1
|
Ning F, Wei D, Yu H, Song T, Li Z, Ma H, Sun Y. Construction of a Multifunctional Upconversion Nanoplatform Based on Autophagy Inhibition and Photodynamic Therapy Combined with Chemotherapy for Antitumor Therapy. Mol Pharm 2024; 21:4297-4311. [PMID: 39106330 DOI: 10.1021/acs.molpharmaceut.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Inhibition of autophagy increases the sensitivity of tumor cells to radiotherapy and chemotherapy and improves the therapeutic effect on tumors. Recently, photodynamic therapy (PDT) combined with chemotherapy has been proven to further improve the efficiency of cancer treatment. As such, combining autophagy inhibition with PDT and chemotherapy may represent a potentially effective new strategy for cancer treatment. However, currently widely studied autophagy inhibitors inevitably produce various toxic side effects due to their inherent pharmacological activity. To overcome this constraint, in this study, we designed an ideal multifunctional upconversion nanoplatform, UCNP-Ce6-EPI@mPPA + NIR (MUCEN). Control, UCNP-EPI@mPPA (MUE), UCNP-EPI@mPPA + NIR (MUEN), Ce6-EPI@mPPA (MCE), Ce6-EPI@mPPA + NIR (MCEN), and UCNP-Ce6-EPI@mPPA (MUCE) groups were set up separately as controls. Based on a combination of autophagy inhibition and PDT, the average particle size of MUCEN was 197 nm, which can simultaneously achieve the double encapsulation of chlorine e6 (Ce6) and epirubicin (EPI). In vitro tests revealed that MUCE was efficiently endocytosed by 4T1 cells under near-infrared light irradiation. Further, in vivo tests revealed that MUCE dramatically inhibited tumor growth. Immunohistochemistry results indicated that MUCE efficiently increased the expression of autophagy inhibitors p62 and LC3 in tumor tissues. The synergistic effect of autophagy inhibition and PDT with MUCE exhibited superior tumor suppression, providing an innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Fang Ning
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongli Yu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Tingting Song
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zhipeng Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Hongmei Ma
- Department of Gynecology, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Lu M, Xing H, Zheng A, Huang Y, Liang XJ. Overcoming Pharmaceutical Bottlenecks for Nucleic Acid Drug Development. Acc Chem Res 2023; 56:224-236. [PMID: 36624086 DOI: 10.1021/acs.accounts.2c00464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) pandemic and swift approval of two mRNA vaccines have put nucleic acid therapeutics in the spotlight of both the scientific community and the general public. Actually, in addition to mRNAs, multiple nucleic acid therapeutics have been successively commercialized over the past few years. The rapid development of nucleic acid drugs not only demonstrates their superior potency but also marks a new era of the field. Compared with conventional treatments targeting proteins rather than the root causes of diseases at the genetic level, nucleic acids are capable of achieving long-standing or even curative effects against undruggable disorders by modulating gene expression via inhibition, editing, addition, or replacement. This offers a terrific arsenal for expanding therapeutic access to diseases lacking current treatment options and developing vaccines to provide swift responses to emerging global health threats.Despite the stunning success and recent resurgence of interest in the field, the unfavorable physicochemical characteristics (i.e., the negative charge, large molecular weight, and hydrophilicity), susceptibility to nuclease degradation, off-target toxicity, and immunogenicity are a brake for moving nucleic acid therapeutics from bench to bedside. Currently, developing technologies to improve the circulation stability, targeting affinity, cellular entry, endolysosomal escape, efficacy, and safety of nucleic acid drugs still remains a major pharmaceutical bottleneck.In this Account, we outline the research efforts from our group on the development of technology platforms to overcome the pharmaceutical bottlenecks for nucleic acid therapeutics. We have engineered a variety of intelligent delivery platforms such as synthetic nanomaterials (i.e., lipid nanoparticles, polymers, and inorganic nanoparticles), physical delivery methods (i.e., electroporation), and naturally derived vehicles (i.e., extracellular vesicles), aiming at endowing nucleic acids with improved circulation stability, targeting affinity, and cellular internalization (Get in) and stimuli responsive endolysosomal escape capability (Get out). Moreover, we will discuss our progress in developing a series of modification strategies for sequence engineering of nucleic acids to endow them with enhanced nuclease resistance, translation efficiency, and potency while alleviating their off-target toxicity and immunogenicity (Sequence engineering). Integrating these technologies may promote the development of nucleic acid therapeutics with potent efficacy and improved safety (Efficacy & safety). With this Account, we hope to offer insights into rational design of cutting-edge nucleic acid therapeutic platforms. We believe that the continuing advances in nucleic acid technologies together with academic-industry collaborations in the clinic, will promise to usher in more clinically translatable nucleic acid therapeutics in the foreseeable future.
