1
|
Wang J, Zhang C, Wang Y. Current Advances in the Photoconversion of Plastics: the Catalysts and Reaction Pathways. CHEMSUSCHEM 2025; 18:e202401700. [PMID: 39529609 DOI: 10.1002/cssc.202401700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Plastic waste has caused severe global environmental pollution and health issues due to the high production rate and lack of proper disposal technology. Traditional methods to deal with plastic waste, such as incineration and landfilling, are deemed unsustainable and energy-intensive. A promising alternative is the photocatalytic conversion of plastic waste, using sunlight as a sustainable and carbon-neutral energy source to break down plastic waste under ambient pressure and low temperatures. This review aims to provide a comprehensive summary of recent advancements in plastic photoconversion, with an emphasis on the catalysts and reaction pathways. The mechanisms and reaction routes are first reviewed, followed by a detailed discussion of strategies to design catalysts for improved performance in photoconversion. Then, examples of photothermal degradation processes are presented. Finally, current strategies, challenges, and possible future directions of plastic photoconversion are summarized and discussed.
Collapse
Affiliation(s)
- Junting Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Caiwei Zhang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yiou Wang
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
2
|
Kumar P, Zhang H, Yohannes AG, Wang J, Shayesteh Zeraati A, Roy S, Wang X, Kannimuthu K, Askar AM, Miller KA, Ling K, Adnan M, Hung SF, Ma JJ, Huang WH, Trivedi D, Molina M, Zhao H, Martí AA, Leontowich AFG, Shimizu GKH, Sinton D, Adachi MM, Wu YA, Ajayan PM, Siahrostami S, Hu J, Kibria MG. Isolated iridium oxide sites on modified carbon nitride for photoreforming of plastic derivatives. Nat Commun 2025; 16:2862. [PMID: 40128214 PMCID: PMC11933312 DOI: 10.1038/s41467-025-57999-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/07/2025] [Indexed: 03/26/2025] Open
Abstract
The rising concentration of plastics due to extensive disposal and inefficient recycling of plastic waste poses an imminent and critical threat to the environment and ecological systems. Photocatalytic reforming of plastic derivatives to value-added chemicals under ambient conditions proceeds at lower oxidation potential which galvanizes the hydrogen evolution. We report the synthesis of a narrow band gap NCN-functionalized O-bridged carbon nitride (MC) through condensation polymerization of hydrogen-bonded melem (M)-cyameluric acid (C) macromolecular aggregate. The MC scaffold hosts well-dispersed Ir single atom (MCIrSA) sites which catalyze oxidative photoreforming of alkali-treated polylactic acid (PLA) and polyethylene terephthalate (PET) derivatives to produce H2 at a rate of 147.5 and 29.58 μmol g-1cat h-1 under AM1.5G irradiation. Solid-state electron paramagnetic resonance (EPR) and time-resolved photoluminescence (TRPL) reveals efficient charge carrier generation and separation in MCIrSA. X-ray absorption spectroscopy (XAS) and Bader charge analysis reveal undercoordinated IrN2O2 SA sites pinned in C6N7 moieties leading to efficient hole quenching. The liquid phase EPR, in situ FTIR and density functional theory (DFT) studies validate the facile generation of •OH radicals due to the evolution of O-Ir-OH transient species with weak Ir--OH desorption energy barrier.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Hongguang Zhang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Jiu Wang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Ali Shayesteh Zeraati
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Soumyabrata Roy
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, 208016, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Karthick Kannimuthu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | | | - Kristen A Miller
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Kexin Ling
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Muflih Adnan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Sung-Fu Hung
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jian-Jie Ma
- Department of Applied Chemistry and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | | | - Dhwanil Trivedi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Maria Molina
- Department of Chemistry, University of Calgary, Calgary, AB, Canada
| | - Heng Zhao
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Angel A Martí
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | | | | | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Michael M Adachi
- School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, ON, Canada
