scattering and color of the NP. The results thereby pave the way for the implementation of optical sensors triggered by a high temperature at the nanometer scale via NPs based on metal alloys.
Collapse
Affiliation(s)
- Anna V Nominé
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
| | - Ekaterina V Gunina
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | | | - Mikhail V Rybin
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Loffe Institute, St. Petersburg 194021, Russia
| | | | | | - Jaafar Ghanbaja
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
| | - Thomas Gries
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
| | - Stephanie Bruyère
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
| | - Alexandre Nominé
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
- LORIA, University of Lorraine - INRIA - CNRS, Vandoeuvre lès Nancy, France
- Department of Gaseous Electronics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Thierry Belmonte
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
| | - Valentin A Milichko
- Institut Jean Lamour, Université de Lorraine, UMR CNRS 7198, 54011 Nancy, France.
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| |
Collapse
|
3
|
Dagdag O, Kim H. Progress in the Field of Cyclophosphazenes: Preparation, Properties, and Applications. Polymers (Basel) 2023; 16:122. [PMID: 38201787 PMCID: PMC10780494 DOI: 10.3390/polym16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/12/2024] Open
Abstract
This review article provides a comprehensive overview of recent advancements in the realm of cyclophosphazenes, encompassing their preparation methodologies, distinctive properties, and diverse applications. The synthesis approaches are explored, highlighting advancements in the preparation of these cyclic compounds. The discussion extends to the distinctive properties exhibited by cyclophosphazenes, including thermal stability characteristics, and other relevant features. Furthermore, we examine the broad spectrum of applications for cyclophosphazenes in various fields, such as coatings, adhesives, composites, extractants, metal complexes, organometallic chemistry, medicine, and inorganic chemistry. This review aims to offer insights into the evolving landscape of cyclophosphazenes and their ever-expanding roles in contemporary scientific and technological arenas. Future possibilities are emphasized, and significant research data shortages are identified.
Collapse
Affiliation(s)
| | - Hansang Kim
- Department of Mechanical Engineering, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
4
|
Efimova AS, Alekseevskiy PV, Timofeeva MV, Kenzhebayeva YA, Kuleshova AO, Koryakina IG, Pavlov DI, Sukhikh TS, Potapov AS, Shipilovskikh SA, Li N, Milichko VA. Exfoliation of 2D Metal-Organic Frameworks: toward Advanced Scalable Materials for Optical Sensing. SMALL METHODS 2023; 7:e2300752. [PMID: 37702111 DOI: 10.1002/smtd.202300752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/18/2023] [Indexed: 09/14/2023]
Abstract
Two-dimensional metal-organic frameworks (MOFs) occupy a special place among the large family of functional 2D materials. Even at a monolayer level, 2D MOFs exhibit unique sensing, separation, catalytic, electronic, and conductive properties due to the combination of porosity and organo-inorganic nature. However, lab-to-fab transfer for 2D MOF layers faces the challenge of their scalability, limited by weak interactions between the organic and inorganic building blocks. Here, comparing three top-down approaches to fabricate 2D MOF layers (sonication, freeze-thaw, and mechanical exfoliation), The technological criteria have established for creation of the layers of the thickness up to 1 nm with a record aspect ratio up to 2*10^4:1. The freezing-thaw and mechanical exfoliation are the most optimal approaches; wherein the rate and manufacturability of the mechanical exfoliation rivaling the greatest scalability of 2D MOF layers obtained by freezing-thaw (21300:1 vs 1330:1 aspect ratio), leaving the sonication approach behind (with a record 900:1 aspect ratio) have discovered. The high quality 2D MOF layers with a record aspect ratio demonstrate unique optical sensitivity to solvents of a varied polarity, which opens the way to fabricate scalable and freestanding 2D MOF-based atomically thin chemo-optical sensors by industry-oriented approach.
