1
|
Pullanchery S, Kulik S, Schönfeldová T, Egan CK, Cassone G, Hassanali A, Roke S. pH drives electron density fluctuations that enhance electric field-induced liquid flow. Nat Commun 2024; 15:5951. [PMID: 39009573 PMCID: PMC11251051 DOI: 10.1038/s41467-024-50030-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Liquid flow along a charged interface is commonly described by classical continuum theory, which represents the electric double layer by uniformly distributed point charges. The electrophoretic mobility of hydrophobic nanodroplets in water doubles in magnitude when the pH is varied from neutral to mildly basic (pH 7 → 11). Classical continuum theory predicts that this increase in mobility is due to an increased surface charge. Here, by combining all-optical measurements of surface charge and molecular structure, as well as electronic structure calculations, we show that surface charge and molecular structure at the nanodroplet surface are identical at neutral and mildly basic pH. We propose that the force that propels the droplets originates from two factors: Negative charge on the droplet surface due to charge transfer from and within water, and anisotropic gradients in the fluctuating polarization induced by the electric field. Both charge density fluctuations couple with the external electric field, and lead to droplet flow. Replacing chloride by hydroxide doubles both the charge conductivity via the Grotthuss mechanism, and the droplet mobility. This general mechanism deeply impacts a plethora of processes in biology, chemistry, and nanotechnology and provides an explanation of how pH influences hydrodynamic phenomena and the limitations of classical continuum theory currently used to rationalize these effects.
Collapse
Affiliation(s)
- S Pullanchery
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Kulik
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - T Schönfeldová
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - C K Egan
- International Centre for Theoretical Physics, Trieste, Italy
| | - G Cassone
- Institute for Physical-Chemical Processes, Italian National Research Council (IPCF-CNR), Messina, Italy
| | - A Hassanali
- International Centre for Theoretical Physics, Trieste, Italy.
| | - S Roke
- Laboratory for fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Mandal P, Ghosh SK. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18713-18729. [PMID: 38096427 DOI: 10.1021/acs.langmuir.3c02805] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Graphene-based nanomaterials (GNMs) have captured increasing attention in the recent advancement of materials science and nanotechnology owing to their excellent physicochemical properties. Despite having unquestionable advances, the application of GNMs in biological and medical sciences is still limited due to the lack of knowledge and precise control over their interaction with the biological milieu. The cellular membrane is the first barrier with which GNMs interact before entering a cell. Therefore, understanding how they interact with cell membranes is important from the perspective of safe use in biological and biomedical fields. In this review, we systematically summarize the recent efforts in predicting the interactions between GNMs and model cellular membranes. This review provides insights into how GNMs interact with lipid membranes and self-assemble in and around them. Both the computational simulations and experimental observations are summarized. The interactions are classified depending on the physicochemical properties (structure, chemistry, and orientation) of GNMs and various model membranes. The thermodynamic parameters, structural details, and supramolecular forces are listed to understand the interactions which would help circumvent potential risks and provide guidance for safe use in the future. At the end of this review, future prospective and emerging challenges in this research field are discussed.
Collapse
Affiliation(s)
- Priya Mandal
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| |
Collapse
|
3
|
Golbek TW, Weidner T. Peptide Orientation Strongly Affected by the Nanoparticle Size as Revealed by Sum Frequency Scattering Spectroscopy. J Phys Chem Lett 2023; 14:9819-9823. [PMID: 37889607 DOI: 10.1021/acs.jpclett.3c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.
Collapse
Affiliation(s)
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Pullanchery S, Dupertuis N, Roesel T, Roke S. Liposomes and Lipid Droplets Display a Reversal of Charge-Induced Hydration Asymmetry. NANO LETTERS 2023; 23:9858-9864. [PMID: 37869786 PMCID: PMC10636888 DOI: 10.1021/acs.nanolett.3c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Indexed: 10/24/2023]
Abstract
The unique properties of water are critical for life. Water molecules have been reported to hydrate cations and anions asymmetrically in bulk water, being a key element in the balance of biochemical interactions. We show here that this behavior extends to charged lipid nanoscale interfaces. Charge hydration asymmetry was investigated by using nonlinear light scattering methods on lipid nanodroplets and liposomes. Nanodroplets covered with negatively charged lipids induce strong water ordering, while droplets covered with positively charged lipids induce negligible water ordering. Surprisingly, this charge-induced hydration asymmetry is reversed around liposomes. This opposite behavior in charge hydration asymmetry is caused by a delicate balance of electrostatic and hydrogen-bonding interactions. These findings highlight the importance of not only the charge state but also the specific distribution of neutral and charged lipids in cellular membranes.
