1
|
Zhang L, Fu Y, Tong Y, Xie G, Deng S. Dynamic DNA Assembly by Programmable Hybridization Chain Reaction Mimicking Tubulin. NANO LETTERS 2024; 24:2603-2610. [PMID: 38349971 DOI: 10.1021/acs.nanolett.3c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Dynamic biological structures involve the continual turnover of molecules within supramolecular assemblies such as tubulin. Inspired by dynamic biology self-organizing systems, we build an artificial dynamic structure based on DNA nanotechnology through a nonequilibrium chemical system. Herein, a metastable domain (MD), essentially a stem-loop structure, was introduced into DNA hairpins within hybridization chain reaction (HCR), thereby imparting dynamic activity to the DNA polymers. Hairpins with MD thermodynamically assemble to a high-energy polymer in the presence of trigger strands. The polymer can relax back to the stable unassembled state once the invader is added and finally relax to the activated hairpin by an anti-invader. Reversible assembly/disassembly of the HCR is achieved through invader/anti-invader cycles. We accomplished kinetic modulation, reversible conformational switching, cascading regulation, and enzyme activity control through the MD-HCR. We believe that the design of the MD-HCR could inspire the development of autonomous biological functions within artificial systems.
Collapse
Affiliation(s)
- Li Zhang
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yao Fu
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yanqiu Tong
- School of Tourism and Media, Chongqing Jiaotong University, Chongqing 400016, China
| | - Guoming Xie
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Shixiong Deng
- Department of Forensic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Lin D, Ke Y, Chen H, Zhang Y, Tang X, Cui W, Li X, He Y, Wu L. Self-Assembly Nanostructure Induced by Regulation of G-Quadruplex DNA Topology via a Reduction-Sensitive Azobenzene Ligand on Cells. Biomacromolecules 2023; 24:5004-5017. [PMID: 37843895 DOI: 10.1021/acs.biomac.3c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The control of DNA assembly systems on cells has increasingly shown great importance for precisely targeted therapies. Here, we report a controllable DNA self-assembly system based on the regulation of G-quadruplex DNA topology by a reduction-sensitive azobenzene ligand. Specifically, three azobenzene multiamines are developed, and AzoDiTren is identified as the best G4 binder, which displays high affinity and specificity for G4 DNA. Moreover, the reduction-sensitive nature of the azobenzene scaffold allows AzoDiTren to induce a complete change of the G4 topology in a tissue-specific manner, even at high metal cation concentrations. On this basis, the AzoDiTren-induced G4 conformational switch achieves control of the self-assembly of G4-functionalized DNAs on cells. This strategy enables the regulation of G4 and DNA self-assembly by the bioreductant-responsive ligand.
Collapse
Affiliation(s)
- Dao Lin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqi Ke
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjia Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinlong Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinjing Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Cui
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangjun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian He
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
4
|
Wang Y, Zhang Y, Du Q, Cao D, Lu X, Meng Z. Sensitive SERS detection of oral squamous cell carcinoma-related miRNAs in saliva via a gold nanohexagon array coupled with hybridization chain reaction amplification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4563-4575. [PMID: 36317581 DOI: 10.1039/d2ay01180h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, a highly specific and sensitive method for the detection of dual miRNAs was successfully developed by a hybridization chain reaction (HCR) amplification coupled with surface-enhanced Raman scattering (SERS) on Au-Ag hollow nanoparticles (Au-Ag HNPs) and a gold nanohexagon (AuNH) array. Two Raman reporter-labelled and hairpin DNA-modified Au-Ag HNPs acted as SERS probes (Au-Ag HNPs@4-MBA@HP1-1, Au-Ag HNPs@4-MBA@HP2-1, Au-Ag HNPs@DTNB@HP1-2, and Au-Ag HNPs@DTNB@HP2-2), and the hairpin DNA-modified AuNH array acted as the capture substrate. The HCR process could be triggered by the presence of target miRNAs, and long DNA hybridization chains on the substrate were formed by self-assembly rapidly, causing significant signal enhancement. Using the mentioned strategy, a low detection limit (LOD) of 6.51 aM for miR-31 and 6.52 aM for miR-21 in human saliva were obtained, showing the biosensor's remarkable sensitivity. The proposed biosensor also displays a significant specificity in detecting target miRNAs by introducing different interfering factors. This method has been successfully applied to detect and identify miR-21 and miR-31 in saliva from oral squamous cell carcinoma (OSCC) patients and healthy subjects. The results were consistent with those of the traditional test method in detecting target miRNAs, which confirmed the good accuracy of our method. Hence, the new assay method has great potential to be a valuable platform for detecting miRNAs in the early diagnosis of OSCC.