Collapse
Affiliation(s)
- Mei Lu
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
| | - Haonan Xing
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27, Taiping Road, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, No. 27, Taiping Road, Beijing 100850, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China
| | - Xing-Jie Liang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Beijing 100081, China.,Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
| |
Collapse
|
3
|
Hu B, Kong S, Weng Y, Zhao D, Hussain A, Jiao Q, Zhan S, Qiu L, Lin J, Xie M, Li B, Huang Y. Lipid-conjugated siRNA hitchhikes endogenous albumin for tumor immunotherapy. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
4
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
5
|
Khan RU, Shao J, Liao JY, Qian L. pH-triggered cancer-targeting polymers: From extracellular accumulation to intracellular release. NANO RESEARCH 2023; 16:5155-5168. [PMID: 36618069 PMCID: PMC9807988 DOI: 10.1007/s12274-022-5252-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 05/25/2023]
Abstract
Stimuli-responsive polymers are promising to achieve targeted delivery, improved stability during circulation, and controlled release of therapeutic and diagnostic agents. Among them, pH-responsive polymeric nanocarriers have attracted significant attention as pH varies in different body fluids (e.g., stomach, intestine, and colon) and intracellular organelles (e.g., endosome, lysosome, and mitochondria) to maintain homeostasis, while distinctive pH changes are also found in certain pathological states. For example, the extracellular environment of the tumor is acidic, which can be employed to drive selective delivery. During the internalization process, since most nanocarriers enter cells upon endocytosis where a drop of pH from 6.5 to 5.0 can occur from endosome to lysosome, pH-sensitive groups have been developed for enhanced cargo release. In this review, both non-covalent and covalent interactions responsive to pH changes are introduced, with a focus on the structure-property relationship and their applications in cancer targeting and endosomal escape.
Collapse
Affiliation(s)
- Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jinning Shao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| | - Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
6
|
Yadav DN, Ali MS, Thanekar AM, Pogu SV, Rengan AK. Recent Advancements in the Design of Nanodelivery Systems of siRNA for Cancer Therapy. Mol Pharm 2022; 19:4506-4526. [PMID: 36409653 DOI: 10.1021/acs.molpharmaceut.2c00811] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) has increased the possibility of restoring RNA drug targets for cancer treatment. Small interfering RNA (siRNA) is a promising therapeutic RNAi tool that targets the defective gene by inhibiting its mRNA expression and stopping its translation. However, siRNAs have flaws like poor intracellular trafficking, RNase degradation, rapid kidney filtration, off-targeting, and toxicity, which limit their therapeutic efficiency. Nanocarriers (NCs) have been designed to overcome such flaws and increase antitumor activity. Combining siRNA and anticancer drugs can give synergistic effects in cancer cells, making them a significant gene-modification tool in cancer therapy. Our discussion of NCs-mediated siRNA delivery in this review includes their mechanism, limitations, and advantages in comparison with naked siRNA delivery. We will also discuss organic NCs (polymers and lipids) and inorganic NCs (quantum dots, carbon nanotubes, and gold) that have been reported for extensive delivery of therapeutic siRNA to tumor sites. Finally, we will conclude by discussing the studies based on organic and inorganic NCs-mediated siRNA drug delivery systems conducted in the years 2020 and 2021.