Collapse
Affiliation(s)
- Saranya Pullanchery
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nathan Dupertuis
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tereza Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science (IMX), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science (LACUS), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
5
|
Carpenter AP, Golbek TW. "Nonlinear" pursuit of understanding pollutant accumulation and chemistry at environmental and biological interfaces. Biointerphases 2023; 18:058501. [PMID: 37728303 DOI: 10.1116/6.0003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Over the past few decades, the public recognition of the prevalence of certain classes of pollutants, such as perfluoroalkyl substances and nanoplastics, within the environment, has sparked growing concerns over their potential impact on environmental and human health. Within both environmental and biological systems, the adsorption and structural organization of pollutants at aqueous interfaces can greatly impact the chemical reactivity and transformation. Experimentally probing chemical behavior at interfaces can often pose a problem due to bulk solvated molecules convoluting molecular signatures from interfacial molecules. To solve this problem, there exist interface-specific nonlinear spectroscopy techniques that can directly probe both macroscopic planar interfaces and nanoplastic interfaces in aqueous environments. These techniques can provide essential information such as chemical adsorption, structure, and reactivity at interfaces. In this perspective, these techniques are presented with obvious advantages for studying the chemical properties of pollutants adsorbed to environmental and biological interfaces.
Collapse
Affiliation(s)
- Andrew P Carpenter
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331
| | | |
Collapse
|
6
|
Pullanchery S, Zhang L, Kulik S, Roke S. Interfacial Inversion, Interference, and IR Absorption in Vibrational Sum Frequency Scattering Experiments. J Phys Chem B 2023; 127:6795-6803. [PMID: 37470215 PMCID: PMC10405221 DOI: 10.1021/acs.jpcb.3c02727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/26/2023] [Indexed: 07/21/2023]
Abstract
Molecular interfacial structure greatly determines the properties of nano- and microscale systems. Vibrational sum frequency scattering (SFS) spectroscopy is a unique interface-selective tool to measure the interfacial vibrational spectrum of sub-micron to micron-scale objects dispersed in liquid and solid media. The interfacial structure is extracted from the interfacial susceptibility, a physical property derived from the intensity. Here, we describe the effect of infrared absorption that occurs in a bulk medium that is spectroscopically complex and use the results to investigate the effects of interfacial inversion, interfacial interference, and interfacial interference combined with absorption. We use the same three chemicals to do so, hexadecane oil, water, and a neutral Span80 surfactant. For all cases, the effective surface susceptibility can be retrieved from the intensity. We further find that inverting the phases results in different interfacial structures, even though they are composed of the same three chemicals, and explain this in terms of the different interactions that are necessary to stabilize the drops: steric stabilization for water drops in oil vs. charge stabilization for oil drops in water. Interfacial interference can be used to estimate the surface density of different compounds.
Collapse
Affiliation(s)
- S. Pullanchery
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - L. Zhang
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Kulik
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - S. Roke
- Laboratory
for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School
of Engineering (STI), École Polytechnique
Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science and Engineering (IMX), School of Engineering
(STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Marchioro A, Golbek TW, Chatterley AS, Weidner T, Roke S. A discrepancy of 10 7 in experimental and theoretical density detection limits of aerosol particles by surface nonlinear light scattering. Commun Chem 2023; 6:114. [PMID: 37291207 DOI: 10.1038/s42004-023-00903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/12/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Arianna Marchioro
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
8
|
Golbek TW, Okur HI, Kulik S, Dedic J, Roke S, Weidner T. Lysozyme Interaction with Phospholipid Nanodroplets Probed by Sum Frequency Scattering Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6447-6454. [PMID: 37125843 DOI: 10.1021/acs.langmuir.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When a nanoparticle (NP) is introduced into a biological environment, its identity and interactions are immediately attributed to the dense layer of proteins that quickly covers the particle. The formation of this layer, dubbed the protein corona, is in general a combination of proteins interacting with the surface of the NP and a contest between other proteins for binding sites either at the surface of the NP or upon the dense layer. Despite the importance for surface engineering and drug development, the molecular mechanisms and structure behind interfacial biomolecule action have largely remained elusive. We use ultrafast sum frequency scattering (SFS) spectroscopy to determine the structure and the mode of action by which these biomolecules interact with and manipulate interfaces. The majority of work in the field of sum frequency generation has been done on flat model interfaces. This limits some important membrane properties such as membrane fluidity and dimensionality─important factors in biomolecule-membrane interactions. To move toward three-dimensional (3D) nanoscopic interfaces, we utilize SFS spectroscopy to interrogate the surface of 3D lipid monolayers, which can be used as a model lipid-based nanocarrier system. In this study, we have utilized SFS spectroscopy to follow the action of lysozyme. SFS spectra in the amide I region suggest that there is lysozyme at the interface and that the lysozyme induces an increased lipid monolayer order. The binding of lysozyme with the NP is demonstrated by an increase in acyl chain order determined by the ratio of the CH3 symmetric and CH2 symmetric peak amplitudes. Furthermore, the lipid headgroup orientation s-PO2- change strongly supports lysozyme insertion into the lipid layer causing lipid disruption and reorientation. Altogether, with SFS, we have made a huge stride toward understanding the binding and structure change of proteins within the protein corona.