Collapse
Affiliation(s)
- Youwei Wang
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yatong Zhang
- Graduate School of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Qiu Du
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Demao Cao
- Department of Neurosurgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Xiaoxia Lu
- Department of Oncology, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China.
| | - Zhibing Meng
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, 225000, China.
| |
Collapse
|
5
|
Toehold-mediated biosensors: Types, mechanisms and biosensing strategies. Biosens Bioelectron 2022; 220:114922. [DOI: 10.1016/j.bios.2022.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
|
6
|
Perturbation-based pH Control Systems for Buffer and Equivalence Points. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Filardo F, Vukovic P, Sharman M, Gambley C, Campbell P. Development of a Novel Tissue Blot Hybridization Chain Reaction for the Identification of Plant Viruses. PLANTS (BASEL, SWITZERLAND) 2022; 11:2325. [PMID: 36079706 PMCID: PMC9459701 DOI: 10.3390/plants11172325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Assays for the high throughput screening of crops for virus monitoring need to be quick, easy, and low cost. One method involves using tissue blot immunoassays (TBIA), where plant stems are blotted onto nitrocellulose membrane and screened with available antibodies against a range of viruses. TBIAs are inexpensive but limited by antibody availability and specificity. To circumvent the antibody limitations, we developed the tissue blot hybridization chain reaction (TB-HCR). As with TBIA, plant stems are blotted onto a nitrocellulose membrane, however, TB-HCR involves using nucleic acid probes instead of antibodies. We demonstrated for the first time that TB-HCR can be used for plant viruses by designing and testing probes against species from several virus genera including begomovirus, polerovirus, luteovirus, cucumovirus, and alfamovirus. We also explored different hairpin reporter methods such as biotin/streptavidin-AP and the Alexa Fluor-488 Fluorophore. TB-HCR has applications for low-cost diagnostics for large sample numbers, rapid diagnostic deployment for new viruses, and can be performed as a preliminary triage assay prior to downstream applications.
Collapse
|
8
|
Lin PY, Chi R, Wu YL, Ho JAA. Applications of triplex DNA nanostructures in sensor development. Anal Bioanal Chem 2022; 414:5217-5237. [PMID: 35469098 DOI: 10.1007/s00216-022-04058-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Triplex DNA nanostructures are one of the most emerging and fascinating self-assembled nanostructures due to their unique nanoparticle-like organization and inherit characteristics. They have attracted numerous interests recently because of their versatile and powerful utility in diverse areas of science and technology, such as clinical or disease diagnosis and stimuli-based drug delivery. This review addresses particularly the utilization of DNA triplexes in the development of biosensors for detecting nucleic acid; strategies in sensing pH, protein activity, ions, or molecules. Finally, an outlook for potential applications of triplex DNA nanoswitches is provided.
Collapse
Affiliation(s)
- Pei-Ying Lin
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Rong Chi
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Ling Wu
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei, 10617, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
9
|
The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal Biochem 2021; 631:114260. [PMID: 34023274 DOI: 10.1016/j.ab.2021.114260] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023]
Abstract
A comparative review of the most common isothermal methods is provided. In the last two decades, the challenge of using isothermal amplification systems as an alternate to the most extensive and long-standing nucleic acids-amplifying method-the polymerase chain reaction-has arisen. The main advantage of isothermal amplification is no requirement for expensive laboratory equipment for thermal cycling. Considerable efforts have been made to improve the current techniques of nucleic acid amplification and the development of new approaches based on the main drawbacks of each method. The most important and challenging goal was to achieve a low-cost, straightforward system that is rapid, specific, accurate, and sensitive.
Collapse
|
10
|
Wang H, Luo D, Wang H, Wang F, Liu X. Construction of Smart Stimuli-Responsive DNA Nanostructures for Biomedical Applications. Chemistry 2021; 27:3929-3943. [PMID: 32830363 DOI: 10.1002/chem.202003145] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/12/2020] [Indexed: 12/13/2022]
Abstract
DNA nanostructures have recently attracted increasing interest in biological and biomedical applications by virtue of their unique properties, such as structural programmability, multi-functionality, stimuli-responsive behaviors, and excellent biocompatibility. In particular, the intelligent responsiveness of smart DNA nanostructures to specific stimuli has facilitated their extensive development in the field of high-performance biosensing and controllable drug delivery. This minireview begins with different self-assembly strategies for the construction of various DNA nanostructures, followed by the introduction of a variety of stimuli-responsive functional DNA nanostructures for assembling metastable soft materials and for facilitating amplified biosensing. The recent achievements of smart DNA nanostructures for controllable drug delivery are highlighted. Finally, the current challenges and possible developments of this promising research are discussed in the fields of intelligent nanomedicine.
Collapse
Affiliation(s)
- Huimin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China.,College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Dan Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Hong Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430000, P. R. China
| |
Collapse
|
11
|
Li F, Li G, Cao S, Liu B, Ren X, Kang N, Qiu F. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Biosens Bioelectron 2021; 172:112757. [PMID: 33129074 DOI: 10.1016/j.bios.2020.112757] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
MicroRNAs (miRNAs) are important biomarkers for the diagnosis, prognosis, and treatment of human diseases. Sensitive and selective detection of multiple miRNAs simultaneously will greatly facilitate the early and accurate diagnosis of cancers. Herein, a novel entropy-driven amplification system-templated silver nanoclusters sensing platform was developed for the multiplexed analysis of tumor-associated miRNAs. The sensing platform was constructed by coupling target-triggered entropy-driven catalysis with luminescence adjustable DNA-templated silver nanoclusters (Ag NCs). In the presence of target miRNA, the sensing platform initiates the branch migration and strand displacement of the complex, which has a six-base cytosine loop for stabilizing the luminous Ag NCs. The target is cyclically generated for new catalysis while turning off the fluorescence of Ag NCs; this is accompanied by a significantly amplified optical readout. In this study, two different complex-stabilized Ag NCs systems were proposed, the yellow-emitting Ag NCs and red-emitting Ag NCs biosensors enabled the analysis of miRNA-141 and miRNA-155 with detection limits of 6.1 pM and 8.7 pM, respectively. Impressively, owing to the excellent selectivity, flexibility, and narrow-band excitation of the platform, the multiplexed synchronous detection of miRNA-141 and miRNA-155 were achieved in buffer, biological cell lysates and human serum samples with satisfactory results. The simple, flexible, and convenient strategy provides a powerful tool for multiple biomarkers analysis and related clinical applications.
