1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Hu A, Li B, Yang S, Yang C, Ye J, Huang Y, Zhou S, Wang G. Unlocking interfacial electron transfer in biophotoelectrochemical processes: Role of extracellular polymeric substances in aquatic environments. WATER RESEARCH 2025; 278:123375. [PMID: 40022801 DOI: 10.1016/j.watres.2025.123375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The biophotoelectrochemical process (BPECs) integrates the light-absorbing capabilities of nano-semiconductors with the catalytic efficiency of microorganisms, demonstrating significant potential for the development, utilization, transformation, and ecological restoration of water resources. In aquatic environments, extracellular polymeric substances (EPS) serve as a critical interfacial barrier between microorganisms and semiconductor materials, with the underlying electron transfer mechanisms playing a pivotal role in determining the efficiency of bio-photochemical reactions. Despite their importance, the rapidity and complexity of the electron transfer process within EPS pose significant challenges to a comprehensive understanding of BPECs. In this study, an in-situ characterization strategy was employed to rapidly and accurately analyze the components and pathways of photogenerated electron transfer involving EPS at interfaces. The findings indicate that EPS significantly accelerates the transfer of photogenerated electrons within BPECs. Specifically, proteins and redox-active substances within EPS act as efficient conduits for electron transfer, accounting for up to 84.2% of the increased speed in electron transfer rates at bio-abiotic interfaces. Conversely, polysaccharides within EPS impede the electron transfer process but serve as substrates that facilitate methane (CH4) production. The in-situ characterization approach used in this research provides valuable insights into the interfacial electron transfer mechanisms of EPS in BPECs, emphasizing their relevance in aquatic environments. This study establishes a theoretical framework for designing high-performance BPECs, with significant implications for the energy utilization of water resources and the transformation of water pollutants.
Collapse
Affiliation(s)
- Andong Hu
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China.
| | - Shang Yang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Chaohui Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yuefei Huang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guangqian Wang
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua, Shenzhen 518055, China
| |
Collapse
|
3
|
Hou Y, Wang W, Liu Z, Yu L, Zhao L. Boosting microalgae-based carbon sequestration with the artificial CO 2 concentration system. Crit Rev Biotechnol 2025:1-19. [PMID: 40374568 DOI: 10.1080/07388551.2025.2498464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/16/2024] [Accepted: 04/05/2025] [Indexed: 05/17/2025]
Abstract
Global warming caused by CO2 emissions has been considered as one of the major challenges of this century. In an endeavor to control and reduce CO2 emissions, a series of Carbon dioxide Capture, Utilization, and Storage (CCUS) technologies have been developed specifically for the sequestration of CO2 from atmospheric air. Microalgae, as versatile and universal photosynthetic microorganisms, represent a promising avenue for biological CO2 sequestration. Nevertheless, further advancements are necessary to optimize microalgae-based carbon sequestration technology in terms of light reaction and dark reaction. This review discusses the current status of microalgae-based artificial CO2 sequestration technique, with a particular focus on the selection of CO2-resistant species, optimization of cultivation for CO2 sequestration, design of carbon concentration reactor, and the potential of synthetic biology to enhance CO2 solubility and biofixation efficiency. Furthermore, a discussion of Life cycle assessment and Techno-economic analysis regarding microalgae-based carbon capture was performed. The aim of this comprehensive review is to stimulate further research into microalgae-based CO2 sequestration, addressing challenges and opportunities for future development.
Collapse
Affiliation(s)
- Yuyong Hou
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenqiao Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Longjiang Yu
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lei Zhao
- State Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- University of Chinese Academy of Sciences, Beijing, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
4
|
Jeevanandham S, Ramasundaram S, Vijay N, Oh TH, Selvan ST. Recent Progress in Designing Nanomaterial Biohybrids for Artificial Photosynthesis. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:730. [PMID: 40423120 DOI: 10.3390/nano15100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025]
Abstract
In natural photosynthesis, solar energy is utilized to convert water and CO2 into energy-rich compounds. However, in practice, the maximum quantum efficiency of natural photosynthesis is limited to 6.0%. Conversely, artificial photosynthesis (AP) systems utilize solar energy to convert CO2 into biosynthetic solar fuels and value-added chemicals. To mimic natural photosystems, AP integrates light-harvesting chemical catalysts with the enzyme-mediated biological catalysis occurring in microorganisms. Similar to solar energy-based optoelectronic power sources, AP has also been recognized as a promising option for reducing carbon emissions generated by the fossil fuel-based power sector. Typical quantum efficiency of AP is 5-10%; in some cases, it exceeds 20%. Recent advancements have focused on nanomaterial biohybrids (NBHs), combining nanomaterial-based photocatalysts/photosensitizers with microorganisms/enzymes for enhanced oxidation/reduction reactions. The synergistic interaction between nanomaterials and microorganisms, facilitated by their comparable size and tunable surface properties, enables improved solar energy absorption, charge separation, and conversion. NBHs offer a versatile platform for sustainable solar energy harvesting and conversion, overcoming the limitations of natural and fully abiotic photosynthesis systems. This review highlights recent breakthroughs in diverse platforms of sunlight and visible light-driven NBH-based AP systems for CO2 fixation, H2 production, water splitting, and value-added chemical synthesis. The synthesis strategies, operating mechanisms, and challenges are highlighted.
Collapse
Affiliation(s)
- Sampathkumar Jeevanandham
- Molecular Science and Engineering Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, Noida 201313, India
| | | | - Natarajan Vijay
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Interdisciplinary Sciences, National Institute of Food Technology and Entrepreneurship Management, Sonipat 131028, India
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | |
Collapse
|
5
|
Zhang Z, Liu X, Gao L, Qi J, Xing C. Biological Hybrid Systems Based on Photocatalysts to Drive the Conversion of CO 2 into High-Value Compounds. ACS APPLIED BIO MATERIALS 2025; 8:2735-2750. [PMID: 40165745 DOI: 10.1021/acsabm.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Artificial photosynthetic biohybrid systems possess the remarkable ability not only to convert solar energy into chemical energy but also to store this energy in the form of organic matter. By leveraging this system, we hold the promise of achieving sustainable energy utilization and chemical production. This review comprehensively summarizes artificial photosynthetic biohybrid systems consisting of metal sulfides, noble metals, quantum dots, composite photocatalysts, and conjugated polymers of organic semiconductor materials with microorganisms and provides a comprehensive overview of examples of artificial photosynthetic biohybrid systems converting CO2 into high-value compounds and a summary of the relevant devices that are currently available. Additionally, the review discusses the challenges and future development trends related to artificial photosynthetic biohybrid systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P. R. China
| | - Xinyue Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P. R. China
| | - Longxuan Gao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P. R. China
| | - Junjie Qi
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300131, P. R. China
| | - Chengfen Xing
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
6
|
Suri M, Salimi Jazi F, Crowley JC, Park Y, Fu B, Chen P, Zipfel WR, Barstow B, Hanrath T. Spatially resolved charge-transfer kinetics at the quantum dot-microbe interface using fluorescence lifetime imaging microscopy. Proc Natl Acad Sci U S A 2025; 122:e2407987122. [PMID: 40096614 PMCID: PMC11962476 DOI: 10.1073/pnas.2407987122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 01/15/2025] [Indexed: 03/19/2025] Open
Abstract
Integrating the optoelectronic properties of quantum dots (QDs) with biological enzymatic systems to form microbe-semiconductor biohybrids offers promising prospects for both solar-to-chemical conversion and light-modulated biochemical processes. Developing these nano-bio hybrid systems necessitates a deep understanding of charge-transfer dynamics at the nano-bio interface. Photoexcited carrier transfer from QDs to microbes is driven by complex interactions, with emerging insights into the relevant thermodynamic and kinetic factors. The heterogeneities of both microbes and QD ensembles pose significant challenges in mechanistic understanding, which is critical for designing advanced nano-bio hybrids. We used fluorescence lifetime imaging microscopy to analyze charge transfer between a CdSe QD film and Shewanella oneidensis microbes. We correlated the spatiotemporal fluorescence data with an analytical model. Our analysis revealed two distinct distributions of QD de-excitation pathways. The characteristics of these distributions: 1) a faster transfer rate ([Formula: see text]), with a lower acceptor number ([Formula: see text]) and 2) a slower transfer rate ([Formula: see text]) with a higher acceptor number ([Formula: see text]). We assign these distributions to the indirect and direct electron transfer mechanisms, respectively. Our findings demonstrate how spectroscopic imaging can uncover fundamental electron transfer mechanisms at complex interfaces, offering valuable design principles for future nano-bio hybrids.