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | | | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
3
|
Liu X, Wang X, Chu M, Zhang W, Fu J, Li S, Wang L, Chen J, Zhang Q, Cao M. Selective Liquid Chemical Production in Waste Polyolefin Photorefinery by Controlling Reactive Species. J Am Chem Soc 2025; 147:5228-5237. [PMID: 39881523 DOI: 10.1021/jacs.4c15718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Photocatalytic upcycling of waste polyolefins into value-added chemicals provides promise in plastic waste management and resource utilization. Previous works demonstrate that polyolefins can be converted into carboxylic acids, with CO2 as the final oxidation product. It is still challenging to explore more transformation products, particularly mild-oxidation products such as alcohols, because of their instability compared with polymer substrates, which are prone to oxidation during catalytic reactions. In this work, we propose an efficient strategy to regulate the product type through precise control of radicals, intermediates, and reaction paths. Taking the commonly used photocatalyst C3N4 as an example, its major products are carboxylic acids and CO2. When MoS2 is introduced to construct a Z-scheme heterostructure, gas products are significantly reduced and alcohols appear with a high yield of 1358.8 μmol gcat-1 and a high selectivity up to 80.3%. This is primarily attributed to the presence of •OH radicals from oxygen reduction, acting a key role in alcohol formation while simultaneously suppressing the competing pathways oxygen to •O2- and 1O2, thus reducing the overoxidation products. The β-scission of the C-C bonds in the polymer chains generates intermediate alkyl species, followed by the combination with •OH to produce methanol, which is more energetically favorable for MoS2/C3N4. In contrast, alkyl species couple with oxygen species to form formic acid, which is favorable for C3N4. This work provides new approaches for controlling the product types and offers new insights into the reaction pathways involved in polyolefin photorefinery.
Collapse
Affiliation(s)
- Xinlin Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Xianpeng Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Mingyu Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Wenjing Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jie Fu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Shengming Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Lu Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jinxing Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
4
|
Yue S, Zhao Z, Zhang T, Li F, Wang P, Zhan S. Photoreforming of Plastic Waste to Sustainable Fuels and Chemicals: Waste to Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22865-22879. [PMID: 39688576 DOI: 10.1021/acs.est.4c06688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The extensive accumulation of plastic waste has given rise to severe environmental pollution issues. Contemporary conventional recycling methods, such as incineration and landfilling, contribute significantly to pollutant emissions and carbon footprints, against the principles of sustainable development. Leveraging renewable solar energy to transform plastics into high-value chemicals and green fuels offers a more promising and sustainable approach to managing plastic waste resources. This comprehensive review centers on the recent advancements in plastic photoreforming, categorizing them based on the types of end products. Particular emphasis is placed on the evolving research landscape surrounding the conversion of plastics into high-value chemicals through photoreforming, as well as the economic considerations for large-scale photoreforming production. The analysis conducted here reveals key pathways and emerging trends that are poised to shape the trajectory of enhanced photoconversion, ultimately influencing the realization of a carbon-neutral future.
Collapse
Affiliation(s)
- Shuai Yue
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Zhiyong Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Fei Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Pengfei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| | - Sihui Zhan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Deng S, Cao R, Wang X, Zhou Y, Liang J, Tang H, Feng X, Yang S, Shangguan Y, Li Y, Chen H. Upconversion Phosphor-Driven Photodegradation of Plastics. NANO LETTERS 2024; 24:14082-14090. [PMID: 39437159 DOI: 10.1021/acs.nanolett.4c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li2CaGeO4 (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C-C and C-O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.