Collapse
Affiliation(s)
- Fengyun Li
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Gen Li
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Shijie Cao
- Tianjin Key Laboratory of TCM Chemistry and Analysis, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Xiaoliang Ren
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China
| | - Feng Qiu
- School of Chinese Materia Medica, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Tianjin, 301617, PR China.
| |
Collapse
|
12
|
Zhang C, Chen J, Sun R, Huang Z, Luo Z, Zhou C, Wu M, Duan Y, Li Y. The Recent Development of Hybridization Chain Reaction Strategies in Biosensors. ACS Sens 2020; 5:2977-3000. [PMID: 32945653 DOI: 10.1021/acssensors.0c01453] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the continuous development of biosensors, researchers have focused increasing attention on various signal amplification strategies to pursue superior performance for more applications. In comparison with other signal amplification strategies, hybridization chain reaction (HCR) as a powerful signal amplification technique shows its certain charm owing to nonenzymatic and isothermal features. Recently, on the basis of conventional HCR, this technique has been developed and improved rapidly, and a variety of HCR-based biosensors with excellent performance have been reported. Herein, we present a systematic and critical review on the research progress of HCR in biosensors in the last five years, including the newly developed HCR strategies such as multibranched HCR, migration HCR, localized HCR, in situ HCR, netlike HCR, and so on, as well as the combination strategies of HCR with isothermal signal amplification techniques, nanomaterials, and functional DNA molecules. By illustrating some representative works, we also summarize the advantage and challenge of HCR in biosensors, and offer a deep discussion of the latest progress and future development trends of HCR in biosensors.
Collapse
Affiliation(s)
- Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Sun
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
| | - Chen Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Mengfan Wu
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710069, China
- Research Center of Analytical Instrumentation, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
- Provincial Key Laboratory for Food Safety Monitoring and Risk Assessment of Sichuan, Chengdu 610041, China
| |
Collapse
|
13
|
Figg CA, Winegar PH, Hayes OG, Mirkin CA. Controlling the DNA Hybridization Chain Reaction. J Am Chem Soc 2020; 142:8596-8601. [PMID: 32356981 DOI: 10.1021/jacs.0c02892] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel method for controlling the oligomerization of metastable DNA hairpins using the hybridization chain reaction (HCR) is reported. Control was achieved through the introduction of a base-pair mismatch in the duplex of the hairpins. The mismatch modification allows one to kinetically differentiate initiation versus propagation events, leading to DNA oligomers up to 10 monomers long and improving dispersities from 2.5 to 1.3-1.6. Importantly, even after two consecutive chain extensions, dispersity remained unaffected, showing that well-defined block co-oligomers can be achieved. As a proof-of-concept, this technique was then applied to hairpin monomers functionalized with a mutant green fluorescent protein to prepare protein oligomers. Taken together, this work introduces an effective method for controlling living macromolecular HCR oligomerization in a manner analogous to the controlled polymerization of small molecules.
Collapse
Affiliation(s)
- C Adrian Figg
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Peter H Winegar
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oliver G Hayes
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Engelen W, Zhu K, Subedi N, Idili A, Ricci F, Tel J, Merkx M. Programmable Bivalent Peptide-DNA Locks for pH-Based Control of Antibody Activity. ACS CENTRAL SCIENCE 2020; 6:22-31. [PMID: 31989023 PMCID: PMC6978833 DOI: 10.1021/acscentsci.9b00964] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The ability to control antibody activity by pH has important applications in diagnostics, therapeutic antibody targeting, and antibody-guided imaging. Here, we report the rational design of bivalent peptide-DNA ligands that allow pH-dependent control of antibody activity. Our strategy uses a pH-responsive DNA triple helix to control switching from a tight-binding bivalent peptide-DNA lock into a weaker-binding monovalent ligand. Different designs are introduced that allow antibody activation at both basic and acidic pHs, either autonomously or in the presence of an additional oligonucleotide trigger. The pH of antibody activation could be precisely tuned by changing the DNA triple helix sequence. The peptide-DNA locks allowed pH-dependent antibody targeting of tumor cells both in bulk and for single cells confined in water-in-oil microdroplets. The latter approach enables high-throughput antibody-mediated detection of single tumor cells based on their distinctive metabolic activity.
Collapse
Affiliation(s)
- Wouter Engelen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kwankwan Zhu
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Nikita Subedi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Andrea Idili
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Jurjen Tel
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- E-mail:
| |
Collapse
|
15
|
Zhou Y, Yang L, Wei J, Ma K, Gong X, Shang J, Yu S, Wang F. An Autonomous Nonenzymatic Concatenated DNA Circuit for Amplified Imaging of Intracellular ATP. Anal Chem 2019; 91:15229-15234. [PMID: 31668059 DOI: 10.1021/acs.analchem.9b04126] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A robust ATP aptasensor has been successfully constructed for intracellular imaging via the autonomous nonenzymatic cascaded hybridization chain reaction (Ca-HCR) circuit. This compact aptasensor is easily assembled by integrating the sensing module and amplification module, and is furtherly introduced for selective adenosine triphosphate (ATP) assay and for the sensitive tracking of varied ATP expressions in living cells. The ATP-targeting aptamer-encoded sensing module can specifically recognize ATP and release the initiator strand for successively motivating the two-layered HCR (hybridization chain reaction) circuit via the FRET transduction mechanism. The synergistic reaction acceleration of the two HCRs contributes to the high signal gain (amplification efficiency of N2). The whole reaction process was modeled and simulated by MATLAB to deeply explore the underlying molecular reaction mechanism, implying that the cascade HCR is sufficient enough to guarantee the ATP-recognition and amplification processes. The Ca-HCR-amplified aptasensor shows high sensitivity and selectivity for in vitro ATP assay, and can monitor these varied ATP expressions in living cells via intracellular imaging technique. Furthermore, the present aptasensor can be easily extended for monitoring other low-abundance biomarkers, which is especially important for precisely understanding these related biological processes.