Collapse
Affiliation(s)
- Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Mohammad Sadik Ali
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering Indian Institute of Technology Hyderabad, Kandi 502284, India
| |
Collapse
|
7
|
Yan Y, Zhu F, Su H, Liu X, Ren Q, Huang F, Ye W, Zhao M, Zhao Y, Zhao J, Shuai Q. Construction of Degradable and Amphiphilic Triblock Polymer Carriers for Effective Delivery of siRNA. Macromol Biosci 2022; 22:e2200232. [PMID: 36086889 DOI: 10.1002/mabi.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/17/2022] [Indexed: 01/15/2023]
Abstract
The development of effective and safe delivery carriers is one of the prerequisites for the clinical translation of siRNA-based therapeutics. In this study, a library of 144 functional triblock polymers using ring-opening polymerization (ROP) and thiol-ene click reaction is constructed. These triblock polymers are composed of hydrophilic poly (ethylene oxide) (PEO), hydrophobic poly (ε-caprolactone) (PCL), and cationic amine blocks. Three effective carriers are discovered by high-throughput screening of these polymers for siRNA delivery to HeLa-Luc cells. In vitro evaluation shows that siLuc-loaded nanoparticles (NPs) fabricated with leading polymer carriers exhibit sufficient knockdown of luciferase genes and relatively low cytotoxicity. The chemical structure of polymers significantly affects the physicochemical properties of the resulting siRNA-loaded NPs, which leads to different cellular uptake of NPs and endosomal escape of loaded siRNA and thus the overall in vitro siRNA delivery efficacy. After systemic administration to mice with xenograft tumors, siRNA NPs based on P2-4.5A8 are substantially accumulated at tumor sites, suggesting that PEO and PCL blocks are beneficial for improving blood circulation and biodistribution of siRNA NPs. This functional triblock polymer platform may have great potential in the development of siRNA-based therapies for the treatment of cancers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangtao Zhu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Huahui Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| | - Mengdan Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University and Key Laboratory of Women's Reproductive Health Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, P. R. China
| | - Junpeng Zhao
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, P. R. China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, P. R. China
| |
Collapse
|
8
|
Yan Y, Zhang G, Wu C, Ren Q, Liu X, Huang F, Cao Y, Ye W. Structural Exploration of Polycationic Nanoparticles for siRNA Delivery. ACS Biomater Sci Eng 2022; 8:1964-1974. [PMID: 35380797 DOI: 10.1021/acsbiomaterials.2c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA interference (RNAi) is a promising approach to the treatment of genetic diseases by the specific knockdown of target genes. Functional polymers are potential vehicles for the effective delivery of vulnerable small interfering RNA (siRNA), which is required for the broad application of RNAi-based therapeutics. The development of methods for the facile modulation of chemical structures of polymeric carriers and an elucidation of detailed delivery mechanisms remain important areas of research. In this paper, we synthesized a series of methacrylate-based polymers with controllable structures and narrow distributions by atom transfer radical polymerization using various combinations of cationic monomers (2-dimethylaminoethyl methacrylate, 2-diethylaminoethyl methacrylate, and 2-dibutylaminoethyl methacrylate) and hydrophobic monomers (2-butyl methacrylate (BMA), cyclohexyl methacrylate, and 2-ethylhexyl methacrylate). These polymers exhibited varying hydrophobicities, charge densities, and pKa values, enabling the discovery of effective carriers for siRNA by in vitro delivery assays. For the polymers with BMA segments, 50% of cationic segments were beneficial to the formation of siRNA nanoparticles (NPs) and the in vitro delivery of siRNA. The optimal ratio varied for different combinations of cationic and hydrophobic segments. In particular, 20k PMB 0.5, PME 0.5, and PEB 1.0 showed >75% luciferase knockdown. Efficacious delivery was dependent on high siRNA binding, the small size of NPs, and balanced hydrophobicity and charge density. Cellular uptake and endosomal escape experiments indicated that carboxybetaine modification of 20k PMB 0.5 did not remarkably affect the internalization of corresponding NPs after incubation for 6 h but significantly reduced the endosomal escape of NPs, which leads to the notable decrease in delivery efficacy of polymers. These results provide insights into the mechanism of polymer-based siRNA delivery and may inspire the development of novel polymeric carriers.
