1
|
Hu C, Dong Y, Shi Q, Long R, Xiong Y. Catalysis under electric-/magnetic-/electromagnetic-field coupling. Chem Soc Rev 2024. [PMID: 39698872 DOI: 10.1039/d4cs00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The ultimate goal of catalysis is to control the cleavage and formation of chemical bonds at the molecular or even atomic level, enabling the customization of catalytic products. The essence of chemical bonding is the electromagnetic interaction between atoms, which makes it possible to directly manipulate the dynamic behavior of molecules and electrons in catalytic processes using external electric, magnetic and electromagnetic fields. In this tutorial review, we first introduce the feasibility and importance of field effects in regulating catalytic reaction processes and then outline the basic principles of electric-/magnetic-/electromagnetic-field interaction with matter, respectively. In each section, we further summarize the relevant important advances from two complementary perspectives: the macroscopic molecular motion (including translation, vibration and rotation) and the microscopic intramolecular electron state alteration (including spin polarization, transfer or excitation, and density of states redistribution). Finally, we discuss the challenges and opportunities for further development of catalysis under electric-/magnetic-/electromagnetic-field coupling.
Collapse
Affiliation(s)
- Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Qianqi Shi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Gupta R, Balo A, Garg R, Mondal AK, Ghosh KB, Chandra Mondal P. The chirality-induced spin selectivity effect in asymmetric spin transport: from solution to device applications. Chem Sci 2024; 15:18751-18771. [PMID: 39568626 PMCID: PMC11575547 DOI: 10.1039/d4sc05736h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
The chirality-induced spin selectivity (CISS) effect has garnered significant interest in the field of molecular spintronics due to its potential to create spin-polarized electrons without the need for a magnet. Recent studies devoted to CISS effects in various chiral materials demonstrate exciting prospects for spintronics, chiral recognition, and quantum information applications. Several experimental studies have confirmed the applicability of chiral molecules in spin-filtering properties, influencing spin-polarized electron transport and photoemission. Researchers aim to predict CISS phenomena and apply this concept to practical applications by compiling experimental results. To expand the possibilities of spin manipulation and create new opportunities for spin-based technologies, researchers are diligently exploring different chiral organic and inorganic materials for probing the CISS effect. This ongoing research holds promise for developing novel spin-based technologies and advancing the understanding of the intricate relationship between chirality and electron spin. The review highlights the remarkable experimental and theoretical frameworks related to the CISS effect, its impact on spintronics, and its relevance in other scientific areas.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh-208016 India
| | - Anujit Balo
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana-502285 India
| | - Rabia Garg
- Institute of Nano Science and Technology, Knowledge City Mohali Punjab-140306 India
| | - Amit Kumar Mondal
- Institute of Nano Science and Technology, Knowledge City Mohali Punjab-140306 India
| | - Koyel Banerjee Ghosh
- Department of Chemistry, Indian Institute of Technology Hyderabad Telangana-502285 India
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur Uttar Pradesh-208016 India
| |
Collapse
|
3
|
Zhu Q, Cohen SR, Brontvein O, Fransson J, Naaman R. Magnetic Monopole-Like Behavior in Superparamagnetic Nanoparticle Coated With Chiral Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406631. [PMID: 39205548 PMCID: PMC11600687 DOI: 10.1002/smll.202406631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted wide attention due to their promising applications in biomedicine, chemical catalysis, and magnetic memory devices. In this work, the force is measured between a single SPION coated with chiral molecules and a ferromagnetic substrate by atomic force microscopy (AFM), with the substrate magnetized either toward or away from the approaching AFM tip. The force between the coated SPION and the magnetic substrate depends on the handedness of the molecules adsorbed on the SPION and on the direction of the magnetization of the substrate. By inserting nm-scale spacing layers between the coated SPION and the magnetic substrate it is shown that the SPION has a short-range magnetic monopole-like magnetic field. A theoretical framework for the nature of this field is provided.
