1
|
Liu Y, Meng Q, Mahmoudi P, Wang Z, Zhang J, Yang J, Li W, Wang D, Li Z, Sorrell CC, Li S. Advancing Superconductivity with Interface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405009. [PMID: 39104281 DOI: 10.1002/adma.202405009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Indexed: 08/07/2024]
Abstract
The development of superconducting materials has attracted significant attention not only for their improved performance, such as high transition temperature (TC), but also for the exploration of their underlying physical mechanisms. Recently, considerable efforts have been focused on interfaces of materials, a distinct category capable of inducing superconductivity at non-superconducting material interfaces or augmenting the TC at the interface between a superconducting material and a non-superconducting material. Here, two distinct types of interfaces along with their unique characteristics are reviewed: interfacial superconductivity and interface-enhanced superconductivity, with a focus on the crucial factors and potential mechanisms responsible for enhancing superconducting performance. A series of materials systems is discussed, encompassing both historical developments and recent progress from the perspectives of technical innovations and the exploration of new material classes. The overarching goal is to illuminate pathways toward achieving high TC, expanding the potential of superconducting parameters across interfaces, and propelling superconductivity research toward practical, high-temperature applications.
Collapse
Affiliation(s)
- Yichen Liu
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Qingxiao Meng
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pezhman Mahmoudi
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ziyi Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Ji Zhang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Jack Yang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Wenxian Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Danyang Wang
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Zhi Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Charles C Sorrell
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Sean Li
- UNSW Materials and Manufacturing Futures Institute, School of Materials Science and Engineering, The University of New South Wales, Kensington, NSW, 2052, Australia
| |
Collapse
|
2
|
Guo N, Chen X, Yu T, Fan Y, Zhang Q, Lei M, Xu X, Zhu X, Guo J, Gu L, Xu H, Peng R, Feng D. Inferior Interfacial Superconductivity in 1 UC FeSe/SrVO 3/SrTiO 3 with Screened Interfacial Electron-Phonon Coupling. NANO LETTERS 2024; 24:8587-8594. [PMID: 38967395 DOI: 10.1021/acs.nanolett.4c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Single-unit cell (1 UC) FeSe interfaced with TiOx or FeOx exhibits significantly enhanced superconductivity compared to that of bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in 1 UC FeSe, which may drive superconducting fluctuations, complicates our understanding of the enhancement mechanisms. We construct a new superconducting interface, 1 UC FeSe/SrVO3/SrTiO3. Here, the itinerant electrons of highly metallic SrVO3 films can screen all high-energy Fuchs-Kliewer phonons, including those of SrTiO3, making it the first FeSe/oxide system with screened interfacial EPC while maintaining the 1 UC FeSe thickness. Despite comparable doping levels, the heavily electron-doped 1 UC FeSe/SrVO3 exhibits a pairing temperature (Tg ∼ 48 K) lower than those of FeSe/SrTiO3 and FeSe/LaFeO3. Our findings disentangle the contributions of interfacial EPC from dimensionality in terms of enhancing Tg in FeSe/oxide interfaces, underscoring the critical importance of interfacial EPC. This FeSe/VOx interface also provides a platform for studying interfacial superconductivity.
Collapse
Affiliation(s)
- Nan Guo
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xiaoyang Chen
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Tianlun Yu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yu Fan
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Minyinan Lei
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Haichao Xu
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Rui Peng
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Donglai Feng
- Advanced Materials Laboratory, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
3
|
Li C, Song Y, Wang X, Lei M, Chen X, Xu H, Peng R, Feng D. Interface-Suppressed Nematicity and Enhanced Superconducting Pairing Strength of FeSe/NdFeO 3 in the Low-Doping Regime. NANO LETTERS 2024; 24:8303-8310. [PMID: 38934420 DOI: 10.1021/acs.nanolett.4c01493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The discovery of interfacial superconductivity in monolayer FeSe/oxides has spurred intensive research interest. Here we not only extend the FeSe/FeOx superconducting interface to FeSe/NdFeO3 but also establish robust interface-enhanced superconductivity at a very low doping level. Specifically, well-annealed FeSe/NdFeO3 exhibits a low doping level of 0.038-0.046 e-/Fe with a larger superconducting pairing gap without a nematic gap, indicating an enhancement of the enhanced superconducting pairing strength and suppression of nematicity by the FeSe/FeOx interface compared with those of thick FeSe films. These results improve our understanding of the roles of the oxide interface in the low-electron-doped regime.