Collapse
Affiliation(s)
- Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Guangliang Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaomin Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Fangqian Huang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yi Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbo Ye
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
9
|
|
10
|
Wang Y, Xiong X, Zhu Y, Song X, Li Q, Zhang S. A pH-Responsive Nanoplatform Based on Fluorescent Conjugated Polymer Dots for Imaging-Guided Multitherapeutics Delivery and Combination Cancer Therapy. ACS Biomater Sci Eng 2021; 8:161-169. [PMID: 34866394 DOI: 10.1021/acsbiomaterials.1c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For cancer treatment, nanocarriers were designed with cationic lipids and polymers to improve the cytosolic delivery efficiency of siRNA. Though the positively charged nanocarriers showed great potential for RNA therapy, it was inevitable to generate the potential cytotoxicity. We constructed a pH-responsive nanoplatform, which co-carried siRNA and anticancer drug (hydroxycamptothecine, HCPT), to integrate gene therapy and chemotherapy for combination cancer therapy. The fluorescent conjugated polymer nanoparticles (CPNPs) modified with cell-penetrating peptides were employed as cores to carry siRNA molecules (siRNA-CPNPs) and track the biodistribution of nanotherapeutics by virtue of fluorescence. Calcium phosphate (CaP) nanocoatings were deposited on the surface of siRNA-CPNPs, followed by loading with HCPT and aptamers targeting cancer cells to obtain a targeted and tumor acid-responsive biocompatible nanoplatform. After the uptake of cancer cells, the CaP nanocoatings were decomposed in the acidic endo/lysosomes to release HCPT, and the siRNA-CPNPs were exposed to facilitate the siRNA endo/lysosome escape and cytoplasm delivery. Results obtained from both in vitro and in vivo studies in tumor inhibition expressed that the combined therapy exhibited a better therapeutic efficacy than any monotherapy.
Collapse
Affiliation(s)
- Yilin Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xuefan Xiong
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi 276005, China
| | - Xinyue Song
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Qiong Li
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
11
|
Thangamani L, Balasubramanian B, Easwaran M, Natarajan J, Pushparaj K, Meyyazhagan A, Piramanayagam S. GalNAc-siRNA conjugates: Prospective tools on the frontier of anti-viral therapeutics. Pharmacol Res 2021; 173:105864. [PMID: 34474100 PMCID: PMC8405237 DOI: 10.1016/j.phrs.2021.105864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
The growing use of short-interfering RNA (siRNA)-based therapeutics for viral diseases reflects the most recent innovations in anti-viral vaccines and drugs. These drugs play crucial roles in the fight against many hitherto incurable diseases, the causes, pathophysiologies, and molecular processes of which remain unknown. Targeted liver drug delivery systems are in clinical trials. The receptor-mediated endocytosis approach involving the abundant asialoglycoprotein receptors (ASGPRs) on the surfaces of liver cells show great promise. We here review N-acetylgalactosamine (GalNAc)-siRNA conjugates that treat viral diseases such as hepatitis B infection, but we also mention that novel, native conjugate-based, targeted siRNA anti-viral drugs may also cure several life-threatening diseases such as hemorrhagic cystitis, multifocal leukoencephalopathy, and severe acute respiratory syndrome caused by coronaviruses and human herpes virus.