Collapse
Affiliation(s)
- Qirong Zhu
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| | - Sidney R. Cohen
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| | - Olga Brontvein
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovot76100Israel
| | - Jonas Fransson
- Department of Physics and AstronomyUppsala UniversityBox 516Uppsala75120Sweden
| | - Ron Naaman
- Department of Chemical and Biological PhysicsWeizmann Institute of ScienceRehovot76100Israel
| |
Collapse
|
4
|
Li Y, Qiu L, Tian R, Liu Z, Yao L, Huang L, Li W, Wang Y, Wang T, Zhou B. Chirality Engineering of Nanostructured Copper Oxide for Enhancing Oxygen Evolution from Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408248. [PMID: 39444054 DOI: 10.1002/smll.202408248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Indexed: 10/25/2024]
Abstract
The exploration of a new conceptual strategy for improving the oxygen evolution reaction (OER) of earth-abundant electrocatalysts is critical. In this study, chiral copper oxide nanoflower is explored by a self-assembly method. The characterization suggests the chiral structure originates from the crystal plane-level helical stack of the secondary nanosheets. Of note, the assembly illustrates a record-high degree of spin polarization of 96%, indicating the ideal alignment of electron spin. Moreover, density function theory calculations show the chiral structure reducing the reaction energy barrier (REB) while switching the potential-determining step from *O→*OOH to *OH→*O. Together with the enhanced electrochemical active surface area and accelerated charge transfer, the production of ground-state triplet O2 is improved via a spin-forbidden route that involves the singlet H2O/OH•. Consequently, the chiral nanoflower shows a overpotential of 308 mV at 10 mA cm-2 and a Tafel slope of 93.5 mV dec-1, which is even superior to the commercial RuO2 (310 mV, 101 mV dec-1). This study presents a new strategy for improving the OER activity by simultaneously enhancing electronic properties and lowering the REB of an non-noble electrocatalyst via chirality engineering.
Collapse
Affiliation(s)
- Ying Li
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Rui Tian
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Zhongli Liu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Lin Yao
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Lufei Huang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Wei Li
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, Scotland, EH9 3FB, UK
| | - Yuyin Wang
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, Scotland, EH9 3FB, UK
| | - Tao Wang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Chae K, Mohamad NARC, Kim J, Won DI, Lin Z, Kim J, Kim DH. The promise of chiral electrocatalysis for efficient and sustainable energy conversion and storage: a comprehensive review of the CISS effect and future directions. Chem Soc Rev 2024; 53:9029-9058. [PMID: 39158537 DOI: 10.1039/d3cs00316g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
The integration of chirality, specifically through the chirality-induced spin selectivity (CISS) effect, into electrocatalytic processes represents a pioneering approach for enhancing the efficiency of energy conversion and storage systems. This review delves into the burgeoning field of chiral electrocatalysis, elucidating the fundamental principles, historical development, theoretical underpinnings, and practical applications of the CISS effect across a spectrum of electrocatalytic reactions, including the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER). We explore the methodological advancements in inducing the CISS effect through structural and surface engineering and discuss various techniques for its measurement, from magnetic conductive atomic force microscopy (mc-AFM) to hydrogen peroxide titration. Furthermore, this review highlights the transformative potential of the CISS effect in addressing the key challenges of the NRR and CO2RR processes and in mitigating singlet oxygen formation in metal-air batteries, thereby improving their performance and durability. Through this comprehensive overview, we aim to underscore the significant role of incorporating chirality and spin polarization in advancing electrocatalytic technologies for sustainable energy applications.
Collapse
Affiliation(s)
- Kyunghee Chae
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Nur Aqlili Riana Che Mohamad
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Jeonghyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong-Il Won
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Zhiqun Lin
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Jeongwon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| | - Dong Ha Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea.
| |
Collapse
|
6
|
Bloom BP, Chen Z, Lu H, Waldeck DH. A chemical perspective on the chiral induced spin selectivity effect. Natl Sci Rev 2024; 11:nwae212. [PMID: 39144747 PMCID: PMC11321253 DOI: 10.1093/nsr/nwae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024] Open
Abstract
This review discusses opportunities in chemistry that are enabled by the chiral induced spin selectivity (CISS) effect. First, the review begins with a brief overview of the seminal studies on CISS. Next, we discuss different chiral material systems whose properties can be tailored through chemical means, with a special emphasis on hybrid organic-inorganic layered materials that exhibit some of the largest spin filtering properties to date. Then, we discuss the promise of CISS for chemical reactions and enantioseparation before concluding.
Collapse
Affiliation(s)
- Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| |
Collapse
|
7
|
Ma S, Lee H, Moon J. Chirality-Induced Spin Selectivity Enables New Breakthrough in Electrochemical and Photoelectrochemical Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405685. [PMID: 38963061 DOI: 10.1002/adma.202405685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/27/2024] [Indexed: 07/05/2024]
Abstract
To facilitate the transition from a carbon-energy-dependent society to a sustainable society, conventional engineering strategies, which encounter limitations associated with intrinsic material properties, should undergo the paradigm shift. From a theoretical viewpoint, the spin-dependent feature of oxygen evolution reaction (OER) reveals the potential of a spin-polarization strategy in enhancing the performance of electrochemical (EC) reactions. The chirality-induced spin selectivity (CISS) phenomenon attracts unprecedented attention owing to its potential utility in achieving novel breakthroughs. This paper starts with the experimental results aimed at enhancing the efficiency of the spin-dependent OER focusing on the EC system based on the CISS phenomenon. The applicability of spin-polarization to EC system is verified through various analytical methodologies to clarify the theoretical groundwork and mechanisms underlying the spin-dependent reaction pathway. The discussion is then extended to effective spin-control strategies in photoelectrochemical system based on the CISS effect. Exploring the influence of spin-state control on the kinetic and thermodynamic aspects, this perspective also discusses the effect of spin polarization induced by the CISS phenomenon on spin-dependent OER. Lastly, future directions for enhancing the performance of spin-dependent redox systems are discussed, including expansion to various chemical reactions and the development of materials with spin-control capabilities.