Collapse
Affiliation(s)
- Yangjie Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Lei Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Jie Wei
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Kang Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Xue Gong
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Jinhua Shang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Shanshan Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| | - Fuan Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , P. R. China
| |
Collapse
|
16
|
Wang J, Song Q, Guo X, Cui X, Tan L, Dong L. Precise Cross-Dimensional Regulation of the Structure of a Photoreversible DNA Nanoswitch. Anal Chem 2019; 91:14530-14537. [PMID: 31617350 DOI: 10.1021/acs.analchem.9b03547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, an accurately and digitally regulated allosteric nanoswitch based on the conformational control of two DNA hairpins was developed. By switching between UV irradiation and blue light conditions, the second molecular beacon (H#2) would bind/separate with a repression sequence (RES) via the introduced PTG molecules (a photosensitive azobenzene derivative), resulting in the target aptamer sequence in the first molecular beacon (H#1) not being able/being able to hold the stem-loop configuration, hence losing/regaining the ability to bind with the target. Importantly, we successfully monitor conformation changes of the nanoswitch by an elegant mathematical model for connecting Ki (the dissociation constant between RES and H#2) with Kd (the overall equilibrium constant of the nanoswitch binding the target), hence realizing "observing" DNA structure across dimensions from "structural visualization" to digitization and, accurately, digitally regulating DNA structure from digitization to "structural visualization".
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Qitao Song
- College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking-Tsinghua Center for Life Sciences , Peking University , 100871 Beijing , China
| | - Xiaogang Guo
- College of Chemistry and Chemical Engineering , Yangtze Normal. University , Chongqing 408100 , China
| | - Xun Cui
- School of Materials Science and Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Luxi Tan
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| | - Lichun Dong
- School of Chemistry and Chemical Engineering , Chongqing University , Chongqing 400044 , China.,Key Laboratory of Low-grade Energy Utilization Technologies & Systems of the Ministry of Education , Chongqing University , Chongqing 40004 , China
| |
Collapse
|
17
|
Chu H, Zhao J, Mi Y, Zhao Y, Li L. Near‐Infrared Light‐Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angew Chem Int Ed Engl 2019; 58:14877-14881. [DOI: 10.1002/anie.201906224] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
18
|
Chu H, Zhao J, Mi Y, Zhao Y, Li L. Near‐Infrared Light‐Initiated Hybridization Chain Reaction for Spatially and Temporally Resolved Signal Amplification. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906224] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongqian Chu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jian Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yongsheng Mi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
19
|
Ottaviani A, Iacovelli F, Idili A, Falconi M, Ricci F, Desideri A. Engineering a responsive DNA triple helix into an octahedral DNA nanostructure for a reversible opening/closing switching mechanism: a computational and experimental integrated study. Nucleic Acids Res 2019; 46:9951-9959. [PMID: 30247614 PMCID: PMC6212788 DOI: 10.1093/nar/gky857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/19/2018] [Indexed: 11/12/2022] Open
Abstract
We propose an experimental and simulative approach to study the effect of integrating a DNA functional device into a large-sized DNA nanostructure. We selected, as a test bed, a well-known and characterized pH-dependent clamp-switch, based on a parallel DNA triple helix, to be integrated into a truncated octahedral scaffold. We designed, simulated and experimentally characterized two different functionalized DNA nanostructures, with and without the presence of a spacer between the scaffold and the functional elements. The experimental and simulative data agree in validating the need of a spacer for the occurrence of the pH dependent switching mechanism. The system is fully reversible and the switching can be monitored several times without any perturbation, maintaining the same properties of the isolated clamp switch in solution.