Collapse
Affiliation(s)
- Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | | | - Murugesh Easwaran
- International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India.
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India.
| |
Collapse
|
12
|
Yu Y, Feng Z, Liu J, Hou X, Zhou X, Gao J, Wang W, Zhang Y, Li G, Liu J. γ-Ray-Triggered Drug Release of Reactive Oxygen Species-Sensitive Nanomedicine for Enhanced Concurrent Chemoradiation Therapy. ACS OMEGA 2021; 6:19445-19457. [PMID: 34368532 PMCID: PMC8340104 DOI: 10.1021/acsomega.1c01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Radiotherapy (RT) combined with chemotherapy remains a dominant therapeutic manner in clinical tumor treatment, which is irreplaceable in a short term. To seek an intrinsic connection of combined chemoradiation therapy and maximize the antitumor efficacy, we developed a reactive oxygen species (ROS)-sensitive nanomicelle drug delivery system based on a self-assembled amphiphilic polymer, hyaluronic acid-graft-poly-(propylene sulfide) (HA-PPS). A chemical radiosensitizer, doxorubicin (DOX), was encapsulated into the core of HA-PPS nanomicelles, constituting the DOX-loaded nanomicelles (HA-PPS@DOX NMs) with a spherical structure of around 205.10 ± 11.33 nm diameter with a narrow polydispersity index (PDI) of 0.135 ± 0.01. When combined with RT, the ROS-sensitive HA-PPS@DOX NMs disintegrated and released great drug cargos, which further enhanced cytotoxicity. Meanwhile, as a radiosensitizer, the released DOX sensitized cancer cells to radiotherapy, which has been confirmed by an enhanced sensitizer enhancement ratio (SER) value of 1.78 contributing to the increased cytotoxicity of concurrent chemoradiation tumor therapy, as evidenced by the improvement of half maximal inhibitory concentration (IC50 value) of DOX from 2.316 to 0.8235 μg/mL. Moreover, in vivo studies revealed that HA-PPS@DOX NMs exhibited prolonged circulation time and improved tumor accumulation. Particularly, the released DOX triggered by radiation strengthened radiotherapy sensitization in return. Consequently, these superiorities of HA-PPS@DOX NMs shown by the concurrent chemoradiation tumor therapy resulted in an ideal tumor inhibition rate of 70.4%, thus providing a promising ROS-sensitive nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Ying Yu
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zujian Feng
- Department
of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering
(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinjian Liu
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoqian Zhou
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Jie Gao
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wei Wang
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yumin Zhang
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Guoliang Li
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Jianfeng Liu
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
13
|
Abstract
Drug delivery systems have shown tremendous promise to improve the diagnostic and therapeutic effects of drugs due to their special property. Targeting tissue damage, tumors, or drugs with limited toxicity at the site of infection is the goal of successful pharmaceuticals. Targeted drug delivery has become significantly important in enhancing the pharmaceutical effects of drugs and reducing their side effects of therapeutics in the treatment of various disease conditions. Unfortunately, clinical translation of these targeted drug delivery system mechanisms faces many challenges. At present, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even though numerous surface markers and targeting approaches have been developed. Thus, cell-mediated drug-delivery targeting systems have received considerable attention for their enhanced therapeutic specificity and efficacy in the treatment of the disease. This review highlights the recent advances in the design of the different types of cells that have been explored for cell-mediated drug delivery and targeting mechanisms. A better understanding of cell biology orientation and a new generation of delivery strategies that utilize these endogenous approaches are expected to provide better solutions for specific site delivery and further facilitate clinical translation.