Collapse
Affiliation(s)
- Sunihl Ma
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
8
|
Zhao W, Yang J, Xu F, Weng B. Recent Advancements on Spin Engineering Strategies for Highly Efficient Electrocatalytic Oxygen Evolution Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401057. [PMID: 38587966 DOI: 10.1002/smll.202401057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Oxygen evolution reaction (OER) is a widely employed half-electrode reaction in oxygen electrochemistry, in applications such as hydrogen evolution, carbon dioxide reduction, ammonia synthesis, and electrocatalytic hydrogenation. Unfortunately, its slow kinetics limits the commercialization of such applications. It is therefore highly imperative to develop highly robust electrocatalysts with high activity, long-term durability, and low noble-metal contents. Previously intensive efforts have been made to introduce the advancements on developing non-precious transition metal electrocatalysts and their OER mechanisms. Electronic structure tuning is one of the most effective and interesting ways to boost OER activity and spin angular momentum is an intrinsic property of the electron. Therefore, modulation on the spin states and the magnetic properties of the electrocatalyst enables the changes on energy associated with interacting electron clouds with radical absorbance, affecting the OER activity and stability. Given that few review efforts have been made on this topic, in this review, the-state-of-the-art research progress on spin-dependent effects in OER will be briefed. Spin engineering strategies, such as strain, crystal surface engineering, crystal doping, etc., will be introduced. The related mechanism for spin manipulation to boost OER activity will also be discussed. Finally, the challenges and prospects for the development of spin catalysis are presented. This review aims to highlight the significance of spin engineering in breaking the bottleneck of electrocatalysis and promoting the practical application of high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jieyu Yang
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Fenghua Xu
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Baicheng Weng
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
9
|
Wang Y, Sun J, Sun N, Zhang M, Liu X, Zhang A, Wang L. The spin polarization strategy regulates heterogeneous catalytic activity performance: from fundamentals to applications. Chem Commun (Camb) 2024; 60:7397-7413. [PMID: 38946499 DOI: 10.1039/d4cc02012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In recent years, there has been significant attention towards the development of catalysts that exhibit superior performance and environmentally friendly attributes. This surge in interest is driven by the growing demands for energy utilization and storage as well as environmental preservation. Spin polarization plays a crucial role in catalyst design, comprehension of catalytic mechanisms, and reaction control, offering novel insights for the design of highly efficient catalysts. However, there are still some significant research gaps in the current study of spin catalysis. Therefore, it is urgent to understand how spin polarization impacts catalytic reactions to develop superior performance catalysts. Herein, we present a comprehensive summary of the application of spin polarization in catalysis. Firstly, we summarize the fundamental mechanism of spin polarization in catalytic reactions from two aspects of kinetics and thermodynamics. Additionally, we review the regulation mechanism of spin polarization in various catalytic applications and several approaches to modulate spin polarization. Moreover, we discuss the future development of spin polarization in catalysis and propose several potential avenues for further progress. We aim to improve current catalytic systems through implementing a novel and distinctive spin engineering strategy.
Collapse
Affiliation(s)
- Yan Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Junkang Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Mengyang Zhang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Xianya Liu
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
10
|
Day PN, Pachter R, Nguyen KA, Hong G. Chirality-Induced Spin Selectivity: Analysis of Density Functional Theory Calculations. J Chem Theory Comput 2024; 20:5475-5486. [PMID: 38888590 DOI: 10.1021/acs.jctc.4c00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chirality-induced spin selectivity (CISS), which was demonstrated in several molecular and material systems, has drawn much interest recently. The phenomenon, described in electron transport by the difference in the transport rate of electrons of opposite spins through a chiral system, is however not fully understood. Herein, we employed density functional theory in conjunction with spin-orbit coupling to evaluate the percent spin-polarization in a device setup with finite electrodes at zero bias, using an electron transport program developed in-house. To study the interface effects and the level of theory considered, we investigated a helical oligopeptide chain, an intrinsically chiral gold cluster, and a helicene model system that was previously studied (Zöllner et al. J. Chem. Theory Comput. 2020, 16, 7357-7371). We find that the magnitude of the spin-polarization depends on the chiral system-electrode interface that is modeled by varying the interface boundary between the system's regions, on the method of calculating spin-orbit coupling, and on the exchange-correlation functional, e.g., the amount of exact exchange in the hybrid functionals. In addition, to assess the effects of bias, we employ the nonequilibrium Green's function formalism in the Quantum Atomistix Toolkit program, showing that the spin-flip terms could be important in calculating the CISS effect. Although understanding CISS in comparison to experiment is still not resolved, our study provides intrinsic responses from first-principles calculations.