Collapse
Affiliation(s)
- Chihao Li
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Yuanhe Song
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Xiaoxiao Wang
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Minyinan Lei
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Xiaoyang Chen
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Haichao Xu
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Rui Peng
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Donglai Feng
- Laboratory of Advanced Materials, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
- New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
4
|
Jiao X, Dong W, Shi M, Wang H, Ding C, Wei Z, Gong G, Li Y, Li Y, Zuo B, Wang J, Zhang D, Pan M, Wang L, Xue QK. Significantly enhanced superconductivity in monolayer FeSe films on SrTiO 3(001) via metallic δ-doping. Natl Sci Rev 2024; 11:nwad213. [PMID: 38312379 PMCID: PMC10833465 DOI: 10.1093/nsr/nwad213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 02/06/2024] Open
Abstract
Superconductivity transition temperature (Tc) marks the inception of a macroscopic quantum phase-coherent paired state in fermionic systems. For 2D superconductivity, the paired electrons condense into a coherent superfluid state at Tc, which is usually lower than the pairing temperature, between which intrinsic physics including Berezinskii-Kosterlitz-Thouless transition and pseudogap state are hotly debated. In the case of monolayer FeSe superconducting films on SrTiO3(001), although the pairing temperature (Tp) is revealed to be 65-83 K by using spectroscopy characterization, the measured zero-resistance temperature ([Formula: see text]) is limited to 20 K. Here, we report significantly enhanced superconductivity in monolayer FeSe films by δ-doping of Eu or Al on SrTiO3(001) surface, in which [Formula: see text] is enhanced by 12 K with a narrowed transition width ΔTc ∼ 8 K, compared with non-doped samples. Using scanning tunneling microscopy/spectroscopy measurements, we demonstrate lowered work function of the δ-doped SrTiO3(001) surface and enlarged superconducting gaps in the monolayer FeSe with improved morphology/electronic homogeneity. Our work provides a practical route to enhance 2D superconductivity by using interface engineering.
Collapse
Affiliation(s)
- Xiaotong Jiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Wenfeng Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Mingxia Shi
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Heng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zhongxu Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yanan Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuanzhao Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Binjie Zuo
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jian Wang
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Hefei National Laboratory, Hefei 230088, China
| | - Ding Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Minghu Pan
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Zhang W, Zhang ZM, Nie JH, Gong BC, Cai M, Liu K, Lu ZY, Fu YS. Spin-Resolved Imaging of Antiferromagnetic Order in Fe 4 Se 5 Ultrathin Films on SrTiO 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209931. [PMID: 36790865 DOI: 10.1002/adma.202209931] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Indexed: 05/12/2023]
Abstract
Unraveling the magnetic order in iron chalcogenides and pnictides at atomic scale is pivotal for understanding their unconventional superconducting pairing mechanism, but is experimentally challenging. Here, by utilizing spin-polarized scanning tunneling microscopy, real-space spin contrasts are successfully resolved to exhibit atomically unidirectional stripes in Fe4 Se5 ultrathin films, the plausible closely related compound of bulk FeSe with ordered Fe-vacancies, which are grown by molecular beam epitaxy. As is substantiated by the first-principles electronic structure calculations, the spin contrast originates from a pair-checkerboard antiferromagnetic ground state with in-plane magnetization, which is modulated by a spin-lattice coupling. These measurements further identify three types of nanoscale antiferromagnetic domains with distinguishable spin contrasts, which are subject to thermal fluctuations into short-ranged patches at elevated temperatures. This work provides promising opportunities in understanding the emergent magnetic order and the electronic phase diagram for FeSe-derived superconductors.