Collapse
Affiliation(s)
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Department of Chemistry and National Nanotechnology Research Center (UNAM), Bilkent University, 06800 Ankara, Turkey
| | - Sergey Kulik
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jan Dedic
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bio-engineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
9
|
Golbek TW, Strunge K, Chatterley AS, Weidner T. Peptide Orientation at Emulsion Nanointerfaces Dramatically Different from Flat Surfaces. J Phys Chem Lett 2022; 13:10858-10862. [PMID: 36383054 DOI: 10.1021/acs.jpclett.2c02870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The adsorption of protein to nanoparticles plays an important role in toxicity, food science, pharmaceutics, and biomaterial science. Understanding how proteins bind to nanophase surfaces is instrumental for understanding and, ultimately, controlling nanoparticle (NP) biochemistry. Techniques probing the adsorption of proteins at NP interfaces exist; however, these methods have been unable to determine the orientation and folding of proteins at these interfaces. For the first time, we probe in situ with sum frequency scattering vibrational spectroscopy the orientation of model leucine-lysine (LK) peptides adsorbed to NPs. The results show that both α-helical and β-strand LK peptides bind the particles in an upright orientation, in contrast to the flat orientation of LKs binding to planar surfaces. The different binding geometry is explained by Coulombic forces between peptides across the particle volume.
Collapse
Affiliation(s)
- Thaddeus W Golbek
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Kris Strunge
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Li Y, Feng R, Liu M, Guo Y, Zhang Z. Mechanism by Which Cholesterol Induces Sphingomyelin Conformational Changes at an Air/Water Interface. J Phys Chem B 2022; 126:5481-5489. [PMID: 35839485 DOI: 10.1021/acs.jpcb.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigates the interactions in cholesterol and sphingomyelin monolayers at the molecular level by high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of natural egg sphingomyelin (ESM) as a function of cholesterol concentration are obtained at an air/water interface under different polarization combinations. The analysis of the spectra shows that cholesterol can induce sphingomyelin conformational changes at an air/water interface. The mechanism is proposed. When cholesterol is inserted into the ESM monolayer, the inherent intramolecular hydrogen bonds between the phosphate moiety and 3OH in the sphingosine backbones are destroyed. During this process, the sphingosine backbones become more ordered, while the conformation of the N-linked long acid chain remains unaltered. The OH of the cholesterol head group can bind to the -PO-2 of the ESM molecule, and the orientation of the -PO-2 in the head groups changes to be more parallel to the interface.
Collapse
Affiliation(s)
- Yiyi Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Choose your own adventure: Picosecond or broadband vibrational sum-frequency generation spectroscopy. Biointerphases 2022; 17:031201. [PMID: 35513338 DOI: 10.1116/6.0001844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Vibrational sum-frequency generation (VSFG) spectroscopy is a method capable of measuring chemical structure and dynamics within the interfacial region between two bulk phases. At the core of every experimental system is a laser source that influences the experimental capabilities of the VSFG spectrometer. In this article, we discuss the differences between VSFG spectrometers built with picosecond and broadband laser sources as it will impact everything from material costs, experimental build time, experimental capabilities, and more. A focus is placed on the accessibility of the two different SFG systems to newcomers in the SFG field and provides a resource for laboratories considering incorporating VSFG spectroscopy into their research programs. This Tutorial provides a model decision tree to aid newcomers when determining whether the picosecond or femtosecond laser system is sufficient for their research program and navigates through it for a few specific scenarios.
Collapse
|
12
|
Lin L, Chowdhury AU, Ma YZ, Sacci RL, Katsaras J, Hong K, Collier CP, Carrillo JMY, Doughty B. Ion Pairing and Molecular Orientation at Liquid/Liquid Interfaces: Self-Assembly and Function. J Phys Chem B 2022; 126:2316-2323. [PMID: 35289625 DOI: 10.1021/acs.jpcb.2c01148] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.