Collapse
Affiliation(s)
- Paul N Day
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Ruth Pachter
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Kiet A Nguyen
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| | - Gongyi Hong
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433, United States
- UES, Inc., Dayton, Ohio 45432, United States
| |
Collapse
|
11
|
Tran NQ, Le QM, Tran TTN, Truong TK, Yu J, Peng L, Le TA, Doan TLH, Phan TB. Boosting Urea-Assisted Natural Seawater Electrolysis in 3D Leaf-Like Metal-Organic Framework Nanosheet Arrays Using Metal Node Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28625-28637. [PMID: 38767316 DOI: 10.1021/acsami.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal node engineering, which can optimize the electronic structure and modulate the composition of poor electrically conductive metal-organic frameworks, is of great interest for electrochemical natural seawater splitting. However, the mechanism underlying the influence of mixed-metal nodes on electrocatalytic activities is still ambiguous. Herein, a strategic design is comprehensively demonstrated in which mixed Ni and Co metal redox-active centers are uniformly distributed within NH2-Fe-MIL-101 to obtain a synergistic effect for the overall enhancement of electrocatalytic activities. Three-dimensional mixed metallic MOF nanosheet arrays, consisting of three different metal nodes, were in situ grown on Ni foam as a highly active and stable bifunctional catalyst for urea-assisted natural seawater splitting. A well-defined NH2-NiCoFe-MIL-101 reaches 1.5 A cm-2 at 360 mV for the oxygen evolution reaction (OER) and 0.6 A cm-2 at 295 mV for the hydrogen evolution reaction (HER) in freshwater, substantially higher than its bimetallic and monometallic counterparts. Moreover, the bifunctional NH2-NiCoFe-MIL-101 electrode exhibits eminent catalytic activity and stability in natural seawater-based electrolytes. Impressively, the two-electrode urea-assisted alkaline natural seawater electrolysis cell based on NH2-NiCoFe-MIL-101 needs only 1.56 mV to yield 100 mA cm-2, much lower than 1.78 V for alkaline natural seawater electrolysis cells and exhibits superior long-term stability at a current density of 80 mA cm-2 for 80 h.
Collapse
Affiliation(s)
- Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Manh Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy Tien Nguyen Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Kieu Truong
- Department of Mechanical Engineering, Hanbat National University (HBNU), 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Thi Anh Le
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
12
|
Jin Y, Fu W, Wen Z, Tan L, Chen Z, Wu H, Wang PP. Chirality Engineering of Colloidal Copper Oxide Nanostructures for Tailored Spin-Polarized Catalysis. J Am Chem Soc 2024; 146:2798-2804. [PMID: 38145451 DOI: 10.1021/jacs.3c12965] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The combination of the chiral concept and inorganic nanostructures holds great potential for significantly impacting catalytic processes and products. However, the synthesis of inorganic nanomaterials with engineered chiroptical activity and identical structure and size presents a substantial challenge, impeding exploration of the relationship between chirality (optical activity) and catalytic efficiency. Here, we present a facile wet-chemical synthesis for achieving intrinsic and tunable chiroptical activity within colloidal copper oxide nanostructures. These nanostructures exhibit strong spin-polarization selectivity compared with their achiral counterparts. More importantly, the ability to engineer chiroptical activity within the same type of chiral nanostructures allows for the manipulation of spin-dependent catalysis, facilitating a study of the connection between the chiroptical magnitude (asymmetric factor) and catalytic performance in inorganic nanostructures. Specifically, using these materials as model catalysts in a proof-of-concept catalytic reaction, we reveal a linear correlation between the asymmetric factor of chiral nanomaterials and the efficiency of the catalytic reaction. This work paves the way for the development of chiral inorganic nanosystems and their application in catalysis through chiroptical engineering.
Collapse
Affiliation(s)
- Yiran Jin
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhihao Wen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhi Chen
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Hao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|