Collapse
Affiliation(s)
- Alessio Ottaviani
- Biology Department, University of Rome Tor Vergata, Rome 00133, Italy
| | | | - Andrea Idili
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Mattia Falconi
- Biology Department, University of Rome Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Rome 00133, Italy
| | | |
Collapse
|
20
|
Iacovelli F, Cabungcal Hernandez K, Desideri A, Falconi M. Probing the Functional Topology of a pH-Dependent Triple Helix DNA Nanoswitch Family through Gaussian Accelerated MD Simulation. J Chem Inf Model 2019; 59:2746-2752. [PMID: 31074618 DOI: 10.1021/acs.jcim.9b00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The topology of a pH-dependent triple helix DNA nanoswitch family has been characterized through simulative analysis to evaluate the efficiency of the switching mechanism varying the length of the loop connecting the two strands forming the double helix portion. In detail, the system is formed by a double helix made by two six base complementary sequences, connected by one loop having an increasing number of thymidines, namely 5, 7, or 9. The triplex-forming sequence made by six bases, connected to the double helix through a constant 25 base loop, interacts at pH 5.0 through Hoogsteen hydrogen bonds with one strand of the double helical region. We demonstrate, through molecular dynamics simulation, that the thymidine loop length exerts a fine regulatory role for the stability of the triple helix structure and is critical in modulating the switching mechanism triggered by the pH increase.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Kevin Cabungcal Hernandez
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Alessandro Desideri
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| | - Mattia Falconi
- Department of Biology, Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB) , University of Rome Tor Vergata , Via della Ricerca Scientifica 1 , 00133 Rome , Italy
| |
Collapse
|
21
|
Yu Y, Jin B, Li Y, Deng Z. Stimuli-Responsive DNA Self-Assembly: From Principles to Applications. Chemistry 2019; 25:9785-9798. [PMID: 30931536 DOI: 10.1002/chem.201900491] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/01/2023]
Abstract
Stimuli-responsive DNA self-assembly shares the advantages of both designed stimuli-responsiveness and the molecular programmability of DNA structures, offering great opportunities for basic and applied research in dynamic DNA nanotechnology. In this minireview, we summarize the most recent progress in this rapidly developing field. The trigger mechanisms of the responsive DNA systems are first divided into six categories, which are then explained with illustrative examples following this classification. Subsequently, proof-of-concept applications in terms of biosensing, in vivo pH-mapping, drug delivery, and therapy are discussed. Finally, we provide some remarks on the challenges and opportunities of this highly promising research direction in DNA nanotechnology.
Collapse
Affiliation(s)
- Yang Yu
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Bang Jin
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials, and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Zhaoxiang Deng
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
22
|
Huang Z, Chen J, Luo Z, Wang X, Duan Y. Label-Free and Enzyme-Free Colorimetric Detection of Pb 2+ Based on RNA Cleavage and Annealing-Accelerated Hybridization Chain Reaction. Anal Chem 2019; 91:4806-4813. [PMID: 30834746 DOI: 10.1021/acs.analchem.9b00410] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A label-free and enzyme-free colorimetric sensor for rapid detection of Pb2+ is reported, which is based on the strategy of DNAzyme-mediated RNA cleavage combined with an annealing-accelerated DNA hybridization chain reaction (HCR). As a trigger DNA, the substrate strand (STM) of DNAzyme can initiate HCR effectively. However, when it is cleaved by DNAzyme in the presence of Pb2+, the separation of DNA functional domains leads to a serious decrease in HCR efficiency. As a result, the difference in Pb2+ concentration converts into the difference of DNA assembly, which eventually leads to the color change of colloidal gold nanoparticles (AuNPs). In this work, a DNA strand (cGR5) completely complementary to the catalytic strand (GR5) of DNAzyme is used to improve the dissociation of STM to enhance the HCR efficiency. In addition, the simple operation of DNA annealing is first used to accelerate the HCR process, enabling the Pb2+ detection to be completed in about 30 min. As advantages of high sensitivity, good selectivity, strong anti-interference ability, and good practical performance are achieved, it is anticipated that the cheap and simple colorimetric sensor will be helpful for on-site detection of environmental and food samples.
Collapse
Affiliation(s)
- Zhijun Huang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Junman Chen
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Xiaqing Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Science , Sichuan University , Chengdu , People's Republic of China 610065
| |
Collapse
|
23
|
Simmel FC, Yurke B, Singh HR. Principles and Applications of Nucleic Acid Strand Displacement Reactions. Chem Rev 2019; 119:6326-6369. [PMID: 30714375 DOI: 10.1021/acs.chemrev.8b00580] [Citation(s) in RCA: 381] [Impact Index Per Article: 76.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dynamic DNA nanotechnology, a subfield of DNA nanotechnology, is concerned with the study and application of nucleic acid strand-displacement reactions. Strand-displacement reactions generally proceed by three-way or four-way branch migration and initially were investigated for their relevance to genetic recombination. Through the use of toeholds, which are single-stranded segments of DNA to which an invader strand can bind to initiate branch migration, the rate with which strand displacement reactions proceed can be varied by more than 6 orders of magnitude. In addition, the use of toeholds enables the construction of enzyme-free DNA reaction networks exhibiting complex dynamical behavior. A demonstration of this was provided in the year 2000, in which strand displacement reactions were employed to drive a DNA-based nanomachine (Yurke, B.; et al. Nature 2000, 406, 605-608). Since then, toehold-mediated strand displacement reactions have been used with ever increasing sophistication and the field of dynamic DNA nanotechnology has grown exponentially. Besides molecular machines, the field has produced enzyme-free catalytic systems, all DNA chemical oscillators and the most complex molecular computers yet devised. Enzyme-free catalytic systems can function as chemical amplifiers and as such have received considerable attention for sensing and detection applications in chemistry and medical diagnostics. Strand-displacement reactions have been combined with other enzymatically driven processes and have also been employed within living cells (Groves, B.; et al. Nat. Nanotechnol. 2015, 11, 287-294). Strand-displacement principles have also been applied in synthetic biology to enable artificial gene regulation and computation in bacteria. Given the enormous progress of dynamic DNA nanotechnology over the past years, the field now seems poised for practical application.