Collapse
Affiliation(s)
- Lu Lin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Azhad U Chowdhury
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - John Katsaras
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jan-Michael Y Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Benjamin Doughty
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
13
|
Pullanchery S, Kulik S, Rehl B, Hassanali A, Roke S. Charge transfer across C-H⋅⋅⋅O hydrogen bonds stabilizes oil droplets in water. Science 2021; 374:1366-1370. [PMID: 34882471 DOI: 10.1126/science.abj3007] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Saranya Pullanchery
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sergey Kulik
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Benjamin Rehl
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ali Hassanali
- International Centre for Theoretical Physics, 34100 Trieste, Italy
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.,Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Ma X, Zhi Z, Zhang S, Zhou C, Mechler A, Liu P. Validating an artificial organelle: Studies of lipid droplet-specific proteins on adiposome platform. iScience 2021; 24:102834. [PMID: 34368652 PMCID: PMC8326204 DOI: 10.1016/j.isci.2021.102834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/08/2021] [Indexed: 10/25/2022] Open
Abstract
New strategies are urgently needed to characterize the functions of the lipid droplet (LD). Here, adiposome, an artificial LD mimetic platform, was validated by comparative in vitro bioassays. Scatchard analysis found that the binding of perilipin 2 (PLIN2) to the adiposome surface was saturable. Phosphatidylinositol (PtdIns) was found to inhibit PLIN2 binding while it did not impede perilipin 3 (PLIN3). Structural analysis combined with mutagenesis revealed that the 73rd glutamic acid of PLIN2 is significant for the effect of PtdIns on the PLIN2 binding. Furthermore, adiposome was also found to be an ideal platform for in situ enzymatic activity measurement of adipose triglyceride lipase (ATGL). The significant serine mutants of ATGL were found to cause the loss of lipase activity. Our study demonstrates the adiposome as a powerful, manipulatable model system that mimics the function of LD for binding and enzymatic activity studies of LD proteins in vitro.
Collapse
Affiliation(s)
- Xuejing Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zelun Zhi
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Shuyan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Adam Mechler
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Windowless detection geometry for sum frequency scattering spectroscopy in the C-D and amide I regions. Biointerphases 2021; 16:011201. [PMID: 33706523 DOI: 10.1116/6.0000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Understanding the structure and chemistry of nanoscopic surfaces is an important challenge for biointerface sciences. Sum frequency scattering (SFS) spectroscopy can specifically probe the surfaces of nanoparticles, vesicles, liposomes, and other materials relevant to biomaterial research, and, as a vibrational spectroscopy method, it can provide molecular level information about the surface chemistry. SFS is particularly promising to probe the structure of proteins, and other biological molecules, at nanoparticle surfaces. Here, amide I spectra can provide information about protein folding and orientation, while spectra in the C-D and C-H stretching regions allow experiments to determine the mode of interaction between particle surfaces and proteins. Methods used currently employ a closed liquid cell or cuvette, which works extremely well for C-H and phosphate regions but is often impeded in the amide I and C-D regions by a strong background signal that originates from the window material of the sample cells. Here, we discuss a windowless geometry for collecting background-free and high-fidelity SFS spectra in the amide I and C-D regions. We demonstrate the improvement in spectra quality by comparing SFS spectra of unextruded, multilamellar vesicles in a sample cuvette with those recorded using the windowless geometry. The sample geometry we propose will enable new experiments using SFS as a probe for protein-particle interactions.
Collapse
|
16
|
Okur HI, Tarun OB, Roke S. Chemistry of Lipid Membranes from Models to Living Systems: A Perspective of Hydration, Surface Potential, Curvature, Confinement and Heterogeneity. J Am Chem Soc 2019; 141:12168-12181. [DOI: 10.1021/jacs.9b02820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B. Tarun
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics
(LBP), Institute of Bioengineering (IBI) and Institute of Materials
Science (IMX), School of Engineering (STI) and Lausanne Center for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Kovacik F, Okur HI, Smolentsev N, Scheu R, Roke S. Hydration mediated interfacial transitions on mixed hydrophobic/hydrophilic nanodroplet interfaces. J Chem Phys 2018; 149:234704. [PMID: 30579299 DOI: 10.1063/1.5035161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interfacial phase transitions are of fundamental importance for climate, industry, and biological processes. In this work, we observe a hydration mediated surface transition in supercooled oil nanodroplets in aqueous solutions using second harmonic and sum frequency scattering techniques. Hexadecane nanodroplets dispersed in water freeze at a temperature of ∼15 °C below the melting point of the bulk alkane liquid. Addition of a trimethylammonium bromide (CXTA+) type surfactant with chain length equal to or longer than that of the alkane causes the bulk oil droplet freezing transition to be preceded by a structural interfacial transition that involves water, oil, and the surfactant. Upon cooling, the water loses some of its orientational order with respect to the surface normal, presumably by reorienting more parallel to the oil interface. This is followed by the surface oil and surfactant alkyl chains losing some of their flexibility, and this chain stretching induces alkyl chain ordering in the bulk of the alkane phase, which is then followed by the bulk transition occurring at a 3 °C lower temperature. This behavior is reminiscent of surface freezing observed in planar tertiary alkane/surfactant/water systems but differs distinctively in that it appears to be induced by the interfacial water and requires only a very small amount of surfactant.