Collapse
Affiliation(s)
- Anastasiia S Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Pavel V Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Maria V Timofeeva
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | | | - Alina O Kuleshova
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Irina G Koryakina
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Dmitry I Pavlov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Taisiya S Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Andrei S Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Université de Lorraine, CNRS, IJL, Nancy, F-54011, France
| |
Collapse
|
5
|
Gunina EV, Zhestkij NA, Sergeev M, Bachinin SV, Mezenov YA, Kulachenkov NK, Timofeeva M, Ivashchenko V, Timin AS, Shipilovskikh SA, Yakubova AA, Pavlov DI, Potapov AS, Gong J, Khamkhash L, Atabaev TS, Bruyere S, Milichko VA. Laser-Assisted Design of MOF-Derivative Platforms from Nano- to Centimeter Scales for Photonic and Catalytic Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47541-47551. [PMID: 37773641 DOI: 10.1021/acsami.3c10193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Laser conversion of metal-organic frameworks (MOFs) has recently emerged as a fast and low-energy consumptive approach to create scalable MOF derivatives for catalysis, energy, and optics. However, due to the virtually unlimited MOF structures and tunable laser parameters, the results of their interaction are unpredictable and poorly controlled. Here, we experimentally base a general approach to create nano- to centimeter-scale MOF derivatives with the desired nonlinear optical and catalytic properties. Five three- and two-dimensional MOFs, differing in chemical composition, topology, and thermal resistance, have been selected as precursors. Tuning the laser parameters (i.e., pulse duration from fs to ns and repetition rate from kHz to MHz), we switch between ultrafast nonthermal destruction and thermal decomposition of MOFs. We have established that regardless of the chemical composition and MOF topology, the tuning of the laser parameters allows obtaining a series of structurally different derivatives, and the transition from femtosecond to nanosecond laser regimes ensures the scaling of the derivatives from nano- to centimeter scales. Herein, the thermal resistance of MOFs affects the structure and chemical composition of the resulting derivatives. Finally, we outline the "laser parameters versus MOF structure" space, in which one can create the desired and scalable platforms with nonlinear optical properties from photoluminescence to light control and enhanced catalytic activity.
Collapse
Affiliation(s)
- Ekaterina V Gunina
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Nikolaj A Zhestkij
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Maksim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Semyon V Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Yuri A Mezenov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Maria Timofeeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Alexander S Timin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | | | - Anastasia A Yakubova
- Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia
| | - Dmitry I Pavlov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Andrei S Potapov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Jiang Gong
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Laura Khamkhash
- Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University, Astana 010000, Kazakhstan
| | | | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Université de Lorraine, CNRS, IJL, F-54011 Nancy, France
| |
Collapse
|
6
|
Kulachenkov NK, Orlioglo B, Vasilyev ES, Povarov SA, Agafontsev AM, Bachinin S, Shipilovskikh S, Lunev A, Samsonenko DG, Fedin VP, Kovalenko KA, Milichko VA. Metal-mediated tunability of MOF-based optical modulators. Chem Commun (Camb) 2023; 59:9964-9967. [PMID: 37501597 DOI: 10.1039/d3cc02180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report on the design of 1D MOFs based on a nopinane-annelated organic ligand and Co(II) or Ni(II), the variation of which allows tuning the optical modulation bandwidth. Structural and time-resolved analysis revealed the optical modulation mechanism, the rates and its endurance, thereby enriching the list of sustainable MOFs for tunable optical modulators.
Collapse
Affiliation(s)
- Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Bogdan Orlioglo
- Chemical Science Program, KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eugene S Vasilyev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Svyatoslav A Povarov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander M Agafontsev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Universit de Lorraine, UMR CNRS 7198, Nancy 54011, France.
| |
Collapse
|
7
|
Timofeeva MV, Yankin AN. Synthesis and characterization of ZnBTC-based MOFs: effect of solvents and salt. CHIMICA TECHNO ACTA 2022. [DOI: 10.15826/chimtech.2023.10.1.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In this work, we studied the optimization of synthetic approaches to creating structurally modified metal-organic frameworks under various synthesis conditions. We investigated the influence of the various solvents and zinc salts on the structural characteristics of the metal-organic framework based on benzene-1,3,5-tricarboxylic acid (H3BTC). The results indicate that the variation of the types of both solvent and salt is a parameter affecting the crystallinity, phase purity, and morphology of the metal-organic framework. This was confirmed by comprehensive structural characterization (SEM, EDX, PXRD).
Collapse
|