Collapse
Affiliation(s)
| | - Bernard Yurke
- Micron School of Materials Science and Engineering , Boise State University , Boise , ID 83725 , United States
| | - Hari R Singh
- Physics Department , TU München , 85748 Garching , Germany
| |
Collapse
|
24
|
Hansen-Bruhn M, Nielsen LDF, Gothelf KV. Rapid Detection of Drugs in Human Plasma Using a Small-Molecule-Linked Hybridization Chain Reaction. ACS Sens 2018; 3:1706-1711. [PMID: 30105911 DOI: 10.1021/acssensors.8b00439] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rapid detection and quantification of pharmaceutical drugs directly in human plasma is of major importance for the development of relevant point-of-care testing devices. Here, we report a method for detection and quantification of small molecules in human plasma. An assay employing a small molecule-linked hybridization chain reaction (HCR) has been devised for the detection of the pharmaceutically relevant drugs digoxin (Dig) and methotrexate (MTX). Double modification by small molecule ligands on the initiator strand act as sites to control the rate of the HCR. Upon protein binding to the modified initiator strand, the HCR is greatly inhibited. If the protein is preincubated with a sample containing the small molecule analyte, the protein binding site is occupied by the analyte and the initiator strand will initiate the HCR. This enables efficient detection and quantification of small-molecule analytes in nanomolar concentration even in 50% human plasma within 4 min. Thus, the rapidity and simplicity of this assay has potential for point-of-care testing.
Collapse
Affiliation(s)
- Malthe Hansen-Bruhn
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Line D. F. Nielsen
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kurt V. Gothelf
- Center for DNA Nanotechnology (CDNA) at the Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Park CR, Park SJ, Lee WG, Hwang BH. Biosensors Using Hybridization Chain Reaction - Design and Signal Amplification Strategies of Hybridization Chain Reaction. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0182-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Dunn KE, Trefzer MA, Johnson S, Tyrrell AM. Towards a Bioelectronic Computer: A Theoretical Study of a Multi-Layer Biomolecular Computing System That Can Process Electronic Inputs. Int J Mol Sci 2018; 19:E2620. [PMID: 30181468 PMCID: PMC6164260 DOI: 10.3390/ijms19092620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 01/06/2023] Open
Abstract
DNA molecular machines have great potential for use in computing systems. Since Adleman originally introduced the concept of DNA computing through his use of DNA strands to solve a Hamiltonian path problem, a range of DNA-based computing elements have been developed, including logic gates, neural networks, finite state machines (FSMs) and non-deterministic universal Turing machines. DNA molecular machines can be controlled using electrical signals and the state of DNA nanodevices can be measured using electrochemical means. However, to the best of our knowledge there has as yet been no demonstration of a fully integrated biomolecular computing system that has multiple levels of information processing capacity, can accept electronic inputs and is capable of independent operation. Here we address the question of how such a system could work. We present simulation results showing that such an integrated hybrid system could convert electrical impulses into biomolecular signals, perform logical operations and take a decision, storing its history. We also illustrate theoretically how the system might be able to control an autonomous robot navigating through a maze. Our results suggest that a system of the proposed type is technically possible but for practical applications significant advances would be required to increase its speed.
Collapse
Affiliation(s)
- Katherine E Dunn
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, UK.
| | - Martin A Trefzer
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, UK.
| | - Steven Johnson
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, UK.
| | - Andy M Tyrrell
- Department of Electronic Engineering, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
27
|
Hu P, Li M, Wei X, Yang B, Li Y, Li CY, Du J. Cooperative Toehold: A Mechanism To Activate DNA Strand Displacement and Construct Biosensors. Anal Chem 2018; 90:9751-9760. [PMID: 30040891 DOI: 10.1021/acs.analchem.8b01202] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Toehold-mediated DNA strand displacement has proven powerful in the construction of various DNA circuits, DNA machines, and biosensors. So far, many new toehold activation mechanisms have been developed to achieve programmed DNA strand displacement behaviors. However, almost all those toeholds are inflexible via either a covalently attached manner or a complementary hybridization strategy, which limit the versatility of DNA devices. To solve this problem, we developed a new toehold, named "cooperative toehold", to activate DNA strand displacement. On the basis of a base stacking mechanism, the cooperative toehold is comprised of two moieties with completely independent DNA sequences between each other. The cooperative toehold enabled one to continuously tune the rate of DNA strand displacement, as well as more sophisticated strand displacement reactions. The cooperative toehold has also been employed as a universal signal translator for biosensors to qualitatively determine RNA and ATP. Moreover, as a novel specific PCR monitoring system, cooperative toehold-mediated DNA strand displacement can detect the pUC18 plasmid in genomic DNA samples with an aM detection limit.
Collapse
Affiliation(s)
- Pan Hu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Mengmeng Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Xijiao Wei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Bin Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Ye Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Chun-Yan Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| | - Jun Du
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 410005 , P. R. China
| |
Collapse
|
28
|
Peng P, Du Y, Li T. DNA nanodevices monitored with fluorogenic looped-out 2-aminopurine. Analyst 2018; 143:1268-1273. [PMID: 29445799 DOI: 10.1039/c7an01953j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report several DNA nanodevices monitored with fluorogenic looped-out 2-aminopurine. It is found that looped-out 2-AP, an analogue of adenine, in split parallel G-quadruplexes, triplexes and duplexes always shows much higher fluorescence intensity than that in single- or double-stranded DNAs, due to the weaker quenching effects derived from the reduced base stacking environments. Taking advantage of these traits, we introduce a new strategy to monitor the behaviours of DNA nanodevices via the fluorescence signal output by utilizing changes in the base stacking environment of 2-AP. As proof-of-principle experiments, two nanoplatforms for detecting disease genes, as well as a triplex nanoswitch, are constructed and monitored by fluorogenic looped-out 2-AP, illustrating that fluorogenic looped-out 2-AP holds great promise for reading the behaviours of diverse DNA nanodevices. Compared with conventional fluorescence labelling, looped-out 2-AP as a reporter shows good photostability and can be quenched by base-pairing, thereby providing an efficient quencher-free methodology for monitoring DNA nanodevices.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China.
| | | | | |
Collapse
|
29
|
Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46:1021-1037. [PMID: 29228337 PMCID: PMC5814803 DOI: 10.1093/nar/gkx1230] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/14/2022] Open
Abstract
DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical ('triplex') structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone.