Collapse
Affiliation(s)
- Filip Kovacik
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Halil I Okur
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nikolay Smolentsev
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rüdiger Scheu
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Algoul ST, Sengupta S, Bui TT, Velarde L. Tuning the Surface Ordering of Self-Assembled Ionic Surfactants on Semiconducting Single-Walled Carbon Nanotubes: Concentration, Tube Diameter, and Counterions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9279-9288. [PMID: 30008207 DOI: 10.1021/acs.langmuir.8b01813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report direct spectroscopic measurements of the macromolecular organization of ionic surfactants on the surface of semiconducting single-walled carbon nanotubes (SWCNTs) within solution-processed thin films. By using vibrational sum frequency generation (VSFG) spectroscopy, sensitive measurements of interfacial surfactant ordering were obtained as a function of surfactant concentration for sodium dodecyl sulfate (SDS)-encapsulated (6,5) and (7,6) SWCNTs with and without excess electrolytes. Anionic surfactants are known to effectively stabilize SWCNTs. The current models suggest a strong influence of the dispersion conditions on the surfactant interfacial macromolecular organization and self-assembly. Direct experimental probes of such an organization using nanotubes of specific chirality are needed to validate the existing models. We found that as the bulk SDS concentration increases near the surfactant critical micelle concentration, the interfacial ordering increased, approaching the formation of cylindrical-like micelles with the nanotube at the core. At the higher surfactant concentrations measured here, the (6,5) SWCNTs produced more ordered structures relative to those with the (7,6) SWCNTs. The relatively larger-diameter (7,6) chiral tubes support enhanced van der Waals (vdW) interactions between the tube carbon surface and the surfactant methylene chain groups that likely increase the density of gauche defects. A new effect arises when the precursor solution is exposed to a small concentration of divalent Ca2+ counterions. We postulate that a salt-bridging configuration on such highly curved surfaces decreases the ordering of interfacial surfactant molecules, resulting in compact, disordered structures. However, this phenomenon was not observed with excess Na+ ions at the same ionic strength. Instead, a modest increase in surfactant ordering was observed with the excess monovalent electrolyte. These results provide new insights for thin film solution processing of vdW nanomaterials and demonstrate that VSFG is a sensitive probe of surfactant organization on nanostructures.
Collapse
Affiliation(s)
- Soha T Algoul
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Sanghamitra Sengupta
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Thomas T Bui
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| | - Luis Velarde
- Department of Chemistry , University at Buffalo, State University of New York , Buffalo , New York 14260-3000 , United States
| |
Collapse
|
19
|
Vezočnik V, Hodnik V, Sitar S, Okur HI, Tušek-Žnidarič M, Lütgebaucks C, Sepčić K, Kogej K, Roke S, Žagar E, Maček P. Kinetically Stable Triglyceride-Based Nanodroplets and Their Interactions with Lipid-Specific Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8983-8993. [PMID: 29983071 DOI: 10.1021/acs.langmuir.8b02180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding of the interactions between proteins and natural and artificially prepared lipid membrane surfaces and embedded nonpolar cores is important in studies of physiological processes and their pathologies and is applicable to nanotechnologies. In particular, rapidly growing interest in cellular droplets defines the need for simplified biomimetic lipid model systems to overcome in vivo complexity and variability. We present a protocol for the preparation of kinetically stable nanoemulsions with nanodroplets composed of sphingomyelin (SM) and cholesterol (Chol), as amphiphilic surfactants, and trioleoylglycerol (TOG), at various molar ratios. To prepare stable SM/Chol-coated monodisperse lipid nanodroplets, we modified a reverse phase evaporation method and combined it with ultrasonication. Lipid composition, ζ-potential, gyration and hydrodynamic radius, shape, and temporal stability of the lipid nanodroplets were characterized and compared to extruded SM/Chol large unilamellar vesicles. Lipid nanodroplets and large unilamellar vesicles with theoretical SM/Chol/TOG molar ratios of 1/1/4.7 and 4/1/11.7 were further investigated for the orientational order of their interfacial water molecules using a second harmonic scattering technique, and for interactions with the SM-binding and Chol-binding pore-forming toxins equinatoxin II and perfringolysin O, respectively. The surface characteristics (ζ-potential, orientational order of interfacial water molecules) and binding of these proteins to the nanodroplet SM/Chol monolayers were similar to those for the SM/Chol bilayers of the large unilamellar vesicles and SM/Chol Langmuir monolayers, in terms of their surface structures. We propose that such SM/Chol/TOG nanoparticles with the required lipid compositions can serve as experimental models for monolayer membrane to provide a system that imitates the natural lipid droplets.