Collapse
Affiliation(s)
- Wenhao Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhi-Mo Zhang
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin-Hua Nie
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ben-Chao Gong
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Min Cai
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kai Liu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Zhong-Yi Lu
- Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing, 100872, China
| | - Ying-Shuang Fu
- School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Xie J, Liu X, Zhang W, Wong SM, Zhou X, Zhao Y, Wang S, Lai KT, Goh SK. Fragile Pressure-Induced Magnetism in FeSe Superconductors with a Thickness Reduction. NANO LETTERS 2021; 21:9310-9317. [PMID: 34714653 DOI: 10.1021/acs.nanolett.1c03508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The emergence of high transition temperature (Tc) superconductivity in bulk FeSe under pressure is associated with the tuning of nematicity and magnetism. However, sorting out the relative contributions from magnetic and nematic fluctuations to the enhancement of Tc remains challenging. Here, we design and conduct a series of high-pressure experiments on FeSe thin flakes. We find that as the thickness decreases the nematic phase boundary on temperature-pressure phase diagrams remains robust while the magnetic order is significantly weakened. A local maximum of Tc is observed outside the nematic phase region, not far from the extrapolated nematic end point in all samples. However, the maximum Tc value is reduced associated with the weakening of magnetism. No high-Tc phase is observed in the thinnest sample. Our results strongly suggest that nematic fluctuations alone can only have a limited effect while magnetic fluctuations are pivotal on the enhancement of Tc in FeSe.
Collapse
Affiliation(s)
- Jianyu Xie
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xinyou Liu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wei Zhang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sum Ming Wong
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuefeng Zhou
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yusheng Zhao
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shanmin Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kwing To Lai
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Swee K Goh
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Jia T, Chen Z, Rebec SN, Hashimoto M, Lu D, Devereaux TP, Lee D, Moore RG, Shen Z. Magic Doping and Robust Superconductivity in Monolayer FeSe on Titanates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003454. [PMID: 33977049 PMCID: PMC8097367 DOI: 10.1002/advs.202003454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The enhanced superconductivity in monolayer FeSe on titanates opens a fascinating pathway toward the rational design of high-temperature superconductors. Utilizing the state-of-the-art oxide plus chalcogenide molecular beam epitaxy systems in situ connected to a synchrotron angle-resolved photoemission spectroscope, epitaxial LaTiO3 layers with varied atomic thicknesses are inserted between monolayer FeSe and SrTiO3, for systematic modulation of interfacial chemical potential. With the dramatic increase of electron accumulation at the LaTiO3/SrTiO3 surface, providing a substantial surge of work function mismatch across the FeSe/oxide interface, the charge transfer and the superconducting gap in the monolayer FeSe are found to remain markedly robust. This unexpected finding indicate the existence of an intrinsically anchored "magic" doping within the monolayer FeSe systems.