Collapse
Affiliation(s)
| | - David A Rusling
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
30
|
Idili A, Ricci F. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. Methods Mol Biol 2018; 1811:79-100. [PMID: 29926447 DOI: 10.1007/978-1-4939-8582-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triplex DNA is becoming a very useful domain to design pH-triggered DNA nanoswitches and nanodevices. The high versatility and programmability of triplex DNA interactions allows the integration of pH-controllable modules into DNA-based reactions and self-assembly processes. Here, we describe the procedure to characterize DNA-based triplex nanoswitches and more in general pH-triggered structure-switching mechanisms. Procedures to characterize pH-triggered DNA nanodevices will be useful for many applications in the field of biosensing, drug delivery systems and smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
31
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
32
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|
33
|
Luo Y, Li R, Wang J, Zhang M, Zou L, Ling L. An Ag+-stabilized triplex DNA molecular switch controlled hybridization chain reaction. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Wang S, Yue L, Shpilt Z, Cecconello A, Kahn JS, Lehn JM, Willner I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J Am Chem Soc 2017. [DOI: 10.1021/jacs.7b04531] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Wang
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Liang Yue
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zohar Shpilt
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Alessandro Cecconello
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jason S. Kahn
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean-Marie Lehn
- Institut
de Science et d’Ingénierie Supramoléculaires
(ISIS), University of Strasbourg, 8 Rue Gaspard Monge, Strasbourg 67000, France
| | - Itamar Willner
- Institute
of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
35
|
Liu L, Liu JW, Huang ZM, Wu H, Li N, Tang LJ, Jiang JH. Proton-Fueled, Reversible DNA Hybridization Chain Assembly for pH Sensing and Imaging. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01843] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lan Liu
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jin-Wen Liu
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhi-Mei Huang
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Han Wu
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Na Li
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Li-Juan Tang
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- Institute of Chemical Biology
and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics,
College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
36
|
Iacovelli F, Idili A, Benincasa A, Mariottini D, Ottaviani A, Falconi M, Ricci F, Desideri A. Simulative and Experimental Characterization of a pH-Dependent Clamp-like DNA Triple-Helix Nanoswitch. J Am Chem Soc 2017; 139:5321-5329. [PMID: 28365993 DOI: 10.1021/jacs.6b11470] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Here we couple experimental and simulative techniques to characterize the structural/dynamical behavior of a pH-triggered switching mechanism based on the formation of a parallel DNA triple helix. Fluorescent data demonstrate the ability of this structure to reversibly switch between two states upon pH changes. Two accelerated, half microsecond, MD simulations of the system having protonated or unprotonated cytosines, mimicking the pH 5.0 and 8.0 conditions, highlight the importance of the Hoogsteen interactions in stabilizing the system, finely depicting the time-dependent disruption of the hydrogen bond network. Urea-unfolding experiments and MM/GBSA calculations converge in indicating a stabilization energy at pH 5.0, 2-fold higher than that observed at pH 8.0. These results validate the pH-controlled behavior of the designed structure and suggest that simulative approaches can be successfully coupled with experimental data to characterize responsive DNA-based nanodevices.
Collapse
Affiliation(s)
- Federico Iacovelli
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Andrea Idili
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Benincasa
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Davide Mariottini
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessio Ottaviani
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Mattia Falconi
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Francesco Ricci
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| | - Alessandro Desideri
- Department of Biology and ‡Department of Chemistry, University of Rome, Tor Vergata , 00173 Rome, Italy
| |
Collapse
|
37
|
Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 2017; 46:4281-4298. [DOI: 10.1039/c7cs00055c] [Citation(s) in RCA: 393] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review provides a comprehensive overview of the fundamental principles, analysis techniques, and application fields of hybridization chain reaction and its development status.