Collapse
Affiliation(s)
- Valerija Vezočnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Simona Sitar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Halil I Okur
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | | | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| | - Ksenija Kogej
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , Ljubljana 1000 , Slovenia
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institute of Bio-Engineering, and Institute of Material Science, School of Engineering, and Lausanne Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ema Žagar
- Department of Polymer Chemistry and Technology , National Institute of Chemistry , Hajdrihova 19 , Ljubljana 1000 , Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , Ljubljana 1000 , Slovenia
| |
Collapse
|
20
|
Lütgebaucks C, Macias-Romero C, Roke S. Characterization of the interface of binary mixed DOPC:DOPS liposomes in water: The impact of charge condensation. J Chem Phys 2018; 146:044701. [PMID: 28147550 DOI: 10.1063/1.4974084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solutions of liposomes composed of binary mixtures of anionic dioleoylphosphatidylserine (DOPS) and zwitterionic dioleoylphosphatidylcholine (DOPC) are investigated with label-free angle-resolved (AR) second harmonic scattering (SHS) and electrophoretic mobility measurements. The membrane surface potential is extracted from the AR-SHS response. The surface potential changes from -10 to -145 mV with varying DOPS content ( from 0% to 100%) and levels off already at ∼ 10 % DOPS content. The ζ-potential shows the same trend but with a drastically lower saturation value (-44 mV). This difference is explained by the formation of a condensed layer of Na+ counterions around the outer leaflet of the liposome as predicted by charge condensation theories for polyelectrolyte systems.
Collapse
Affiliation(s)
- Cornelis Lütgebaucks
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Carlos Macias-Romero
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
21
|
Olenick LL, Troiano JM, Smolentsev N, Ohno PE, Roke S, Geiger FM. Polycation Interactions with Zwitterionic Phospholipid Monolayers on Oil Nanodroplet Suspensions in Water (D2O) Probed by Sum Frequency Scattering. J Phys Chem B 2018; 122:5049-5056. [DOI: 10.1021/acs.jpcb.8b00309] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Laura L. Olenick
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Julianne M. Troiano
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nikolay Smolentsev
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Paul E. Ohno
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
22
|
Chen Y, Okur HI, Lütgebaucks C, Roke S. Zwitterionic and Charged Lipids Form Remarkably Different Structures on Nanoscale Oil Droplets in Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1042-1050. [PMID: 29019694 DOI: 10.1021/acs.langmuir.7b02896] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The molecular structure of zwitterionic and charged monolayers on small oil droplets in aqueous solutions is determined using a combined second harmonic and sum frequency study. From the interfacial vibrational signature of the acyl chains and phosphate headgroups as well as the response of the hydrating water, we find that zwitterionic and charged lipids with identical acyl chains form remarkably different monolayers. Zwitterionic phospholipids form a closely packed monolayer with highly ordered acyl tails. In contrast, the charged phospholipids form a monolayer with a low number density and disordered acyl tails. The charged headgroups are oriented perpendicular to the monolayer rather than parallel, as is the case for zwitterionic lipids. These significant differences between the two types of phospholipids indicate important roles of phospholipid headgroups in the determination of properties of cellular membranes and lipid droplets. The observed behavior of charged phospholipids is different from expectations based on studies performed on extended planar interfaces, at which condensed monolayers are readily formed. The difference can be explained by nanoscale related changes in charge condensation behavior that has its origin in a different balance of interfacial intermolecular interactions.
Collapse
Affiliation(s)
- Yixing Chen
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Halil I Okur
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Olenick LL, Chase HM, Fu L, Zhang Y, McGeachy AC, Dogangun M, Walter SR, Wang HF, Geiger FM. Single-component supported lipid bilayers probed using broadband nonlinear optics. Phys Chem Chem Phys 2018; 20:3063-3072. [DOI: 10.1039/c7cp02549a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups.