Collapse
Affiliation(s)
- Mokshin Suri
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
| | - Farshid Salimi Jazi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY14853
| | - Jack C. Crowley
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
| | - Youngchan Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Bing Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY14853
| | - Warren R. Zipfel
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY14853
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY14853
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY14853
| | - Tobias Hanrath
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY14853
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY14853
| |
Collapse
|
7
|
Wang XH, Wu B, Zhu Y, Wang D, Li NB, Xu ZJ, Luo HQ. Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation. NANO-MICRO LETTERS 2025; 17:182. [PMID: 40072724 PMCID: PMC11904076 DOI: 10.1007/s40820-025-01695-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Ammonia and nitric acid, versatile industrial feedstocks, and burgeoning clean energy vectors hold immense promise for sustainable development. However, Haber-Bosch and Ostwald processes, which generates carbon dioxide as massive by-product, contribute to greenhouse effects and pose environmental challenges. Thus, the pursuit of nitrogen fixation through carbon-neutral pathways under benign conditions is a frontier of scientific topics, with the harnessing of solar energy emerging as an enticing and viable option. This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation, fields ripe with potential for innovation. The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers. Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures, rational element selection, and functional planning, state-of-the-art experimental protocols for understanding photo-fixation processes, valid photocatalytic activity evaluation, and the rational design of catalysts. Furthermore, the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation. It scrutinizes the existing challenges and prospects within this burgeoning domain, aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
Collapse
Affiliation(s)
- Xiao Hu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China
| | - Bin Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
8
|
O'Keeffe S, Garcia L, Chen Y, Law RC, Liu C, Park JO. Bringing carbon to life via one-carbon metabolism. Trends Biotechnol 2025; 43:572-585. [PMID: 39306491 PMCID: PMC11972661 DOI: 10.1016/j.tibtech.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/09/2024] [Accepted: 08/28/2024] [Indexed: 03/01/2025]
Abstract
One-carbon (C1) compounds found in greenhouse gases and industrial waste streams are underutilized carbon and energy sources. While various biological and chemical means exist for converting C1 substrates into multicarbon products, major challenges of C1 conversion lie in creating net value. Here, we review metabolic strategies to utilize carbon across oxidation states. Complications arise in biochemical C1-utilization approaches because of the need for cellular energy currency ATP. ATP supports cell maintenance and proliferation and drives thermodynamically challenging reactions by coupling them with ATP hydrolysis. Powering metabolism through substrate cofeeding and energy transduction from light and electricity improves ATP availability, relieves metabolic bottlenecks, and upcycles carbon. We present a bioenergetic, engineering, and technoeconomic outlook for bringing elements to life.
Collapse
Affiliation(s)
- Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lilly Garcia
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard C Law
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Burns C, Gibson EA, Fuller L, Kalathil S. Powering the Future: Unveiling the Secrets of Semiconductor Biointerfaces in Biohybrids for Semiartificial Photosynthesis. ARTIFICIAL PHOTOSYNTHESIS (WASHINGTON, D.C.) 2025; 1:27-49. [PMID: 40200990 PMCID: PMC11783821 DOI: 10.1021/aps.4c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 04/10/2025]
Abstract
Developing technology for sustainable chemical and fuel production is a key focus of scientific research. Semiartificial photosynthesis is a promising approach, pairing "electric microbes" with artificial light absorbers (semiconductors) to convert N2, CO2, and water into value-added products using sunlight. Mimicking natural photosynthesis is done with semiconductors acting as electron donors or sinks for microbes. This method enables the production of multicarbon (C2+) chemicals (e.g., ethanol and caproic acid) and ammonia with high efficiency and selectivity. Despite significant progress, commercial-scale applications remain elusive due to fundamental challenges. This Review covers advances in semiartificial photosynthesis and highlights that there is no clear mechanistic understanding underpinning the production of chemicals using the combination of light, semiconductors, and microbes. Does the mechanism rely on H2 uptake, do the microbes eat electrons directly from the light absorbers, or is it a combination of both? It focuses on overcoming bottlenecks using advanced spectroscopy, microscopy, and synthetic biology tools to study charge transfer kinetics between microbial cell membranes and semiconductors. Understanding this interaction is crucial for increasing solar-to-chemical (STC) efficiencies, necessary for industrial use. This Review also outlines future research directions and techniques to advance this field, aiming to achieve net-zero climate goals through multidisciplinary efforts.
Collapse
Affiliation(s)
- Cathal Burns
- Hub
for Biotechnology in the Built Environment, Faculty of Health and
Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle NE1 8ST, United
Kingdom
- Energy
Materials Laboratory, Chemistry, School of Natural and Environmental
Science, Newcastle University, Newcastle upon Tyne NE1
7RU, United Kingdom
| | - Elizabeth A Gibson
- Energy
Materials Laboratory, Chemistry, School of Natural and Environmental
Science, Newcastle University, Newcastle upon Tyne NE1
7RU, United Kingdom
| | - Linsey Fuller
- Procter
and Gamble Company, Procter and Gamble Innovation Centre, Newcastle upon Tyne NE12
9TS, United Kingdom
| | - Shafeer Kalathil
- Hub
for Biotechnology in the Built Environment, Faculty of Health and
Life Sciences, Department of Applied Sciences, Northumbria University, Newcastle NE1 8ST, United
Kingdom
| |
Collapse
|
10
|
Mateen A, Khan AJ, Zhou Z, Mujear A, Farid G, Yan W, Li H, Li J, Bao Z. Silicon Nanowires via Metal-Assisted Chemical Etching for Energy Storage Applications. CHEMSUSCHEM 2025; 18:e202400777. [PMID: 39292438 DOI: 10.1002/cssc.202400777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Indexed: 09/19/2024]
Abstract
Silicon nanowires (SiNWs) have demonstrated great potential for energy storage due to their exceptional electrical conductivity, large surface area, and wide compositional range. Metal-assisted chemical etching (MACE) is a widely used top-down technique for fabricating silicon micro/nanostructures. SiNWs fabricated by MACE exhibit significant surface areas and diverse surface chemistry. Since the material composition and surface chemistry have a significant impact on the electrochemical energy storage performance, integrating SiNWs with diverse materials like porous carbon, metal oxides/sulfides, and polymers, can establish composites with excellent properties. Hence, it is imperative to meticulously fabricate SiNW-based materials with customizable morphologies and enhanced electrochemical energy-storage performance. This review provides an in-depth study of recent advancements in SiNW-based materials with enhanced performance for energy storage systems, such as supercapacitors (SCs) and lithium-ion batteries (LIBs). It includes a concise overview of the history, MACE synthesis, and characteristics of SiNWs. Further, it also explores the key elements that influence the MACE process of SiNWs and delves into structural engineering. Additionally, we introduce recent advances in SiNW-based materials for the design of high-performance energy-storage devices, namely SCs and LIBs. Finally, we present the crucial future prospects of SiNW-based materials for energy-storage applications.
Collapse
Affiliation(s)
- Abdul Mateen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Abdul Jabbar Khan
- College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, China
| | - Zidong Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Altaf Mujear
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ghulam Farid
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Wei Yan
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haojie Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Jiawen Li
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhihao Bao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
11
|
Gholizadeh R, Pavlin M, Huš M, Likozar B. Multiscale Modeling of CO 2 Electrochemical Reduction on Copper Electrocatalysts: A Review of Advancements, Challenges, and Future Directions. CHEMSUSCHEM 2025; 18:e202400898. [PMID: 39022871 PMCID: PMC11696222 DOI: 10.1002/cssc.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Although CO2 contributes significantly to global warming, it also offers potential as a raw material for the production of hydrocarbons such as CH4, C2H4 and CH3OH. Electrochemical CO2 reduction reaction (eCO2RR) is an emerging technology that utilizes renewable energy to convert CO2 into valuable fuels, solving environmental and energy problems simultaneously. Insights gained at any individual scale can only provide a limited view of that specific scale. Multiscale modeling, which involves coupling atomistic-level insights (density functional theory, DFT) and (Molecular Dynamics, MD), with mesoscale (kinetic Monte Carlo, KMC, and microkinetics, MK) and macroscale (computational fluid dynamics, CFD) simulations, has received significant attention recently. While multiscale modeling of eCO2RR on electrocatalysts across all scales is limited due to its complexity, this review offers an overview of recent works on single scales and the coupling of two and three scales, such as "DFT+MD", "DFT+KMC", "DFT+MK", "KMC/MK+CFD" and "DFT+MK/KMC+CFD", focusing particularly on Cu-based electrocatalysts as copper is known to be an excellent electrocatalyst for eCO2RR. This sets it apart from other reviews that solely focus exclusively on a single scale or only on a combination of DFT and MK/KMC scales. Furthermore, this review offers a concise overview of machine learning (ML) applications for eCO2RR, an emerging approach that has not yet been reviewed. Finally, this review highlights the key challenges, research gaps and perspectives of multiscale modeling for eCO2RR.