Collapse
Affiliation(s)
- Tao Jia
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Zhuoyu Chen
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Slavko N. Rebec
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Makoto Hashimoto
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Donghui Lu
- Stanford Synchrotron Radiation LightsourceSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
| | - Thomas P. Devereaux
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| | - Dung‐Hai Lee
- Department of PhysicsUniversity of California at BerkeleyBerkeleyCA94720USA
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Robert G. Moore
- Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeTN37831USA
| | - Zhi‐Xun Shen
- Stanford Institute for Materials and Energy SciencesSLAC National Accelerator LaboratoryMenlo ParkCA94025USA
- Departments of Physics, Applied Physics, and Materials Science and EngineeringGeballe Laboratory for Advanced MaterialsStanford UniversityStanfordCA94305USA
| |
Collapse
|
8
|
Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J. Recent Advances in 2D Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006124. [PMID: 33768653 DOI: 10.1002/adma.202006124] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/22/2020] [Indexed: 06/12/2023]
Abstract
The emergence of superconductivity in 2D materials has attracted much attention and there has been rapid development in recent years because of their fruitful physical properties, such as high transition temperature (Tc ), continuous phase transition, and enhanced parallel critical magnetic field (Bc ). Tremendous efforts have been devoted to exploring different physical parameters to figure out the mechanisms behind the unexpected superconductivity phenomena, including adjusting the thickness of samples, fabricating various heterostructures, tuning the carrier density by electric field and chemical doping, and so on. Here, different types of 2D superconductivity with their unique characteristics are introduced, including the conventional Bardeen-Cooper-Schrieffer superconductivity in ultrathin films, high-Tc superconductivity in Fe-based and Cu-based 2D superconductors, unconventional superconductivity in newly discovered twist-angle bilayer graphene, superconductivity with enhanced Bc , and topological superconductivity. A perspective toward this field is then proposed based on academic knowledge from the recently reported literature. The aim is to provide researchers with a clear and comprehensive understanding about the newly developed 2D superconductivity and promote the development of this field much further.
Collapse
Affiliation(s)
- Dong Qiu
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuanhui Gong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - SiShuang Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Miao Zhang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chao Yang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xianfu Wang
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
9
|
Incommensurate smectic phase in close proximity to the high-T c superconductor FeSe/SrTiO 3. Nat Commun 2021; 12:2196. [PMID: 33850158 PMCID: PMC8044195 DOI: 10.1038/s41467-021-22516-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well. The relation between enhanced superconductivity in monolayer FeSe grown on SrTiO3 and the large nematicity in multilayer FeSe on SrTiO3 remains not well understood. Here, the authors observe a long-range smectic phase in bilayer FeSe films but vanishes in monolayer FeSe, providing a new instability to help enhance the superconductivity.
Collapse
|
10
|
Xu X, Zhang S, Zhu X, Guo J. Superconductivity enhancement in FeSe/SrTiO 3: a review from the perspective of electron-phonon coupling. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:343003. [PMID: 32241002 DOI: 10.1088/1361-648x/ab85f0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Single-layer FeSe films grown on SrTiO3, with the highest superconducting transition temperature (TC) among all the iron-based superconductors, serves as an ideal platform for studying the microscopic mechanisms of high-TCsuperconductivity. The significant role of interfacial coupling has been widely recognized, while the precise nature of theTCenhancement remains open. In this review, we focus on the investigations of the interfacial coupling in FeSe/SrTiO3from the perspective of electron-phonon coupling (EPC). The main content will include an overview of the experimental measurements associated with different theoretical models and arguments about the EPC. Especially, besides the discussions of EPC based on the measurements of electronic states, we will emphasize the analyses based on phonon measurements. A uniform picture about the nature of the EPC and its relation to theTCenhancement in FeSe/SrTiO3has still not achieved, which should be the key for further studies aiming to the in-depth understanding of high-TCsuperconductivity and the discovery of new superconductors with even enhancedTC.
Collapse
Affiliation(s)
- Xiaofeng Xu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuyuan Zhang
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, United States of America
| | - Xuetao Zhu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Jiandong Guo
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
| |
Collapse
|
11
|
Yao G, Duan MC, Liu N, Wu Y, Guan DD, Wang S, Zheng H, Li YY, Liu C, Jia JF. Diamagnetic Response of Potassium-Adsorbed Multilayer FeSe Film. PHYSICAL REVIEW LETTERS 2019; 123:257001. [PMID: 31922797 DOI: 10.1103/physrevlett.123.257001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.