Collapse
Affiliation(s)
- Shimao Deng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, China
| | - Runzi Cao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yuanhao Zhou
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh 15213, United States
| | - Jiaxin Liang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Tang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuezhen Feng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Songhe Yang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangzi Shangguan
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Hong Chen
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
6
|
Li H, Jiang S, He S, Zhang Y, Chen Y, Wang L, Yang J. Accelerated Solar-Driven Polyolefin Degradation via Self-Activated Hydroxy-Rich ZnIn 2S 4. NANO LETTERS 2024; 24:11624-11631. [PMID: 39225501 DOI: 10.1021/acs.nanolett.4c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Degradation of polyolefin (PE) plastic by a traditional chemical method requires a high pressure and a high temperature but generates complex products. Here, sulfur vacancy-rich ZnIn2S4 and hydroxy-rich ZnIn2S4 were rationally fabricated to realize photocatalytic degradation of PE in an aqueous solution under mild conditions. The results reveal that the optimized photocatalyst could degrade PE into CO2 and CO, and PE had a weight loss of 84.5% after reaction for 60 h. Systematic experiments confirm that the synergetic effect of hydroxyl groups and S vacancies contributes to improve the photocatalytic degradation properties of plastic wastes. In-depth investigation illustrates that the active radicals attack (h+ and •OH) weak spots (C-H and C-C bonds) of the PE chain to form CO2, which is further selectively photoreduced to CO. Multimodule synergistic tandem catalysis can further improve the utilization value of plastic wastes; for example, product CO2/CO in the plastic degradation process can be converted in situ into HCOOH by coupling with electrocatalytic technology.
Collapse
Affiliation(s)
- Haoze Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shan He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yingbing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ye Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Li Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Su K, Gao T, Tung CH, Wu LZ. Photocatalytic Cracking of non-Biodegradable Plastics to Chemicals and Fuels. Angew Chem Int Ed Engl 2024; 63:e202407464. [PMID: 38894633 DOI: 10.1002/anie.202407464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Plastic pollution is worsening the living conditions on Earth, primarily due to the toxicity and stability of non-biodegradable plastics (NBPs). Photocatalytic cracking of NBPs is emerging as a promising way to cleave inert C-C bonds and abstract the carbon atoms from these wastes into valuable chemicals and fuels. However, controlling these processes is a huge challenge, ascribed to the complicated reactions of various NBPs. Herein, we summarize recent advances in the CO2 and carbon-radical-mediated photocatalytic cracking of NBPs, with an emphasis on the pivotal intermediates. The CO2-mediated cracking proceeded with indiscriminate C-H/C-C bond cleavage of NBPs and tandem photoreduction of CO2, while carbon-radical-mediated cracking was realized by the prior activation of C-H bonds for selective C-C bond cleavage of NBPs. Catalytic generation and conversion of different intermediates greatly depend on the kinds of active species and the structure of photocatalysts under irradiation. Meanwhile, the fate of a specific intermediate is compared with small molecule activation to reveal the key problems in the cracking of NBPs. Finally, the challenges and potential directions are discussed to improve the overall efficiency in the photocatalytic cracking of NBPs.
Collapse
Affiliation(s)
- Kaiyi Su
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tengshijie Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Ding J, He D, Du P, Wu J, Hu Q, Chen Q, Jiao X. Design Photocatalysts to Boost Carrier Dynamics in Plastics Photoconversion into Fuels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35865-35873. [PMID: 38970473 DOI: 10.1021/acsami.4c07664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Solar-driven plastics conversion into valuable fuels has attracted broad attention in recent years, which has enormous potential for plastics recycling in the future. However, it usually encounters low conversion efficiency, where one of the reasons is attributed to the poor carrier dynamics in the photocatalytic process. In this Perspective, we critically review the developed strategies, involving defect engineering, doping engineering, heterojunction engineering, and composite construction, for boosted carrier separation efficiency. In addition, we provide an outlook for more potential strategies to engineer catalysts for promoted carrier dynamics. Finally, we also propose prospects for the future research direction of plastics photoconversion into fuels.