Collapse
Affiliation(s)
- Reza Gholizadeh
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matic Pavlin
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| | - Matej Huš
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
- Association for Technical Culture of SloveniaZaloška 65LjubljanaSI-1001Slovenia
- Institute for the Protection of Cultural Heritage of Slovenia, Conservation Centre, Research InstitutePoljanska 40LjubljanaSI-1000Slovenia
- University of Nova GoricaVipavska 13Nova Gorica, LjubljanaSI-5000Slovenia
| | - Blaž Likozar
- Department of Catalysis and Chemical Reaction EngineeringNational Institute of ChemistryHajdrihova 19LjubljanaSI-1000Slovenia
| |
Collapse
|
12
|
Tong T, Chen X, Tang K, Ma W, Gao C, Song W, Wu J, Wang X, Liu GQ, Liu L. A new-to-nature photosynthesis system enhances utilization of one-carbon substrates in Escherichia coli. Nat Commun 2025; 16:145. [PMID: 39747054 PMCID: PMC11695776 DOI: 10.1038/s41467-024-55498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Photosynthesis harvests solar energy to convert CO2 into chemicals, offering a potential solution to reduce atmospheric CO2. However, integrating photosynthesis into non-photosynthetic microbes to utilize one-carbon substrates is challenging. Here, a photosynthesis system is reconstructed in E. coli, by integrating light and dark reaction to synthesize bioproducts from one-carbon substrates. A light reaction is reconstructed using the photosystem of photosynthetic bacteria, increasing ATP and NADH contents by 337.9% and 383.7%, respectively. A dark reaction is constructed by designing CO2 fixation pathway to synthesize pyruvate. By assembling the light and dark reaction, a photosynthesis system is established and further programmed by installing an energy adapter, enabling the production of acetone, malate, and α-ketoglutarate, with a negative carbon footprint of -0.84 ~ -0.23 kgCO2e/kg product. Furthermore, light-driven one-carbon trophic growth of E. coli is achieved with a doubling time of 19.86 h. This photosynthesis system provides a green and sustainable approach to enhance one-carbon substrates utilization in the future.
Collapse
Affiliation(s)
- Tian Tong
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Kexin Tang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanrong Ma
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaoling Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology and International Cooperation Base of Sci-Tech Innovation on Forest Resource Biotechnology, Yuelushan Laboratory of Hunan Province, Central South University of Forestry and Technology, Changsha, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.
| |
Collapse
|
13
|
Shi Y, Zhang K, Chen J, Zhang B, Guan X, Wang X, Zhang T, Song H, Zou L, Duan X, Gao H, Lin Z. Long-Term Autotrophic Growth and Solar-to-Chemical Conversion in Shewanella Oneidensis MR-1 through Light-Driven Electron Transfer. Angew Chem Int Ed Engl 2024; 63:e202412072. [PMID: 39198969 DOI: 10.1002/anie.202412072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
Members of the genus Shewanella are known for their versatile electron accepting routes, which allow them to couple decomposition of organic matter to reduction of various terminal electron acceptors for heterotrophic growth in diverse environments. Here, we report autotrophic growth of Shewanella oneidensis MR-1 with photoelectrons provided by illuminated biogenic CdS nanoparticles. This hybrid system enables photosynthetic oscillatory acetate production from CO2 for over five months, far exceeding other inorganic-biological hybrid system that can only sustain for hours or days. Biochemical, electrochemical and transcriptomic analyses reveal that the efficient electron uptake of S. oneidensis MR-1 from illuminated CdS nanoparticles supplies sufficient energy to stimulate the previously overlooked reductive glycine pathway for CO2 fixation. The continuous solar-to-chemical conversion is achieved by photon induced electric recycling in sulfur species. Overall, our findings demonstrate that this mineral-assisted photosynthesis, as a widely existing and unique model of light energy conversion, could support the sustained photoautotrophic growth of non-photosynthetic microorganisms in nutrient-lean environments and mediate the reversal of coupled carbon and sulfur cycling, consequently resulting in previously unknown environmental effects. In addition, the hybrid system provides a sustainable and flexible platform to develop a variety of solar products for carbon neutrality.
Collapse
Affiliation(s)
- Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| | - Kejing Zhang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Jianxin Chen
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Bingtian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xin Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL
- Department of Microbiology, Miami University, Oxford, OH 45056, USA
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Han Song
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Long Zou
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Zhejiang, Hangzhou, 310058, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, 410083, China
- Chinese National Engineering Research Centre for Control & Treatment of Heavy Metal Pollution, Changsha, 410083, China
| |
Collapse
|
14
|
Frei H. Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis. PHOTOSYNTHESIS RESEARCH 2024; 162:473-495. [PMID: 38108928 DOI: 10.1007/s11120-023-01061-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Organic bilayers or amorphous silica films of a few nanometer thickness featuring embedded molecular wires offer opportunities for chemically separating while at the same time electronically connecting photo- or electrocatalytic components. Such ultrathin membranes enable the integration of components for which direct coupling is not sufficiently efficient or stable. Photoelectrocatalytic systems for the generation or utilization of renewable energy are among the most prominent ones for which ultrathin separation layers open up new approaches for component integration for improving efficiency. Recent advances in the assembly and spectroscopic, microscopic, and photoelectrochemical characterization have enabled the systematic optimization of the structure, energetics, and density of embedded molecular wires for maximum charge transfer efficiency. The progress enables interfacial designs for the nanoscale integration of the incompatible oxidation and reduction catalysis environments of artificial photosystems and of microbial (or biomolecular)-abiotic systems for renewable energy.
Collapse
Affiliation(s)
- Heinz Frei
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
15
|
Huang S, Ye J, Gao J, Chen M, Zhou S. Harnessing microbes to pioneer environmental biophotoelectrochemistry. Trends Biotechnol 2024; 42:1677-1690. [PMID: 39095256 DOI: 10.1016/j.tibtech.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
In seeking sustainable environmental strategies, microbial biophotoelectrochemistry (BPEC) systems represent a significant advancement. In this review, we underscore the shift from conventional bioenergy systems to sophisticated BPEC applications, emphasizing their utility in leveraging solar energy for essential biochemical conversions. Recent progress in BPEC technology has facilitated improved photoelectron transfer and system stability, resulting in substantial advancements in carbon and nitrogen fixation, degradation of pollutants, and energy recovery from wastewater. Advances in system design and synthetic biology have expanded the potential of BPEC for environmental clean-up and sustainable energy generation. We also highlight the challenges of environmental BPEC systems, ranging from performance improvement to future applications.
Collapse
Affiliation(s)
- Shaofu Huang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiangtao Gao
- Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Man Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
16
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
17
|
Wen N, Jiang Q, Liu D. Polymer semiconductor films and bacteria hybrid artificial bio-leaves. SCIENCE ADVANCES 2024; 10:eadp8567. [PMID: 39485849 PMCID: PMC11529708 DOI: 10.1126/sciadv.adp8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Bio-artificial photosynthetic systems can reduce CO2 into multicarbon compounds by simulating natural photosynthesis. Here, inspired by organic photovoltaic structures, we demonstrate a bio-artificial photosynthetic system based on the hybridization of polymer semiconductor films and bacteria. The study suggests that the polymer-based semiconductor film can efficiently drive the non-photosynthetic bacteria to convert CO2 to acetate. By systematically characterizing the charge transport behavior of the bio-artificial photosynthetic system, the bulk-heterojunction structure and charge transport layers are proven to enhance the system performance markedly. The scalable floating artificial bio-leaf system can produce acetate to gram scale in a week. Notably, the semiconductor film is easy to recycle and maintains stable performance, showing good sustainable production capability of the system. A quasi-solid-state artificial bio-leaf is successfully prepared using agar to simulate the morphology and function of natural leaves. Last, the acetate production converted from CO2 was used to grow yeast for food production, thus achieving a complete simulation of natural photosynthesis.