Collapse
Affiliation(s)
- Gang Yao
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming-Chao Duan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ningning Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanfu Wu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dan-Dan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Shiyong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Hao Zheng
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shenyang National Laboratory for Materials Science, School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Tsung-Dao Lee Institute, Shanghai 200240, China
| |
Collapse
|
12
|
Yang H, Zhou G, Zhu Y, Gong GM, Zhang Q, Liao M, Li Z, Ding C, Meng F, Rafique M, Wang H, Gu L, Zhang D, Wang L, Xue QK. Superconductivity above 28 K in single unit cell FeSe films interfaced with GaO 2-δ layer on NdGaO 3(1 1 0). Sci Bull (Beijing) 2019; 64:490-494. [PMID: 36659735 DOI: 10.1016/j.scib.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 01/21/2023]
Affiliation(s)
- Haohao Yang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guanyu Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yuying Zhu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guan-Ming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qinghua Zhang
- Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Menghan Liao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zheng Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Fanqi Meng
- Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mohsin Rafique
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Heng Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Lin Gu
- Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Ding Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| |
Collapse
|
13
|
Ying TP, Wang MX, Wu XX, Zhao ZY, Zhang ZZ, Song BQ, Li YC, Lei B, Li Q, Yu Y, Cheng EJ, An ZH, Zhang Y, Jia XY, Yang W, Chen XH, Li SY. Discrete Superconducting Phases in FeSe-Derived Superconductors. PHYSICAL REVIEW LETTERS 2018; 121:207003. [PMID: 30500229 DOI: 10.1103/physrevlett.121.207003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Indexed: 06/09/2023]
Abstract
A general feature of unconventional superconductors is the existence of a superconducting dome in the phase diagram. Here we report a series of discrete superconducting phases in the simplest iron-based superconductor, FeSe thin flakes, by continuously tuning the carrier concentration through the intercalation of Li and Na ions with a solid ionic gating technique. Such discrete superconducting phases are robust against the substitution of 20% S for Se, but they are vulnerable to the substitution of 2% Cu for Fe, highlighting the importance of the iron site being intact. The superconducting phase diagram for FeSe derivatives is given, which is distinct from that of other unconventional superconductors.
Collapse
Affiliation(s)
- T P Ying
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - M X Wang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - X X Wu
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, 97074 Würzburg, Germany
| | - Z Y Zhao
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Z Z Zhang
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - B Q Song
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y C Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - B Lei
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Q Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - E J Cheng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Z H An
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - X Y Jia
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - W Yang
- Tianmu Lake Institute of Advanced Energy Storage Technologies, Liyang, Jiangsu 213300, China
| | - X H Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
14
|
Zhou G, Zhang Q, Zheng F, Zhang D, Liu C, Wang X, Song CL, He K, Ma XC, Gu L, Zhang P, Wang L, Xue QK. Interface enhanced superconductivity in monolayer FeSe films on MgO(001): charge transfer with atomic substitution. Sci Bull (Beijing) 2018; 63:747-752. [PMID: 36658947 DOI: 10.1016/j.scib.2018.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 01/21/2023]
Abstract
Interface enhanced superconductivity over 50 K has been discovered in monolayer FeSe films grown on several TiO2-terminated oxide substrates. Whether such phenomenon exists in other oxide substrates remains an extremely interesting topic. Here we report enhanced superconductivity with an onset transition temperature of 18 K in monolayer FeSe on MgO(001) substrate by transport measurement. Scanning transmission electron microscopy investigation on the interface structure indicates that FeSe films grow epitaxially on MgO(001) and that overlayer Fe atoms diffuse into the top two layers of MgO and substitute Mg atoms. Our density functional theory calculations reveal that this substitution promotes the charge transfer from the MgO substrate to the FeSe films, an essential process that also occurs in monolayer FeSe on TiO2-terminated oxides and contributes to the enhanced superconductivity therein. Our finding suggests that superconductivity enhancement in monolayer FeSe films on oxides substrates is rather general as long as charge transfer is allowed at the interface, thus pointing out an explicit direction for searching for new high temperature superconductivity by interface engineering.