Collapse
Affiliation(s)
- Jinyu Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Peijin Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiacong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Hu Q, Zhang Z, He D, Wu J, Ding J, Chen Q, Jiao X, Xie Y. Progress and Perspective for "Green" Strategies of Catalytic Plastics Conversion into Fuels by Regulating Half-Reactions. J Am Chem Soc 2024; 146:16950-16962. [PMID: 38832898 DOI: 10.1021/jacs.4c04848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Nowadays, plastic waste threatens public health and the natural ecosystems of our lives. It is highly beneficial to recycle plastic waste in order to maximize the reuse of its contained carbon sources for the development of other valuable products. Unfortunately, traditional techniques usually require significant energy consumption and result in the generation of hazardous waste. Herein, the up-to-date developments on the "green" strategies under mild conditions including electrocatalysis, photocatalysis, and photoelectrocatalysis of plastic wastes are presented. During the oxidation of plastics in these "green" strategies, corresponding reduction reactions usually exist, which affect the property of catalytic plastics conversion. Particularly, we mainly focus on how to design the corresponding half reactions, such as the water reduction, carbon dioxide reduction, and nitrate reduction. Finally, we provide forward-looking insight into the enhancement of these "green" strategies, the extension of more half reactions into other organic catalysis, a comprehensive exploration of the underlying mechanisms through in situ studies and theoretical analysis and the problems for practical applications that needs to be solved.
Collapse
Affiliation(s)
- Qinyuan Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhixing Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiacong Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinyu Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yi Xie
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Hu Z, Zhu J, Chen R, Wu Y, Zheng K, Liu C, Pan Y, Chen J, Sun Y, Xie Y. High-Rate and Selective C 2H 6-to-C 2H 4 Photodehydrogenation Enabled by Partially Oxidized Pd δ+ Species Anchored on ZnO Nanosheets under Mild Conditions. J Am Chem Soc 2024. [PMID: 38842530 DOI: 10.1021/jacs.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic C2H6-to-C2H4 conversion is very promising, yet it remains a long-lasting challenge due to the high C-H bond dissociation energy of 420 kJ mol-1. Herein, partially oxidized Pdδ+ species anchored on ZnO nanosheets are designed to weaken the C-H bond by the electron interaction between Pdδ+ species and H atoms, with efforts to achieve high-rate and selective C2H6-to-C2H4 conversion. X-ray photoelectron spectra, Bader charge calculations, and electronic localization function demonstrate the presence of partially oxidized Pdδ+ sites, while quasi-in situ X-ray photoelectron spectra disclose the Pdδ+ sites initially adopt and then donate the photoexcited electrons for C2H6 dehydrogenation. In situ electron paramagnetic resonance spectra, in situ Fourier transform infrared spectra, and trapping agent experiments verify C2H6 initially converts to CH3CH2OH via ·OH radicals, then dehydroxylates to CH3CH2· and finally to C2H4, accompanied by H2 production. Density-functional theory calculations elucidate that loading Pd site can lengthen the C-H bond of C2H6 from 1.10 to 1.12 Å, which favors the C-H bond breakage, affirmed by a lowered energy barrier of 0.04 eV. As a result, the optimized 5.87% Pd-ZnO nanosheets achieve a high C2H4 yield of 16.32 mmol g-1 with a 94.83% selectivity as well as a H2 yield of 14.49 mmol g-1 from C2H6 dehydrogenation in 4 h, outperforming all the previously reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Zexun Hu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Runhua Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wu
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Kai Zheng
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chengyuan Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Jiafu Chen
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Xie
- Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Ding J, Du P, Zhu J, Hu Q, He D, Wu Y, Liu W, Zhu S, Yan W, Hu J, Zhu J, Chen Q, Jiao X, Xie Y. Light-Driven C-C Coupling for Targeted Synthesis of CH 3 COOH with Nearly 100 % Selectivity from CO 2. Angew Chem Int Ed Engl 2024; 63:e202400828. [PMID: 38326235 DOI: 10.1002/anie.202400828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Targeted synthesis of acetic acid (CH3 COOH) from CO2 photoreduction under mild conditions mainly limits by the kinetic challenge of the C-C coupling. Herein, we utilized doping engineering to build charge-asymmetrical metal pair sites for boosted C-C coupling, enhancing the activity and selectivity of CO2 photoreduction towards CH3 COOH. As a prototype, the Pd doped Co3 O4 atomic layers are synthesized, where the established charge-asymmetrical cobalt pair sites are verified by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Theoretical calculations not only reveal the charge-asymmetrical cobalt pair sites caused by Pd atom doping, but also manifest the promoted C-C coupling of double *COOH intermediates through shortening of the coupled C-C bond distance from 1.54 to 1.52 Å and lowering their formation energy barrier from 0.77 to 0.33 eV. Importantly, the decreased reaction energy barrier from the protonation of two*COOH into *CO intermediates for the Pd-Co3 O4 atomic layer slab is 0.49 eV, higher than that of the Co3 O4 atomic layer slab (0.41 eV). Therefore, the Pd-Co3 O4 atomic layers exhibit the CH3 COOH evolution rate of ca. 13.8 μmol g-1 h-1 with near 100% selectivity, both of which outperform all previously reported single photocatalysts for CO2 photoreduction towards CH3 COOH under similar conditions.