Collapse
Affiliation(s)
- Na Wen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qianqing Jiang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Dianyi Liu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Zhejiang University, Hangzhou, Zhejiang 310027, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co. Ltd., Hangzhou 310000, Zhejiang, China
| |
Collapse
|
18
|
Zhang Y, Feng T, Zhou X, Zhang Z. Photoelectrocatalytic-Microbial Biohybrid for Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407239. [PMID: 39233547 DOI: 10.1002/adma.202407239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Nitrogen (N2) conversion to ammonia (NH3) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH3 synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N2 fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH3 production yield of 1.85 µmol h-1/108 cells (4.14 µmol h-1 cm-2). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH3 synthesis. The enhancement mechanism of NH3 synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.
Collapse
Affiliation(s)
- Yingjie Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Tianhang Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
19
|
Jayasinghe L, Wei J, Kim J, Lineberry E, Yang P. Particle on a Rod: Surface-Tethered Catalyst on CdS Nanorods for Enzymatically Active Nicotinamide Cofactor Generation. NANO LETTERS 2024; 24:13269-13276. [PMID: 39401012 DOI: 10.1021/acs.nanolett.4c03528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The photochemical generation of nicotinamide cofactor 1,4-NADH, facilitated by inorganic photosensitizers, emerges as a promising model system for investigating charge transfer phenomena at the interface of semiconductors and bacteria, with implications for enhancing photosynthetic biohybrid systems (PBSs). However, extant semiconductor nanocrystal model systems suffer from achieving optimal conversion efficiency under visible light. This study investigates quasi-one-dimensional CdS nanorods as superior light absorbers, surface modified with catalyst Cp*Rh(4,4'-COOH-bpy)Cl2 to produce enzymatically active NADH. This model subsystem facilitates easy product isolation and achieves a turnover frequency (TOF) of 175 h-1, one of the highest efficiencies reported for inorganic photosensitizer-based nicotinamide cofactor generation. Charge transfer kinetics, fundamental for catalytic solar energy conversion, range from 106 to 108 s-1 for this system highlighting the superior electron transfer capabilities of NRs. This model ensures efficient cofactor production and offers critical insights into advancing systems that mimic natural photosynthesis for sustainable solar-to-chemical synthesis.
Collapse
Affiliation(s)
- Lihini Jayasinghe
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jiaxi Wei
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nano Science Institute, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Liang J, Xiao K, Wang X, Hou T, Zeng C, Gao X, Wang B, Zhong C. Revisiting Solar Energy Flow in Nanomaterial-Microorganism Hybrid Systems. Chem Rev 2024; 124:9081-9112. [PMID: 38900019 DOI: 10.1021/acs.chemrev.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.
Collapse
Affiliation(s)
- Jun Liang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kemeng Xiao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianfeng Hou
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Cuiping Zeng
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiang Gao
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bo Wang
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- Key Laboratory of Quantitative Synthetic Biology, Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
21
|
Zhang L, Zeng L, Wang J, Wang H, Zheng D, Wang X, Li D, Zhan G. Enhanced Microbial Protein Production from CO 2 and Air by a MoS 2 Catalyzed Bioelectrochemical System. Chempluschem 2024; 89:e202400072. [PMID: 38416561 DOI: 10.1002/cplu.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Carbon dioxide can be relatively easily reduced to organic matter in a bioelectrochemical system (BES). However, due to insufficient reduction force from in-situ hydrogen evolution, it is difficult for nitrogen reduction. In this study, MoS2 was firstly used as an electrocatalyst for the simultaneous reduction of CO2 and N2 to produce microbial protein (MP) in a BES. Cell dry weight (CDW) could reach 0.81±0.04 g/L after 14 d operation at -0.7 V (vs. RHE), which was 108±3 % higher than that from non-catalyst control group (0.39±0.01 g/L). The produced protein had a better amino acid profile in the BES than that in a direct hydrogen system (DHS), particularly for proline (Pro). Besides, MoS2 promoted the growth of bacterial cell on an electrode and improved the biofilm extracellular electron transfer (EET) by microscopic observation and electrochemical characterization of MoS2 biocathode. The composition of the microbial community and the relative abundance of functional enzymes revealed that MoS2 as an electrocatalyst was beneficial for enriching Xanthobacter and enhancing CO2 and N2 reduction by electrical energy. These results demonstrated that an efficient strategy to improve MP production of BES is to use MoS2 as an electrocatalyst to shift amino acid profile and microbial community.
Collapse
Affiliation(s)
- Lixia Zhang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhen Zeng
- Analysis and Testing Center, South China Normal University, Guangzhou, 510006, China
| | - Jingting Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Haoran Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Decong Zheng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomei Wang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Guoqiang Zhan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
22
|
Bian B, Yu N, Akbari A, Shi L, Zhou X, Xie C, Saikaly PE, Logan BE. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell. WATER RESEARCH 2024; 259:121815. [PMID: 38820732 DOI: 10.1016/j.watres.2024.121815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024]
Abstract
Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.
Collapse
Affiliation(s)
- Bin Bian
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Najiaowa Yu
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Amir Akbari
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Le Shi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xuechen Zhou
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chenghan Xie
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia; Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Schuman Z, Xie Y, O'Keeffe S, Guan X, Sha J, Sun J, Wohlschlegel JA, Park JO, Liu C. Integrated Proteomics and Metabolomics Reveal Altered Metabolic Regulation of Xanthobacter autotrophicus under Electrochemical Water-Splitting Conditions. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39058742 DOI: 10.1021/acsami.4c07363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Biological-inorganic hybrid systems are a growing class of technologies that combine microorganisms with materials for a variety of purposes, including chemical synthesis, environmental remediation, and energy generation. These systems typically consider microorganisms as simple catalysts for the reaction of interest; however, other metabolic activity is likely to have a large influence on the system performance. The investigation of biological responses to the hybrid environment is thus critical to the future development and optimization. The present study investigates this phenomenon in a recently reported hybrid system that uses electrochemical water splitting to provide reducing equivalents to the nitrogen-fixing bacteria Xanthobacter autotrophicus for efficient reduction of N2 to biomass that may be used as fertilizer. Using integrated proteomic and metabolomic methods, we find a pattern of differentiated metabolic regulation under electrochemical water-splitting (hybrid) conditions with an increase in carbon fixation products glycerate-3-phosphate and acetyl-CoA that suggests a high energy availability. We further report an increased expression of proteins of interest, namely, those responsible for nitrogen fixation and assimilation, which indicate increased rates of nitrogen fixation and support previous observations of faster biomass accumulation in the hybrid system compared to typical planktonic growth conditions. This work complicates the inert catalyst view of biological-inorganic hybrids while demonstrating the power of multiomics analysis as a tool for deeper understanding of those systems.
Collapse
Affiliation(s)
- Zachary Schuman
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Samantha O'Keeffe
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Jingwen Sun
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Junyoung O Park
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
24
|
Zhai Y, Tong S, Chen L, Zhang Y, Amin FR, Khalid H, Liu F, Duan Y, Chen W, Chen G, Li D. The enhancement of energy supply in syngas-fermenting microorganisms. ENVIRONMENTAL RESEARCH 2024; 252:118813. [PMID: 38574985 DOI: 10.1016/j.envres.2024.118813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
After the second industrial revolution, social productivity developed rapidly, and the use of fossil fuels such as coal, oil, and natural gas increased greatly in industrial production. The burning of these fossil fuels releases large amounts of greenhouse gases such as CO2, which has caused greenhouse effects and global warming. This has endangered the planet's ecological balance and brought many species, including animals and plants, to the brink of extinction. Thus, it is crucial to address this problem urgently. One potential solution is the use of syngas fermentation with microbial cell factories. This process can produce chemicals beneficial to humans, such as ethanol as a fuel while consuming large quantities of harmful gases, CO and CO2. However, syngas-fermenting microorganisms often face a metabolic energy deficit, resulting in slow cell growth, metabolic disorders, and low product yields. This problem limits the large-scale industrial application of engineered microorganisms. Therefore, it is imperative to address the energy barriers of these microorganisms. This paper provides an overview of the current research progress in addressing energy barriers in bacteria, including the efficient capture of external energy and the regulation of internal energy metabolic flow. Capturing external energy involves summarizing studies on overexpressing natural photosystems and constructing semiartificial photosynthesis systems using photocatalysts. The regulation of internal energy metabolic flows involves two parts: regulating enzymes and metabolic pathways. Finally, the article discusses current challenges and future perspectives, with a focus on achieving both sustainability and profitability in an economical and energy-efficient manner. These advancements can provide a necessary force for the large-scale industrial application of syngas fermentation microbial cell factories.