Collapse
Affiliation(s)
- Hongli Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Zhihong Yang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fei Li
- Department of Pharmacy, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lisa Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Li C, Zhou J, Wu Y, Dong Y, Du L, Yang T, Wang Y, Guo S, Zhang M, Hussain A, Xiao H, Weng Y, Huang Y, Wang X, Liang Z, Cao H, Zhao Y, Liang XJ, Dong A, Huang Y. Core Role of Hydrophobic Core of Polymeric Nanomicelle in Endosomal Escape of siRNA. NANO LETTERS 2021; 21:3680-3689. [PMID: 33596656 DOI: 10.1021/acs.nanolett.0c04468] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient endosomal escape is the most essential but challenging issue for siRNA drug development. Herein, a series of quaternary ammonium-based amphiphilic triblock polymers harnessing an elaborately tailored pH-sensitive hydrophobic core were synthesized and screened. Upon incubating in an endosomal pH environment (pH 6.5-6.8), mPEG45-P(DPA50-co-DMAEMA56)-PT53 (PDDT, the optimized polymer) nanomicelles (PDDT-Ms) and PDDT-Ms/siRNA polyplexes rapidly disassembled, leading to promoted cytosolic release of internalized siRNA and enhanced silencing activity evident from comprehensive analysis of the colocalization and gene silencing using a lysosomotropic agent (chloroquine) and an endosomal trafficking inhibitor (bafilomycin A1). In addition, PDDT-Ms/siPLK1 dramatically repressed tumor growth in both HepG2-xenograft and highly malignant patient-derived xenograft models. PDDT-Ms-armed siPD-L1 efficiently blocked the interaction of PD-L1 and PD-1 and restored immunological surveillance in CT-26-xenograft murine model. PDDT-Ms/siRNA exhibited ideal safety profiles in these assays. This study provides guidelines for rational design and optimization of block polymers for efficient endosomal escape of internalized siRNA and cancer therapy.
Collapse
Affiliation(s)
- Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Yidi Wu
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yanliang Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Lili Du
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yongheng Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Huang
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Nanning, Guangxi 530021, China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Nanning, Guangxi 530021, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
15
|
Yang Q, Dong Y, Wang X, Lin Z, Yan M, Wang W, Dong A, Zhang J, Huang P, Wang C. pH-Sensitive Polycations for siRNA Delivery: Effect of Asymmetric Structures of Tertiary Amine Groups. Macromol Biosci 2021; 21:e2100025. [PMID: 33769670 DOI: 10.1002/mabi.202100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2021] [Indexed: 12/13/2022]
Abstract
pH-sensitive polyelectrolytes provide enormous opportunity for siRNA delivery. Especially, their tertiary amine structures can not only bind genes but also act as pH-sensitive hydrophobic structure to control genes release. However, the influence of molecular structures on siRNA delivery still remains elusive, especially for the asymmetric alkyl substituents of the tertiary amine groups. Herein, a library of N-methyl-N-alkyl aminoethyl methacrylate monomers (MsAM) with asymmetric alkyl substituents on the tertiary amine group is synthesized and used to prepare a series of tri-block polycationic copolymers poly(aminoethyl methacrylate)-block-poly (N-methyl-N-alkyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMsMA-PEG). And the properties of these polycations and their self-assembled micelles are characterized, including molecular structure, proton buffering capacity, pH-sensitivity, size, and zeta potential. With the length increase of one alkyl substituent, the proton buffering capacity of both monomers and polycations is demonstrated to be narrowed down. The siRNA delivery efficiency and cytotoxicity of these micelles are also evaluated on HepG2 cells. In particular, poly(aminoethyl methacrylate)-block-poly(N-methyl-N-ethyl aminoethyl methacrylate)-block-poly(ethylene glycol methacrylate) (PAMA-PMEMA-PEG) elicited the best luciferase knockdown efficiency and low cytotoxicity. Besides, PAMA-PMEMA-PEG/siRRM2 also induced significant anti-tumor activity in vitro. These results indicated PAMA-PMEMA-PEG has potential for further use in the design of gene vehicles with the improved efficiency of siRNA delivery.
