1
|
Lan L, Ni Z, Zhao C, Gao J, Tang X, Qu Z, Zheng L, Fan X, Qiu T. Photoinduced Charge Transfer Empowers Ta 4C 3 and Nb 4C 3 MXenes with High SERS Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20945-20953. [PMID: 39320080 DOI: 10.1021/acs.langmuir.4c02165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This study introduces two-dimensional (2D) Ta4C3 and Nb4C3 MXenes as outstanding materials for surface-enhanced Raman scattering (SERS) sensing, marking a significant departure from traditional noble-metal substrates. These MXenes exhibit exceptional SERS capabilities, achieving enhancement factors around 105 and detection limits as low as 10-7 M for various analytes, including environmental pollutants and drugs. The core of their SERS functionality is attributed to the robust interfacial photoinduced charge-transfer interactions between the MXenes and the adsorbed molecules. This deep insight not only advances our understanding of MXene materials in SERS applications but also opens new avenues for developing highly sensitive and selective SERS sensors. The potential of Ta4C3 and Nb4C3 MXenes to revolutionize SERS technology underscores their importance in environmental monitoring, food safety, and beyond.
Collapse
Affiliation(s)
- Leilei Lan
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Ziheng Ni
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Caiye Zhao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Juan Gao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Zhongwei Qu
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Lingcheng Zheng
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
- The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), Huainan 232001, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
2
|
Faggio G, Politano GG, Lisi N, Capasso A, Messina G. The structure of chemical vapor deposited graphene substrates for graphene-enhanced Raman spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:195303. [PMID: 38286012 DOI: 10.1088/1361-648x/ad238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Defects and nanocrystalline grain structures play a critical role in graphene-enhanced Raman spectroscopy (GERS). In this study, we selected three types of few-layer, polycrystalline graphene films produced by chemical vapor deposition (CVD), and we tested them as GERS substrates. The graphene structure was controlled by decreasing the CVD temperature, thus obtaining (i) polycrystalline with negligible defect density, (ii) polycrystalline with high defect density, (iii) nanocrystalline. We applied rhodamine 6G as a probe molecule to investigate the Raman enhancement. Our results show that nanocrystalline graphene is the most sensitive GERS substrate, indicating that the GERS effect is primarily connected to the nanocrystalline structure, rather than to the presence of defects.
Collapse
Affiliation(s)
- G Faggio
- Department of Information Engineering, Infrastructures and Sustainable Energy (DIIES), University 'Mediterranea' of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio, Calabria, Italy
| | - G G Politano
- Department of Information Engineering, Infrastructures and Sustainable Energy (DIIES), University 'Mediterranea' of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio, Calabria, Italy
| | - N Lisi
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Casaccia Research Centre, Roma 00123, Italy
| | - A Capasso
- International Iberian Nanotechnology Laboratory (INL), Braga 4715-330, Portugal
| | - G Messina
- Department of Information Engineering, Infrastructures and Sustainable Energy (DIIES), University 'Mediterranea' of Reggio Calabria, Loc. Feo di Vito, 89122 Reggio, Calabria, Italy
| |
Collapse
|
3
|
Xu H, Wu X, Liu Q, Yang C, Shen M, Wang Y, Liu S, Zhao S, Xiao T, Sun M, Ding Z, Bao J, Chen M, Gao M. A Universal Strategy for Enhancing the Circulating miRNAs' Detection Performance of Rolling Circle Amplification by Using a Dual-Terminal Stem-Loop Padlock. ACS NANO 2024; 18:436-450. [PMID: 38149638 PMCID: PMC10786163 DOI: 10.1021/acsnano.3c07721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Rolling circle amplification (RCA) is one of the most promising nucleic acid detection technologies and has been widely used in the molecular diagnosis of disease. Padlock probes are often used to form circular templates, which are the core of RCA. However, RCA often suffers from insufficient specificity and sensitivity. Here we report a reconstruction strategy for conventional padlock probes to promote their overall performance in nucleic acid detection while maintaining probe functions uncompromised. When two rationally designed stem-loops were strategically placed at the two terminals of linear padlock probes, the specificity of target recognition was enhanced and the negative signal was significantly delayed. Our design achieved the best single-base discrimination compared with other structures and over a 1000-fold higher sensitivity than that of the conventional padlock probe, validating the effectiveness of this reconstruction. In addition, the underlying mechanisms of our design were elucidated through molecular dynamics simulations, and the versatility was validated with longer and shorter padlocks targeting the same target, as well as five additional targets (four miRNAs and dengue virus - 2 RNA mimic (DENV-2)). Finally, clinical applicability in multiplex detection was demonstrated by testing real plasma samples. Our exploration of the structures of nucleic acids provided another perspective for developing high-performance detection systems, improving the efficacy of practical detection strategies, and advancing clinical diagnostic research.
Collapse
Affiliation(s)
- Hanqing Xu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Xianlan Wu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Qian Liu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Cheng Yang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Man Shen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Yingran Wang
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Shuai Liu
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Shuang Zhao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Ting Xiao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Minghui Sun
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Zishan Ding
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Jing Bao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| | - Ming Chen
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
- College
of Pharmacy and Laboratory Medicine, Third
Military Medical University (Army Medical University), 30 Gaotanyan, Shapingba District, Chongqing 400038, P. R. China
| | - Mingxuan Gao
- Department
of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P. R. China
| |
Collapse
|
4
|
Kim C, Hong B, Choi W. Surface-Enhanced Raman Spectroscopy (SERS) Investigation of a 3D Plasmonic Architecture Utilizing Ag Nanoparticles-Embedded Functionalized Carbon Nanowall. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2617. [PMID: 37836258 PMCID: PMC10574791 DOI: 10.3390/nano13192617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique for detecting DNA, proteins, and single molecules. The design of SERS substrates plays a crucial role, with the density of hotspots being a key factor in enhancing Raman spectra. In this study, we employed carbon nanowall (CNW) as the nanostructure and embedded plasmonic nanoparticles (PNPs) to increase hotspot density, resulting in robust Raman signals. To enhance the CNW's performance, we functionalized it via oxygen plasma and embedded silver nanoparticles (Ag NPs). The authors evaluated the substrate using rhodamine 6G (R6G) as a model target molecule, ranging in concentration from 10-6 M to 10-10 M for a 4 min exposure. Our analysis confirmed a proportional increase in Raman signal intensity with an increase in concentration. The CNW's large specific surface area and graphene domains provide dense hotspots and high charge mobility, respectively, contributing to both the electromagnetic mechanism (EM) and the chemical mechanism (CM) of SERS.
Collapse
Affiliation(s)
- Chulsoo Kim
- Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| | - Byungyou Hong
- School of Electronic and Electrical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Wonseok Choi
- Department of Electrical Engineering, Hanbat National University, Daejeon 34158, Republic of Korea;
| |
Collapse
|