Collapse
Affiliation(s)
- Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Sheng Tong
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Yuan Zhang
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Habiba Khalid
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Fuguo Liu
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, PR China.
| |
Collapse
|
25
|
Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal 2024; 7:475-482. [PMID: 39524322 PMCID: PMC11546438 DOI: 10.1038/s41929-024-01151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2024] [Indexed: 11/16/2024]
Abstract
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N2 and CO2 fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
27
|
Tremblay PL, Zhang T. Genetic tools for the electrotroph Sporomusa ovata and autotrophic biosynthesis. Appl Environ Microbiol 2024; 90:e0175723. [PMID: 38117058 PMCID: PMC10807461 DOI: 10.1128/aem.01757-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Sporomusa ovata is a Gram-negative acetogen of the Sporomusaceae family with a unique physiology. This anerobic bacterium is a core microbial catalyst for advanced CO2-based biotechnologies including gas fermentation, microbial electrosynthesis, and hybrid photosystem. Until now, no genetic tools exist for S. ovata, which is a critical obstacle to its optimization as an autotrophic chassis and the acquisition of knowledge about its metabolic capacities. Here, we developed an electroporation protocol for S. ovata. With this procedure, it became possible to introduce replicative plasmids such as pJIR751 and its derivatives into the acetogen. This system was then employed to demonstrate the feasibility of heterologous expression by introducing a functional β-glucuronidase enzyme under the promoters of different strengths in S. ovata. Next, a recombinant S. ovata strain producing the non-native product acetone both from an organic carbon substrate and from CO2 was constructed. Finally, a replicative plasmid capable of integrating itself on the chromosome of the acetogen was developed as a tool for genome editing, and gene deletion was demonstrated. These results indicate that S. ovata can be engineered and provides a first-generation genetic toolbox for the optimization of this biotechnological workhorse.IMPORTANCES. ovata harbors unique features that make it outperform most microbes for autotrophic biotechnologies such as a capacity to acquire electrons from different solid donors, a low H2 threshold, and efficient energy conservation mechanisms. The development of the first-generation genetic instruments described in this study is a key step toward understanding the molecular mechanisms involved in these outstanding metabolic and physiological characteristics. In addition, these tools enable the construction of recombinant S. ovata strains that can synthesize a wider range of products in an efficient manner.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, China
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, China
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, China
- Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, China
| |
Collapse
|
28
|
Chen W, Lin H, Yu W, Huang Y, Lv F, Bai H, Wang S. Organic Semiconducting Polymers for Augmenting Biosynthesis and Bioconversion. JACS AU 2024; 4:3-19. [PMID: 38274265 PMCID: PMC10806880 DOI: 10.1021/jacsau.3c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 01/27/2024]
Abstract
Solar-driven biosynthesis and bioconversion are essential for achieving sustainable resources and renewable energy. These processes harness solar energy to produce biomass, chemicals, and fuels. While they offer promising avenues, some challenges and limitations should be investigated and addressed for their improvement and widespread adoption. These include the low utilization of light energy, the inadequate selectivity of products, and the limited utilization of inorganic carbon/nitrogen sources. Organic semiconducting polymers offer a promising solution to these challenges by collaborating with natural microorganisms and developing artificial photosynthetic biohybrid systems. In this Perspective, we highlight the latest advancements in the use of appropriate organic semiconducting polymers to construct artificial photosynthetic biohybrid systems. We focus on how these systems can enhance the natural photosynthetic efficiency of photosynthetic organisms, create artificial photosynthesis capability of nonphotosynthetic organisms, and customize the value-added chemicals of photosynthetic synthesis. By examining the structure-activity relationships and emphasizing the mechanism of electron transfer based on organic semiconducting polymers in artificial photosynthetic biohybrid systems, we aim to shed light on the potential of this novel strategy for artificial photosynthetic biohybrid systems. Notably, these coupling strategies between organic semiconducting polymers and organisms during artificial photosynthetic biohybrid systems will pave the way for a more sustainable future with solar fuels and chemicals.
Collapse
Affiliation(s)
- Weijian Chen
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wen Yu
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yiming Huang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Fengting Lv
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Haotian Bai
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory
for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
29
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
30
|
Zhou C, Zhang G, Guo P, Ye C, Chen Z, Ma Z, Zhang M, Li J. Enhancing photoelectrochemical CO 2 reduction with silicon photonic crystals. Front Chem 2023; 11:1326349. [PMID: 38169620 PMCID: PMC10758474 DOI: 10.3389/fchem.2023.1326349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
The effectiveness of silicon (Si) and silicon-based materials in catalyzing photoelectrochemistry (PEC) CO2 reduction is limited by poor visible light absorption. In this study, we prepared two-dimensional (2D) silicon-based photonic crystals (SiPCs) with circular dielectric pillars arranged in a square array to amplify the absorption of light within the wavelength of approximately 450 nm. By investigating five sets of n + p SiPCs with varying dielectric pillar sizes and periodicity while maintaining consistent filling ratios, our findings showed improved photocurrent densities and a notable shift in product selectivity towards CH4 (around 25% Faradaic Efficiency). Additionally, we integrated platinum nanoparticles, which further enhanced the photocurrent without impacting the enhanced light absorption effect of SiPCs. These results not only validate the crucial role of SiPCs in enhancing light absorption and improving PEC performance but also suggest a promising approach towards efficient and selective PEC CO2 reduction.
Collapse
Affiliation(s)
- Chu Zhou
- School of Engineering, University of Warwick, Coventry, United Kingdom
- Zhejiang Xinke Semiconductor Co., Ltd., Hangzhou, Zhejiang, China
| | - Gaotian Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Peiyuan Guo
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Chenxi Ye
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Zhenjun Chen
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Ziyi Ma
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Menglong Zhang
- Zhejiang Xinke Semiconductor Co., Ltd., Hangzhou, Zhejiang, China
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, China
| | - Jingbo Li
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
31
|
Chen G, Wang R, Sun M, Chen J, Iyobosa E, Zhao J. Carbon dioxide reduction to high-value chemicals in microbial electrosynthesis system: Biological conversion and regulation strategies. CHEMOSPHERE 2023; 344:140251. [PMID: 37769909 DOI: 10.1016/j.chemosphere.2023.140251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Large emissions of atmospheric carbon dioxide (CO2) are causing climatic and environmental problems. It is crucial to capture and utilize the excess CO2 through diverse methods, among which the microbial electrosynthesis (MES) system has become an attractive and promising technology to mitigate greenhouse effects while reducing CO2 to high-value chemicals. However, the biological conversion and metabolic pathways through microbial catalysis have not been clearly elucidated. This review first introduces the main acetogenic bacteria for CO2 reduction and extracellular electron transfer mechanisms in MES. It then intensively analyzes the CO2 bioconversion pathways and carbon chain elongation processes in MES, together with energy supply and utilization. The factors affecting MES performance, including physical, chemical, and biological aspects, are summarized, and the strategies to promote and regulate bioconversion in MES are explored. Finally, challenges and perspectives concerning microbial electrochemical carbon sequestration are proposed, and suggestions for future research are also provided. This review provides theoretical foundation and technical support for further development and industrial application of MES for CO2 reduction.
Collapse
Affiliation(s)
- Gaoxiang Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Rongchang Wang
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China.
| | - Maoxin Sun
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jie Chen
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Eheneden Iyobosa
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| | - Jianfu Zhao
- Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, Shanghai, PR China
| |
Collapse
|
32
|
Kurt E, Qin J, Williams A, Zhao Y, Xie D. Perspectives for Using CO 2 as a Feedstock for Biomanufacturing of Fuels and Chemicals. Bioengineering (Basel) 2023; 10:1357. [PMID: 38135948 PMCID: PMC10740661 DOI: 10.3390/bioengineering10121357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial cell factories offer an eco-friendly alternative for transforming raw materials into commercially valuable products because of their reduced carbon impact compared to conventional industrial procedures. These systems often depend on lignocellulosic feedstocks, mainly pentose and hexose sugars. One major hurdle when utilizing these sugars, especially glucose, is balancing carbon allocation to satisfy energy, cofactor, and other essential component needs for cellular proliferation while maintaining a robust yield. Nearly half or more of this carbon is inevitably lost as CO2 during the biosynthesis of regular metabolic necessities. This loss lowers the production yield and compromises the benefit of reducing greenhouse gas emissions-a fundamental advantage of biomanufacturing. This review paper posits the perspectives of using CO2 from the atmosphere, industrial wastes, or the exhausted gases generated in microbial fermentation as a feedstock for biomanufacturing. Achieving the carbon-neutral or -negative goals is addressed under two main strategies. The one-step strategy uses novel metabolic pathway design and engineering approaches to directly fix the CO2 toward the synthesis of the desired products. Due to the limitation of the yield and efficiency in one-step fixation, the two-step strategy aims to integrate firstly the electrochemical conversion of the exhausted CO2 into C1/C2 products such as formate, methanol, acetate, and ethanol, and a second fermentation process to utilize the CO2-derived C1/C2 chemicals or co-utilize C5/C6 sugars and C1/C2 chemicals for product formation. The potential and challenges of using CO2 as a feedstock for future biomanufacturing of fuels and chemicals are also discussed.