Collapse
Affiliation(s)
- Sai Bi
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shuzhen Yue
- Collaborative Innovation Center for Marine Biomass Fiber
- Materials and Textiles of Shandong Province
- College of Chemistry and Chemical Engineering
- Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials
- Laboratory of Fiber Materials and Modern Textiles
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers
- College of Chemistry and Chemical Engineering
- Linyi University
- Linyi 276005
- P. R. China
| |
Collapse
|
38
|
Yang X, Tang Y, Traynor SM, Li F. Regulation of DNA Strand Displacement Using an Allosteric DNA Toehold. J Am Chem Soc 2016; 138:14076-14082. [DOI: 10.1021/jacs.6b08794] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xiaolong Yang
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Yanan Tang
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Sarah M. Traynor
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| | - Feng Li
- Department of Chemistry,
Centre for Biotechnology, Brock University, St. Catharines, Ontario Canada, L2S 3A1
| |
Collapse
|
39
|
Schütt J, Ibarlucea B, Illing R, Zörgiebel F, Pregl S, Nozaki D, Weber WM, Mikolajick T, Baraban L, Cuniberti G. Compact Nanowire Sensors Probe Microdroplets. NANO LETTERS 2016; 16:4991-5000. [PMID: 27417510 DOI: 10.1021/acs.nanolett.6b01707] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The conjunction of miniature nanosensors and droplet-based microfluidic systems conceptually opens a new route toward sensitive, optics-less analysis of biochemical processes with high throughput, where a single device can be employed for probing of thousands of independent reactors. Here we combine droplet microfluidics with the compact silicon nanowire based field effect transistor (SiNW FET) for in-flow electrical detection of aqueous droplets one by one. We chemically probe the content of numerous (∼10(4)) droplets as independent events and resolve the pH values and ionic strengths of the encapsulated solution, resulting in a change of the source-drain current ISD through the nanowires. Further, we discuss the specificities of emulsion sensing using ion sensitive FETs and study the effect of droplet sizes with respect to the sensor area, as well as its role on the ability to sense the interior of the aqueous reservoir. Finally, we demonstrate the capability of the novel droplets based nanowire platform for bioassay applications and carry out a glucose oxidase (GOx) enzymatic test for glucose detection, providing also the reference readout with an integrated parallel optical detector.
Collapse
Affiliation(s)
- Julian Schütt
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
| | - Bergoi Ibarlucea
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Rico Illing
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Felix Zörgiebel
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Sebastian Pregl
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Daijiro Nozaki
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
| | - Walter M Weber
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
- Namlab GmbH, Nöthnitzerstraße 64, 01187 Dresden, Germany
| | - Thomas Mikolajick
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
- Namlab GmbH, Nöthnitzerstraße 64, 01187 Dresden, Germany
| | - Larysa Baraban
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Max Bergmann Center of Biomaterials and Institute for Materials Science, Dresden University of Technology , Budapesterstrasse 27, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden, 01062 Dresden, Germany
| |
Collapse
|
40
|
Hu Y, Ren J, Lu CH, Willner I. Programmed pH-Driven Reversible Association and Dissociation of Interconnected Circular DNA Dimer Nanostructures. NANO LETTERS 2016; 16:4590-4594. [PMID: 27225955 DOI: 10.1021/acs.nanolett.6b01891] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The switchable pH-driven reversible assembly and dissociation of interlocked circular DNA dimers is presented. The circular DNA dimers are interconnected by pH-responsive nucleic acid bridges. In one configuration, the two-ring nanostructure is separated at pH = 5.0 to individual rings by reconfiguring the interlocking bridges into C-G·C(+) triplex units, and the two-ring assembly is reformed at pH = 7.0. In the second configuration, the dimer of circular DNAs is bridged at pH = 7.0 by the T-A·T triplex bridging units that are separated at pH = 10.0, leading to the dissociation of the dimer to single circular DNA nanostructures. The two circular DNA units are also interconnected by two pH-responsive locks. The pH-programmed opening of the locks at pH = 5.0 or pH = 10.0 yields two isomeric dimer structures composed of two circular DNAs. The switchable reconfigured states of the circular DNA nanostructures are followed by time-dependent fluorescence changes of fluorophore/quencher labeled systems and by complementary gel electrophoresis experiments. The dimer circular DNA structures are further implemented as scaffolds for the assembly of Au nanoparticle dimers exhibiting controlled spatial separation.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Jiangtao Ren
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Chun-Hua Lu
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
41
|
Chandrasekaran AR, Wady H, Subramanian HKK. Nucleic Acid Nanostructures for Chemical and Biological Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2689-2700. [PMID: 27040036 DOI: 10.1002/smll.201503854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/23/2016] [Indexed: 06/05/2023]
Abstract
The nanoscale features of DNA have made it a useful molecule for bottom-up construction of nanomaterials, for example, two- and three-dimensional lattices, nanomachines, and nanodevices. One of the emerging applications of such DNA-based nanostructures is in chemical and biological sensing, where they have proven to be cost-effective, sensitive and have shown promise as point-of-care diagnostic tools. DNA is an ideal molecule for sensing not only because of its specificity but also because it is robust and can function under a broad range of biologically relevant temperatures and conditions. DNA nanostructure-based sensors provide biocompatibility and highly specific detection based on the molecular recognition properties of DNA. They can be used for the detection of single nucleotide polymorphism and to sense pH both in solution and in cells. They have also been used to detect clinically relevant tumor biomarkers. In this review, recent advances in DNA-based biosensors for pH, nucleic acids, tumor biomarkers and cancer cell detection are introduced. Some challenges that lie ahead for such biosensors to effectively compete with established technologies are also discussed.
Collapse
Affiliation(s)
| | - Heitham Wady
- Upstate Medical University, State University of New York, Syracuse, NY, 13210, USA
| | - Hari K K Subramanian
- Department of Mechanical Engineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
42
|
Huang H, Yang X, Wang K, Wang Q, Guo Q, Huang J, Liu J, Song C. Amplified fluorescence detection of adenosine via catalyzed hairpin assembly and host–guest interactions between β-cyclodextrin polymer and pyrene. Analyst 2016; 141:2502-7. [DOI: 10.1039/c5an02658j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We introduce an enzyme-free amplified detection strategy for the small molecule adenosine.
Collapse
Affiliation(s)
- Haihua Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| | - Chunxia Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- College of Biology
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
- Hunan University
| |
Collapse
|