Collapse
Affiliation(s)
- Jinyu Ding
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Peijin Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qing Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Dongpo He
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Wenxiu Liu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Shan Zhu
- State Grid Anhui Electric Power Research Institute, 230601, Hefei, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|
12
|
Lv H, Huang F, Zhang F. Upcycling Waste Plastics with a C-C Backbone by Heterogeneous Catalysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5077-5089. [PMID: 38358312 DOI: 10.1021/acs.langmuir.3c03866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Plastics with an inert carbon-carbon (C-C) backbone, such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinyl chloride (PVC), are the most widely used types of plastic in human activities. However, many of these polymers were directly discarded in nature after use, and few were appropriately recycled. This not only threatens the natural environment but also leads to the waste of carbon resources. Conventional chemical recycling of these plastics, including pyrolysis and catalytic cracking, requires a high energy input due to the chemical inertness of C-C bonds and C-H bonds and leads to complex product distribution. In recent years, significant progress has been made in the development of catalysts and the introduction of small molecules as additional coreactants, which could potentially overcome these challenges. In this Review, we summarize and highlight catalytic strategies that address these issues in upcycling C-C backbone plastics with small molecules, particularly in heterogeneous catalysis. We believe that this review will inspire the development of upcycling methods for C-C backbone plastics using small molecules and heterogeneous catalysis.
Collapse
Affiliation(s)
- Huidong Lv
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fei Huang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| | - Fan Zhang
- National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, Sichuan People's Republic of China
| |
Collapse
|
13
|
Wu Y, Chen Q, Zhu J, Zheng K, Wu M, Fan M, Yan W, Hu J, Zhu J, Pan Y, Jiao X, Sun Y, Xie Y. Selective CO 2 -to-C 2 H 4 Photoconversion Enabled by Oxygen-Mediated Triatomic Sites in Partially Oxidized Bimetallic Sulfide. Angew Chem Int Ed Engl 2023; 62:e202301075. [PMID: 36792533 DOI: 10.1002/anie.202301075] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/17/2023]
Abstract
Selective CO2 photoreduction into C2 fuels under mild conditions suffers from low product yield and poor selectivity owing to the kinetic challenge of C-C coupling. Here, triatomic sites are introduced into bimetallic sulfide to promote C-C coupling for selectively forming C2 products. As an example, FeCoS2 atomic layers with different oxidation degrees are first synthesized, demonstrated by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy spectra. Both experiment and theoretical calculation verify more charges aggregate around the introduced oxygen atom, which enables the original Co-Fe dual sites to turn into Co-O-Fe triatomic sites, thus promoting C-C coupling of double *COOH intermediates. Accordingly, the mildly oxidized FeCoS2 atomic layers exhibit C2 H4 formation rate of 20.1 μmol g-1 h-1 , with the product selectivity and electron selectivity of 82.9 % and 96.7 %, outperforming most previously reported photocatalysts under similar conditions.
Collapse
Affiliation(s)
- Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Qingxia Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Mingyu Wu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Minghui Fan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Wensheng Yan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Jun Hu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Junfa Zhu
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Yang Pan
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Xingchen Jiao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, China
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, China
| |
Collapse
|