Collapse
Affiliation(s)
- Elif Kurt
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Jiansong Qin
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Alexandria Williams
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| | - Youbo Zhao
- Physical Sciences Inc., 20 New England Business Ctr., Andover, MA 01810, USA;
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA 01854, USA; (E.K.); (J.Q.); (A.W.)
| |
Collapse
|
33
|
Yu Y, Zeng Y, Ouyang Q, Liu X, Zheng Y, Wu S, Tan L. Ultrasound-Induced Abiotic and Biotic Interfacial Electron Transfer for Efficient Treatment of Bacterial Infection. ACS NANO 2023; 17:21018-21029. [PMID: 37899553 DOI: 10.1021/acsnano.3c03858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Electron transfer plays an important role in various catalytic reactions and physiological activities, whose altered processes may change catalytic efficiency and interfere in physiological metabolic processes. In this study, we design an ultrasound (US)-activated piezoelectric responsive heterojunction (PCN-222-BTO, PCN: porous coordination network), which can change the electron transfer path at the abiotic and abiotic-biotic interfaces under US, thus achieving a rapid (15 min) and efficient bactericidal effect of 99.96%. US-induced polarization of BTO generates a built-in electric field, which promotes the electron transfer excited from PCN-222 to BTO at the PCN-222-BTO interface, thereby increasing the level of reactive oxygen species (ROS) production. Especially, we find that the biological electron transfer from the bacterial membrane to BTO is also activated at the MRSA-BTO interface. This antibacterial mode results in the down-regulated ribosomal, DNA and ATP synthesis related genes in MRSA, while the cell membrane and ion transport related genes are up-regulated due to the synergistic damage effect of ROS and disturbance of the bacterial electron transport chain. This US responsive dual-interface system shows an excellent therapeutic effect for the treatment of the MRSA-infected osteomyelitis model, which is superior to clinical vancomycin therapy.
Collapse
Affiliation(s)
- Yi Yu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Yuxuan Zeng
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Qunle Ouyang
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 0087, China
| | - Lei Tan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Boucher DG, Carroll E, Nguyen ZA, Jadhav RG, Simoska O, Beaver K, Minteer SD. Bioelectrocatalytic Synthesis: Concepts and Applications. Angew Chem Int Ed Engl 2023; 62:e202307780. [PMID: 37428529 DOI: 10.1002/anie.202307780] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.
Collapse
Affiliation(s)
- Dylan G Boucher
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Emily Carroll
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Zachary A Nguyen
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Rohit G Jadhav
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Olja Simoska
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Kevin Beaver
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
35
|
Zhong W, Li H, Wang Y. Design and Construction of Artificial Biological Systems for One-Carbon Utilization. BIODESIGN RESEARCH 2023; 5:0021. [PMID: 37915992 PMCID: PMC10616972 DOI: 10.34133/bdr.0021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
The third-generation (3G) biorefinery aims to use microbial cell factories or enzymatic systems to synthesize value-added chemicals from one-carbon (C1) sources, such as CO2, formate, and methanol, fueled by renewable energies like light and electricity. This promising technology represents an important step toward sustainable development, which can help address some of the most pressing environmental challenges faced by modern society. However, to establish processes competitive with the petroleum industry, it is crucial to determine the most viable pathways for C1 utilization and productivity and yield of the target products. In this review, we discuss the progresses that have been made in constructing artificial biological systems for 3G biorefineries in the last 10 years. Specifically, we highlight the representative works on the engineering of artificial autotrophic microorganisms, tandem enzymatic systems, and chemo-bio hybrid systems for C1 utilization. We also prospect the revolutionary impact of these developments on biotechnology. By harnessing the power of 3G biorefinery, scientists are establishing a new frontier that could potentially revolutionize our approach to industrial production and pave the way for a more sustainable future.
Collapse
Affiliation(s)
- Wei Zhong
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| | - Hailong Li
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
- School of Materials Science and Engineering,
Zhejiang University, Zhejiang Province, Hangzhou 310000, PR China
| | - Yajie Wang
- Westlake Center of Synthetic Biology and Integrated Bioengineering, School of Engineering,
Westlake University, Hangzhou 310000, PR China
| |
Collapse
|
36
|
Zheng W, Yang X, Li Z, Yang B, Zhang Q, Lei L, Hou Y. Designs of Tandem Catalysts and Cascade Catalytic Systems for CO 2 Upgrading. Angew Chem Int Ed Engl 2023; 62:e202307283. [PMID: 37338736 DOI: 10.1002/anie.202307283] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Upgrading CO2 into multi-carbon (C2+) compounds through the CO2 reduction reaction (CO2 RR) offers a practical approach to mitigate atmospheric CO2 while simultaneously producing high value chemicals. The reaction pathways for C2+ production involve multi-step proton-coupled electron transfer (PCET) and C-C coupling processes. By increasing the surface coverage of adsorbed protons (*Had ) and *CO intermediates, the reaction kinetics of PCET and C-C coupling can be accelerated, thereby promoting C2+ production. However, *Had and *CO are competitively adsorbed intermediates on monocomponent catalysts, making it difficult to break the linear scaling relationship between the adsorption energies of the *Had /*CO intermediate. Recently, tandem catalysts consisting of multicomponents have been developed to improve the surface coverage of *Had or *CO by enhancing water dissociation or CO2 -to-CO production on auxiliary sites. In this context, we provide a comprehensive overview of the design principles of tandem catalysts based on reaction pathways for C2+ products. Moreover, the development of cascade CO2 RR catalytic systems that integrate CO2 RR with downstream catalysis has expanded the range of potential CO2 upgrading products. Therefore, we also discuss recent advancements in cascade CO2 RR catalytic systems, highlighting the challenges and perspectives in these systems.
Collapse
Affiliation(s)
- Wanzhen Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaoxuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Zhejiang University, Quzhou, Quzhou, Zhejiang, 324000, China
| |
Collapse
|
37
|
Xie Y, Erşan S, Guan X, Wang J, Sha J, Xu S, Wohlschlegel JA, Park JO, Liu C. Unexpected metabolic rewiring of CO 2 fixation in H 2-mediated materials-biology hybrids. Proc Natl Acad Sci U S A 2023; 120:e2308373120. [PMID: 37816063 PMCID: PMC10589654 DOI: 10.1073/pnas.2308373120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/31/2023] [Indexed: 10/12/2023] Open
Abstract
A hybrid approach combining water-splitting electrochemistry and H2-oxidizing, CO2-fixing microorganisms offers a viable solution for producing value-added chemicals from sunlight, water, and air. The classic wisdom without thorough examination to date assumes that the electrochemistry in such a H2-mediated process is innocent of altering microbial behavior. Here, we report unexpected metabolic rewiring induced by water-splitting electrochemistry in H2-oxidizing acetogenic bacterium Sporomusa ovata that challenges such a classic view. We found that the planktonic S. ovata is more efficient in utilizing reducing equivalent for ATP generation in the materials-biology hybrids than cells grown with H2 supply, supported by our metabolomic and proteomic studies. The efficiency of utilizing reducing equivalents and fixing CO2 into acetate has increased from less than 80% of chemoautotrophy to more than 95% under electroautotrophic conditions. These observations unravel previously underappreciated materials' impact on microbial metabolism in seemingly simply H2-mediated charge transfer between biotic and abiotic components. Such a deeper understanding of the materials-biology interface will foster advanced design of hybrid systems for sustainable chemical transformation.