Collapse
Affiliation(s)
| | | | - Li Fu
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Sanofi-Genzyme
| | - Yun Zhang
- William R. Wiley Environmental Molecular Sciences Laboratory
- Pacific Northwest National Laboratory
- Richland
- USA
- Institute of Optics and Electronics
| | | | - Merve Dogangun
- Department of Chemistry
- Northwestern University
- Evanston
- USA
| | | | - Hong-fei Wang
- Department of Chemistry
- Fudan University
- Shanghai 200433
- China
| | | |
Collapse
|
24
|
Feng RJ, Lin L, Li YY, Liu MH, Guo Y, Zhang Z. Effect of Ca 2+ to Sphingomyelin Investigated by Sum Frequency Generation Vibrational Spectroscopy. Biophys J 2017; 112:2173-2183. [PMID: 28538154 DOI: 10.1016/j.bpj.2017.04.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/06/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022] Open
Abstract
The interactions between Ca2+ ions and sphingomyelin play crucial roles in a wide range of cellular activities. However, little is known about the molecular details of the interactions at interfaces. In this work, we investigated the interactions between Ca2+ ions and egg sphingomyelin (ESM) Langmuir monolayers at the air/water interface by subwavenumber high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). We show that Ca2+ ions can induce ordering of the acyl chains in the ESM monolayer. An analysis of the one alkyl-chain-deuterated ESM revealed that the Ca2+ ions do not affect the N-linked saturated fatty acid chain, although they make the sphingosine backbone become ordered. Further analysis of the SFG-VS spectra shows that the interactions between ESM and Ca2+ ions make the orientation of the methyl group at the end of sphingosine backbone change from pointing downward to pointing upward. Moreover, a large blue shift of the phosphate group at the CaCl2 solution interface indicates, to our knowledge, new cation binding modes. Such binding causes the phosphate moiety to dehydrate, resulting in the conformation change of the phosphate moiety. Based on these results, we propose the molecular mechanism that Ca2+ ions can bind to the phosphate group and subsequently destroy the intramolecular hydrogen bond between the 3-hydroxyl group and the phosphate oxygen, which results in an ordering change of the sphingosine backbone. These findings illustrate the potential application of HR-BB-SFG-VS to investigate lipid-cation interactions and the calcium channel modulated by lipid domain formation through slight structural changes in the membrane lipid. It will also shed light on the interactions of complex molecules at surfaces and interfaces.
Collapse
Affiliation(s)
- Rong-Juan Feng
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lu Lin
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; National Center for Nanoscience and Technology, Beijing, China
| | - Yi-Yi Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ming-Hua Liu
- National Center for Nanoscience and Technology, Beijing, China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Smolentsev N, Smit WJ, Bakker HJ, Roke S. The interfacial structure of water droplets in a hydrophobic liquid. Nat Commun 2017; 8:15548. [PMID: 28537259 PMCID: PMC5458086 DOI: 10.1038/ncomms15548] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 04/05/2017] [Indexed: 12/21/2022] Open
Abstract
Nanoscopic and microscopic water droplets and ice crystals embedded in liquid hydrophobic surroundings are key components of aerosols, rocks, oil fields and the human body. The chemical properties of such droplets critically depend on the interfacial structure of the water droplet. Here we report the surface structure of 200 nm-sized water droplets in mixtures of hydrophobic oils and surfactants as obtained from vibrational sum frequency scattering measurements. The interface of a water droplet shows significantly stronger hydrogen bonds than the air/water or hexane/water interface and previously reported planar liquid hydrophobic/water interfaces at room temperature. The observed spectral difference is similar to that of a planar air/water surface at a temperature that is ∼50 K lower. Supercooling the droplets to 263 K does not change the surface structure. Below the homogeneous ice nucleation temperature, a single vibrational mode is present with a similar mean hydrogen-bond strength as for a planar ice/air interface.
Collapse
Affiliation(s)
- Nikolay Smolentsev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
26
|
Okur HI, Chen Y, Smolentsev N, Zdrali E, Roke S. Interfacial Structure and Hydration of 3D Lipid Monolayers in Aqueous Solution. J Phys Chem B 2017; 121:2808-2813. [DOI: 10.1021/acs.jpcb.7b00609] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Halil I. Okur
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Yixing Chen
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Nikolay Smolentsev
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Evangelia Zdrali
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, Cremer PS, Jungwirth P. Beyond the Hofmeister Series: Ion-Specific Effects on Proteins and Their Biological Functions. J Phys Chem B 2017; 121:1997-2014. [PMID: 28094985 DOI: 10.1021/acs.jpcb.6b10797] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ions differ in their ability to salt out proteins from solution as expressed in the lyotropic or Hofmeister series of cations and anions. Since its first formulation in 1888, this series has been invoked in a plethora of effects, going beyond the original salting out/salting in idea to include enzyme activities and the crystallization of proteins, as well as to processes not involving proteins like ion exchange, the surface tension of electrolytes, or bubble coalescence. Although it has been clear that the Hofmeister series is intimately connected to ion hydration in homogeneous and heterogeneous environments and to ion pairing, its molecular origin has not been fully understood. This situation could have been summarized as follows: Many chemists used the Hofmeister series as a mantra to put a label on ion-specific behavior in various environments, rather than to reach a molecular level understanding and, consequently, an ability to predict a particular effect of a given salt ion on proteins in solutions. In this Feature Article we show that the cationic and anionic Hofmeister series can now be rationalized primarily in terms of specific interactions of salt ions with the backbone and charged side chain groups at the protein surface in solution. At the same time, we demonstrate the limitations of separating Hofmeister effects into independent cationic and anionic contributions due to the electroneutrality condition, as well as specific ion pairing, leading to interactions of ions of opposite polarity. Finally, we outline the route beyond Hofmeister chemistry in the direction of understanding specific roles of ions in various biological functionalities, where generic Hofmeister-type interactions can be complemented or even overruled by particular steric arrangements in various ion binding sites.