Collapse
Affiliation(s)
- Guanyu Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qinghua Zhang
- Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fawei Zheng
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Ding Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Chong Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaoxiao Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Can-Li Song
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Ke He
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Xu-Cun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Lin Gu
- Laboratory for Advanced Materials & Electron Microscopy, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| |
Collapse
|
15
|
Origin of charge transfer and enhanced electron-phonon coupling in single unit-cell FeSe films on SrTiO 3. Nat Commun 2017; 8:214. [PMID: 28790304 PMCID: PMC5548863 DOI: 10.1038/s41467-017-00281-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/19/2017] [Indexed: 11/08/2022] Open
Abstract
Interface charge transfer and electron–phonon coupling have been suggested to play a crucial role in the recently discovered high-temperature superconductivity of single unit-cell FeSe films on SrTiO3. However, their origin remains elusive. Here, using ultraviolet photoemission spectroscopy and element-sensitive X-ray photoemission spectroscopy, we identify the strengthened Ti–O bond that contributes to the interface enhanced electron–phonon coupling and unveil the band bending at the FeSe/SrTiO3 interface that leads to the charge transfer from SrTiO3 to FeSe films. We also observe band renormalization that accompanies the onset of superconductivity. Our results not only provide valuable insights into the mechanism of the interface-enhanced superconductivity, but also point out a promising route toward designing novel superconductors in heterostructures with band bending-induced charge transfer and interfacial enhanced electron–phonon coupling. The origin of interface charge transfer and electron-phonon coupling in single unit-cell FeSe on SrTiO3 remains elusive. Here, Zhang et al. report strengthened Ti-O bond and band bending at the FeSe/SrTiO3 interface, which leads to several important processes.
Collapse
|
16
|
Comparative Review on Thin Film Growth of Iron-Based Superconductors. CONDENSED MATTER 2017. [DOI: 10.3390/condmat2030025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Duan MC, Liu ZL, Ge JF, Tang ZJ, Wang GY, Wang ZX, Guan D, Li YY, Qian D, Liu C, Jia JF. Development of in situ two-coil mutual inductance technique in a multifunctional scanning tunneling microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2017; 88:073902. [PMID: 28764532 DOI: 10.1063/1.4991819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO3(111) substrate.
Collapse
Affiliation(s)
- Ming-Chao Duan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi-Long Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jian-Feng Ge
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi-Jun Tang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guan-Yong Wang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zi-Xin Wang
- School of Electronics and Information Technology, Sun Yat-Sen University, 135 Xingang Xi Road, Guangzhou 510275, China
| | - Dandan Guan
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yao-Yi Li
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dong Qian
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Canhua Liu
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin-Feng Jia
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
18
|
Wang Z, Liu C, Liu Y, Wang J. High-temperature superconductivity in one-unit-cell FeSe films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:153001. [PMID: 28176680 DOI: 10.1088/1361-648x/aa5f26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Since the dramatic enhancement of the superconducting transition temperature (T c) was reported in a one-unit-cell FeSe film grown on a SrTiO3 substrate (1-UC FeSe/STO) by molecular beam epitaxy (MBE), related research on this system has become a new frontier in condensed matter physics. In this paper, we present a brief review on this rapidly developing field, mainly focusing on the superconducting properties of 1-UC FeSe/STO. Experimental evidence for high-temperature superconductivity in 1-UC FeSe/STO, including direct evidence revealed by transport and diamagnetic measurements, as well as other evidence from scanning tunneling microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES), are overviewed. The potential mechanisms of the enhanced superconductivity are also discussed. There are accumulating arguments to suggest that the strengthened Cooper pairing in 1-UC FeSe/STO originates from the interface effects, specifically the charge transfer and coupling to phonon modes in the TiO2 plane. The study of superconductivity in 1-UC FeSe/STO not only sheds new light on the mechanism of high-temperature superconductors with layered structures, but also provides an insight into the exploration of new superconductors by interface engineering.
Collapse
Affiliation(s)
- Ziqiao Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | | | | | | |
Collapse
|