Collapse
Affiliation(s)
- Yongchao Xie
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Sevcan Erşan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jingyu Wang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA90095
| | - Shuangning Xu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| | | | - Junyoung O. Park
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
- California NanoSystems Institute, University of California, Los Angeles, CA90095
| |
Collapse
|
38
|
Fu B, Mao X, Park Y, Zhao Z, Yan T, Jung W, Francis DH, Li W, Pian B, Salimijazi F, Suri M, Hanrath T, Barstow B, Chen P. Single-cell multimodal imaging uncovers energy conversion pathways in biohybrids. Nat Chem 2023; 15:1400-1407. [PMID: 37500951 DOI: 10.1038/s41557-023-01285-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Microbe-semiconductor biohybrids, which integrate microbial enzymatic synthesis with the light-harvesting capabilities of inorganic semiconductors, have emerged as promising solar-to-chemical conversion systems. Improving the electron transport at the nano-bio interface and inside cells is important for boosting conversion efficiencies, yet the underlying mechanism is challenging to study by bulk measurements owing to the heterogeneities of both constituents. Here we develop a generalizable, quantitative multimodal microscopy platform that combines multi-channel optical imaging and photocurrent mapping to probe such biohybrids down to single- to sub-cell/particle levels. We uncover and differentiate the critical roles of different hydrogenases in the lithoautotrophic bacterium Ralstonia eutropha for bioplastic formation, discover this bacterium's surprisingly large nanoampere-level electron-uptake capability, and dissect the cross-membrane electron-transport pathways. This imaging platform, and the associated analytical framework, can uncover electron-transport mechanisms in various types of biohybrid, and potentially offers a means to use and engineer R. eutropha for efficient chemical production coupled with photocatalytic materials.
Collapse
Affiliation(s)
- Bing Fu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xianwen Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Materials Science and Engineering, Institute of Functional Intelligent Materials, and Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
| | - Youngchan Park
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Zhiheng Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Tianlei Yan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Won Jung
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Danielle H Francis
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
- Friends School of Baltimore, Baltimore, MD, USA
| | - Wenjie Li
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Farshid Salimijazi
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mokshin Suri
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Tobias Hanrath
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
39
|
Lineberry E, Kim J, Kim J, Roh I, Lin JA, Yang P. High-Photovoltage Silicon Nanowire for Biological Cofactor Production. J Am Chem Soc 2023; 145:19508-19512. [PMID: 37651703 DOI: 10.1021/jacs.3c06243] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Photocathodic conversion of NAD+ to NADH cofactor is a promising platform for activating redox biological catalysts and enzymatic synthesis using renewable solar energy. However, many photocathodes suffer from low photovoltage, consequently requiring a high cathodic bias for NADH production. Here, we report an n+p-type silicon nanowire (n+p-SiNW) photocathode having a photovoltage of 435 mV to drive energy-efficient NADH production. The enhanced band bending at the n+/p interface accounts for the high photovoltage, which conduces to a benchmark onset potential [0.393 V vs the reversible hydrogen electrode (VRHE)] for SiNW-based photocathodic NADH generation. In addition, the n+p-SiNW nanomaterial exhibits a Faradaic efficiency of 84.7% and a conversion rate of 1.63 μmol h-1 cm-1 at 0.2 VRHE, which is the lowest cathodic potential to achieve the maximum productivity among SiNW-sensitized cofactor production.
Collapse
Affiliation(s)
- Elizabeth Lineberry
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jinhyun Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jimin Kim
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jia-An Lin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
41
|
Lin Y, Shi J, Feng W, Yue J, Luo Y, Chen S, Yang B, Jiang Y, Hu H, Zhou C, Shi F, Prominski A, Talapin DV, Xiong W, Gao X, Tian B. Periplasmic biomineralization for semi-artificial photosynthesis. SCIENCE ADVANCES 2023; 9:eadg5858. [PMID: 37478187 PMCID: PMC10361601 DOI: 10.1126/sciadv.adg5858] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/21/2023] [Indexed: 07/23/2023]
Abstract
Semiconductor-based biointerfaces are typically established either on the surface of the plasma membrane or within the cytoplasm. In Gram-negative bacteria, the periplasmic space, characterized by its confinement and the presence of numerous enzymes and peptidoglycans, offers additional opportunities for biomineralization, allowing for nongenetic modulation interfaces. We demonstrate semiconductor nanocluster precipitation containing single- and multiple-metal elements within the periplasm, as observed through various electron- and x-ray-based imaging techniques. The periplasmic semiconductors are metastable and display defect-dominant fluorescent properties. Unexpectedly, the defect-rich (i.e., the low-grade) semiconductor nanoclusters produced in situ can still increase adenosine triphosphate levels and malate production when coupled with photosensitization. We expand the sustainability levels of the biohybrid system to include reducing heavy metals at the primary level, building living bioreactors at the secondary level, and creating semi-artificial photosynthesis at the tertiary level. The biomineralization-enabled periplasmic biohybrids have the potential to serve as defect-tolerant platforms for diverse sustainable applications.
Collapse
Affiliation(s)
- Yiliang Lin
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jiuyun Shi
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Wei Feng
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518000, China
| | - Jiping Yue
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yanqi Luo
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Bin Yang
- Bioscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Yuanwen Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Huicheng Hu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Chenkun Zhou
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Fengyuan Shi
- Electron Microscopy Core, University of Illinois Chicago, Chicago, IL 60607, USA
| | | | - Dmitri V. Talapin
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Wei Xiong
- Bioscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Xiang Gao
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, and Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen 518000, China
| | - Bozhi Tian
- The James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Liu J, Guo X, He L, Jiang LP, Zhou Y, Zhu JJ. Enhanced photocatalytic CO 2 reduction on biomineralized CdS via an electron conduit in bacteria. NANOSCALE 2023. [PMID: 37325817 DOI: 10.1039/d3nr00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
There is an increasing trend in semi-artificial photosynthesis systems that combine living cells with inorganic semiconductors to activate a bacterial catalytic network. However, these systems face various challenges, including electron-hole recombination, photocorrosion, and the generation of photoexcited radicals by semiconductors, all of which impair the efficiency, stability, and sustainability of biohybrids. We first focus on a reverse strategy to improve highly efficient CO2 photoreduction on biosynthesized inorganic semiconductors using an electron conduit in the electroactive bacterium S. oneidensis MR-1. Due to the suppressed charge recombination and photocorrosion on CdS, the maximum photocatalytic production rate of formate in water was 2650 μmol g-1 h-1 (with a selectivity of ca.100%), which ranks high among all photocatalysts and is the highest for inorganic-biological hybrid systems in an all-inorganic aqueous environment. The reverse enhancement effect of electrogenic bacteria on photocatalysis on semiconductors inspires new insight to develop a new generation of bio-semiconductor catalysts for solar chemical production.
Collapse
Affiliation(s)
- Juan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Xiaoxiao Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Liuyang He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Li-Ping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications, Nanjing, 210023, PR China.
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
43
|
Liang J, Liang K. Nanobiohybrids: Synthesis strategies and environmental applications from micropollutants sensing and removal to global warming mitigation. ENVIRONMENTAL RESEARCH 2023:116317. [PMID: 37290626 DOI: 10.1016/j.envres.2023.116317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/11/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micropollutants contamination and global warming are critical environmental issues that require urgent attention due to natural and anthropogenic activities posing serious threats to human health and ecosystems. However, traditional technologies (such as adsorption, precipitation, biodegradation, and membrane separation et al.) are facing challenges of low utilization efficiency of oxidants, poor selectivity, and complex in-situ monitoring operations. To address these technical bottlenecks, nanobiohybrids, synthesized by interfacing the nanomaterials and biosystems, have recently emerged as eco-friendly technologies. In this review, we summarize the synthesis approaches of nanobiohybrids and their utilization as emerging environmental technologies for addressing environmental problems. Studies demonstrate that enzymes, cells, and living plants can be integrated with a wide range of nanomaterials including reticular frameworks, semiconductor nanoparticles and single-walled carbon nanotubes. Moreover, nanobiohybrids demonstrate excellent performance for micropollutant removal, carbon dioxide conversion, and sensing of toxic metal ions and organic micropollutants. Therefore, nanobiohybrids are expected to be environmental friendly, efficient, and cost-effective techniques for addressing environmental micropollutants issues and mitigating global warming, benefiting both humans and ecosystems alike.