Collapse
Affiliation(s)
- Halil I Okur
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Jana Hladílková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic.,Division of Theoretical Chemistry, Lund University , P.O.B. 124, SE-22100 Lund, Sweden
| | | | - Younhee Cho
- Department of Chemistry, Texas A&M University , College Station 77843, Texas, United States
| | - Jan Heyda
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Department of Physical Chemistry, University of Chemistry and Technology, Prague , Technická 5, 16628 Prague 6, Czech Republic
| | - Joachim Dzubiella
- Institut für Weiche Materie und Funktionale Materialien, Helmholtz-Zentrum Berlin für Materialien und Energie , Hahn-Meitner Platz 1, 14109 Berlin, Germany.,Institut für Physik, Humboldt-Universität zu Berlin , Newtonstrasse 15, 12489 Berlin, Germany
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences , Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
28
|
Tocci G, Liang C, Wilkins DM, Roke S, Ceriotti M. Second-Harmonic Scattering as a Probe of Structural Correlations in Liquids. J Phys Chem Lett 2016; 7:4311-4316. [PMID: 27726403 DOI: 10.1021/acs.jpclett.6b01851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Second-harmonic scattering experiments of water and other bulk molecular liquids have long been assumed to be insensitive to interactions between the molecules. The measured intensity is generally thought to arise from incoherent scattering due to individual molecules. We introduce a method to compute the second-harmonic scattering pattern of molecular liquids directly from atomistic computer simulations, which takes into account the coherent terms. We apply this approach to large-scale molecular dynamics simulations of liquid water, where we show that nanosecond second-harmonic scattering experiments contain a coherent contribution arising from radial and angular correlations on a length scale of ≲1 nm, much shorter than had been recently hypothesized ( Shelton , D. P. J. Chem. Phys. 2014 , 141 ). By combining structural correlations from simulations with experimental data ( Shelton , D. P. J. Chem. Phys. 2014 , 141 ), we can also extract an effective molecular hyperpolarizability in the liquid phase. This work demonstrates that second-harmonic scattering experiments and atomistic simulations can be used in synergy to investigate the structure of complex liquids, solutions, and biomembranes, including the intrinsic intermolecular correlations.
Collapse
Affiliation(s)
- Gabriele Tocci
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Chungwen Liang
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - David M Wilkins
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics, Institutes of Bioengineering and Materials Science and Engineering, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne, Switzerland
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Smolentsev N, Lütgebaucks C, Okur HI, de Beer AGF, Roke S. Intermolecular Headgroup Interaction and Hydration as Driving Forces for Lipid Transmembrane Asymmetry. J Am Chem Soc 2016; 138:4053-60. [DOI: 10.1021/jacs.5b11776] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolay Smolentsev
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Halil I. Okur
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alex G. F. de Beer
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental
BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute
of Materials Science (IMX), School of Engineering (STI), and Lausanne
Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Das SK, Sengupta S, Velarde L. Interfacial Surfactant Ordering in Thin Films of SDS-Encapsulated Single-Walled Carbon Nanotubes. J Phys Chem Lett 2016; 7:320-326. [PMID: 26730991 DOI: 10.1021/acs.jpclett.5b02633] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The molecular self-assembly of surfactants on the surface of single-walled carbon nanotubes (SWCNT) is currently a common strategy for the tuning of nanotube properties and the stabilization of carbon nanotube dispersions. Here, we report direct measurements of the degree of interfacial ordering for sodium dodecyl sulfate (SDS) surfactants adsorbed on colloidal, single-chirality enriched, SWCNTs within a solid film and investigate the dependence of surface alkyl chain order on the surfactant concentration in the precursor solution. The degree of order for the SWCNT-bound SDS molecules, is probed by vibrational sum frequency generation (VSFG) spectroscopy. We find concrete evidence for the presence of highly ordered surface structures at sufficiently high SDS concentrations, attributed here to cylindrical-like micelle assemblies with the SWCNT at the core. As the SDS concentration decreases, the interfacial order is found to decrease as well, generating a more disordered or random adsorption of surfactants on the nanotube surfaces.
Collapse
Affiliation(s)
- Sushanta K Das
- Department of Chemistry, ‡Department of Materials Design and Innovation, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| | - Sanghamitra Sengupta
- Department of Chemistry, ‡Department of Materials Design and Innovation, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| | - Luis Velarde
- Department of Chemistry, ‡Department of Materials Design and Innovation, University at Buffalo, The State University of New York , Buffalo, New York 14260-3000, United States
| |
Collapse
|
31
|
Affiliation(s)
- Joshua A. Long
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Blake M. Rankin
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dor Ben-Amotz
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|