Collapse
Affiliation(s)
- Jieying Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
44
|
Chu N, Jiang Y, Liang Q, Liu P, Wang D, Chen X, Li D, Liang P, Zeng RJ, Zhang Y. Electricity-Driven Microbial Metabolism of Carbon and Nitrogen: A Waste-to-Resource Solution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4379-4395. [PMID: 36877891 DOI: 10.1021/acs.est.2c07588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electricity-driven microbial metabolism relies on the extracellular electron transfer (EET) process between microbes and electrodes and provides promise for resource recovery from wastewater and industrial discharges. Over the past decades, tremendous efforts have been dedicated to designing electrocatalysts and microbes, as well as hybrid systems to push this approach toward industrial adoption. This paper summarizes these advances in order to facilitate a better understanding of electricity-driven microbial metabolism as a sustainable waste-to-resource solution. Quantitative comparisons of microbial electrosynthesis and abiotic electrosynthesis are made, and the strategy of electrocatalyst-assisted microbial electrosynthesis is critically discussed. Nitrogen recovery processes including microbial electrochemical N2 fixation, electrocatalytic N2 reduction, dissimilatory nitrate reduction to ammonium (DNRA), and abiotic electrochemical nitrate reduction to ammonia (Abio-NRA) are systematically reviewed. Furthermore, the synchronous metabolism of carbon and nitrogen using hybrid inorganic-biological systems is discussed, including advanced physicochemical, microbial, and electrochemical characterizations involved in this field. Finally, perspectives for future trends are presented. The paper provides valuable insights on the potential contribution of electricity-driven microbial valorization of waste carbon and nitrogen toward a green and sustainable society.
Collapse
Affiliation(s)
- Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinjun Liang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Panpan Liu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Donglin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
45
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
46
|
Priyanka U, Lens PNL. Enhanced production of amylase, pyruvate and phenolic compounds from glucose by light-driven Aspergillus niger-CuS nanobiohybrids. JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY (OXFORD, OXFORDSHIRE : 1986) 2023; 98:602-614. [PMID: 37066082 PMCID: PMC10087041 DOI: 10.1002/jctb.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/29/2022] [Accepted: 06/08/2022] [Indexed: 06/19/2023]
Abstract
BACKGROUND The demand for value-added compounds such as amylase, pyruvate and phenolic compounds produced by biological methods has prompted the rapid development of advanced technologies for their enhanced production. Nanobiohybrids (NBs) make use of both the microbial properties of whole-cell microorganisms and the light-harvesting efficiency of semiconductors. Photosynthetic NBs were constructed that link the biosynthetic pathways of Aspergillus niger with CuS nanoparticles. RESULTS In this work, NB formation was confirmed by negative values of the interaction energy, i.e., 2.31 × 108 to -5.52 × 108 kJ mol-1 for CuS-Che NBs, whereas for CuS-Bio NBs the values were -2.31 × 108 to -4.62 × 108 kJ mol-1 for CuS-Bio NBs with spherical nanoparticle interaction. For CuS-Bio NBs with nanorod interaction, it ranged from -2.3 × 107 to -3.47 × 107 kJ mol-1 . Further, the morphological changes observed by scanning electron microscopy showed the presence of the elements Cu and S in the energy-dispersive X-ray spectra and the presence of CuS bonds in Fourier transform infrared spectroscopy indicate NB formation. In addition, the quenching effect in photoluminescence studies confirmed NB formation. Production yields of amylase, phenolic compounds and pyruvate amounted to 11.2 μmol L-1, 52.5 μmol L-1 and 28 nmol μL-1, respectively, in A. niger-CuS Bio NBs on the third day of incubation in the bioreactor. Moreover, A niger cells-CuS Bio NBs had amino acids and lipid yields of 6.2 mg mL-1 and 26.5 mg L-1, respectively. Furthermore, probable mechanisms for the enhanced production of amylase, pyruvate and phenolic compounds are proposed. CONCLUSION Aspergillus niger-CuS NBs were used for the production of the amylase enzyme and value-added compounds such as pyruvate and phenolic compounds. Aspergillus niger-CuS Bio NBs showed a greater efficiency compared to A. niger-CuS Che NBs as the biologically produced CuS nanoparticles had a higher compatibility with A. niger cells. © 2022 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI).
Collapse
Affiliation(s)
- Uddandarao Priyanka
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| | - Piet NL Lens
- Department of Microbiology and Ryan InstituteNational University of IrelandGalwayIreland
| |
Collapse
|
47
|
Kumar S, Karmacharya M, Cho YK. Bridging the Gap between Nonliving Matter and Cellular Life. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202962. [PMID: 35988151 DOI: 10.1002/smll.202202962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Indexed: 06/15/2023]
Abstract
A cell, the fundamental unit of life, contains the requisite blueprint information necessary to survive and to build tissues, organs, and systems, eventually forming a fully functional living creature. A slight structural alteration can result in data misprinting, throwing the entire life process off balance. Advances in synthetic biology and cell engineering enable the predictable redesign of biological systems to perform novel functions. Individual functions and fundamental processes at the core of the biology of cells can be investigated by employing a synthetically constrained micro or nanoreactor. However, constructing a life-like structure from nonliving building blocks remains a considerable challenge. Chemical compartments, cascade signaling, energy generation, growth, replication, and adaptation within micro or nanoreactors must be comparable with their biological counterparts. Although these reactors currently lack the power and behavioral sophistication of their biological equivalents, their interface with biological systems enables the development of hybrid solutions for real-world applications, such as therapeutic agents, biosensors, innovative materials, and biochemical microreactors. This review discusses the latest advances in cell membrane-engineered micro or nanoreactors, as well as the limitations associated with high-throughput preparation methods and biological applications for the real-time modulation of complex pathological states.
Collapse
Affiliation(s)
- Sumit Kumar
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Mamata Karmacharya
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan, 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
48
|
Andrei V, Roh I, Yang P. Nanowire photochemical diodes for artificial photosynthesis. SCIENCE ADVANCES 2023; 9:eade9044. [PMID: 36763656 PMCID: PMC9917021 DOI: 10.1126/sciadv.ade9044] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Artificial photosynthesis can provide a solution to our current energy needs by converting small molecules such as water or carbon dioxide into useful fuels. This can be accomplished using photochemical diodes, which interface two complementary light absorbers with suitable electrocatalysts. Nanowire semiconductors provide unique advantages in terms of light absorption and catalytic activity, yet great control is required to integrate them for overall fuel production. In this review, we journey across the progress in nanowire photoelectrochemistry (PEC) over the past two decades, revealing design principles to build these nanowire photochemical diodes. To this end, we discuss the latest progress in terms of nanowire photoelectrodes, focusing on the interplay between performance, photovoltage, electronic band structure, and catalysis. Emphasis is placed on the overall system integration and semiconductor-catalyst interface, which applies to inorganic, organic, or biologic catalysts. Last, we highlight further directions that may improve the scope of nanowire PEC systems.
Collapse
Affiliation(s)
- Virgil Andrei
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Inwhan Roh
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Kavli Energy NanoScience Institute, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
50
|
Pan Z, Liu Z, Hu X, Cui K, Cai W, Guo K. Enhancement of acetate production in hydrogen-mediated microbial electrosynthesis reactors by addition of silica nanoparticles. BIORESOUR BIOPROCESS 2023; 10:3. [PMID: 38647934 PMCID: PMC10992923 DOI: 10.1186/s40643-023-00627-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 01/21/2023] Open
Abstract
Microbial electrosynthesis (MES) is a promising technology for CO2 fixation and electrical energy storage. Currently, the low current density of MES limits its practical application. The H2-mediated and non-biofilm-driven MES could work under higher current density, but it is difficult to achieve high coulombic efficiency (CE) due to low H2 solubility and poor mass transfer. Here, we proposed to enhance the hydrogen mass transfer by adding silica nanoparticles to the reactor. At pH 7, 35 ℃ and 39 A·m- 2 current density, with the addition of 0.3wt% silica nanoparticles, the volumetric mass transfer coefficient (kLa) of H2 in the reactor increased by 32.4% (from 0.37 h- 1 to 0.49 h- 1), thereby increasing the acetate production rate and CE of the reactor by 69.8% and 69.2%, respectively. The titer of acetate in the reactor with silica nanoparticles (18.5 g·L- 1) was 56.9% higher than that of the reactor without silica nanoparticles (11.8 g·L- 1). Moreover, the average acetate production rate of the reactor with silica nanoparticles was up to 2.14 g·L- 1·d- 1 in the stable increment phase, which was much higher than the other reported reactors. These results demonstrated that the addition of silica nanoparticles is an effective approach to enhancing the performance of H2-mediated MES reactors.
Collapse
Affiliation(s)
- Zeyan Pan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhuangzhuang Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xiaona Hu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Cui
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenfang Cai
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Guo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|