Collapse
Affiliation(s)
- Qinping Yang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yanliang Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xuanyu Wang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhihao Lin
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mingyu Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Yantai, 264003, China
| |
Collapse
|
16
|
Liu T, Lin M, Wu F, Lin A, Luo D, Zhang Z. Development of a nontoxic and efficient gene delivery vector based on histidine grafted chitosan. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1885407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tianhui Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Pharmaceutical and Medical Technology College, Putian University, Putian, China
| | - Mei Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fuzhou, China
| | - Fan Wu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Aizhu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Daoshu Luo
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Ziyang Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Wang H, Zhang S, Lv J, Cheng Y. Design of polymers for siRNA delivery: Recent progress and challenges. VIEW 2021. [DOI: 10.1002/viw.20200026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Hui Wang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Jia Lv
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou China
- Shanghai Key Laboratory of Regulatory Biology School of Life Sciences East China Normal University Shanghai China
| |
Collapse
|
18
|
Wang C, Wang X, Du L, Dong Y, Hu B, Zhou J, Shi Y, Bai S, Huang Y, Cao H, Liang Z, Dong A. Harnessing pH-Sensitive Polycation Vehicles for the Efficient siRNA Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2218-2229. [PMID: 33406826 DOI: 10.1021/acsami.0c17866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
pH-sensitive hydrophobic segments have been certificated to facilitate siRNA delivery efficiency of amphiphilic polycation vehicles. However, optimal design concepts for these vehicles remain unclear. Herein, by studying the library of amphiphilic polycations mPEG-PAMA50-P(DEAx-r-D5Ay) (EAE5x/y), we concluded a multifactor matching concept (pKa values, "proton buffering capacities" (BCs), and critical micelle concentrations (CMCs)) for polycation vehicles to improve siRNA delivery efficiency in vitro and in vivo. We identified that the stronger BCs in a pH 5.5-7.4 subset induced by EAE548/29 (pKa = 6.79) and EAE539/37 (pKa = 6.20) are effective for siRNA delivery in vitro. Further, the stronger BCs occurred in a narrow subset of pH 5.5-6.5 and the lower CMC attributed to higher siRNA delivery capacity of EAE539/37 in vivo than EAE548/29 after intravenous administration and subcutaneous injection. More importantly, 87.2% gene knockdown efficacy was achieved by EAE539/37 via subcutaneous injection, which might be useful for an mRNA vaccine adjuvant. Furthermore, EAE539/37 also successfully delivered siRRM2 to tumor via intravenous administration and received highly efficient antitumor activity. Taken together, the suitable pKa values, strong BCs occurred in pH 5.5-6.5, and low CMCs were probably the potential solution for designing efficient polycationic vehicles for siRNA delivery.
Collapse
Affiliation(s)
- Changrong Wang
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Lili Du
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yanliang Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Bo Hu
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Suping Bai
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
| | - Yuanyu Huang
- School of Life Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Zicai Liang
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Anjie Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, P.R. China
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
19
|
Abstract
Small interfering RNA (siRNA) is a clinically approved therapeutic modality, which has attracted widespread attention not only from basic research but also from pharmaceutical industry. As siRNA can theoretically modulate any disease-related gene's expression, plenty of siRNA therapeutic pipelines have been established by tens of biotechnology companies. The drug performance of siRNA heavily depends on the sequence, the chemical modification, and the delivery of siRNA. Here, we describe the rational design protocol of siRNA, and provide some modification patterns that can enhance siRNA's stability and reduce its off-target effect. Also, the delivery method based on N-acetylgalactosamine (GalNAc)-siRNA conjugate that is widely employed to develop therapeutic regimens for liver-related diseases is also recapitulated.
Collapse
Affiliation(s)
- Mei Lu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, and Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
20
|
The microgravity enhanced polymer-mediated siRNA gene silence by improving cellular uptake. BIOPHYSICS REPORTS 2020. [DOI: 10.1007/s41048-020-00121-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Graphical abstract
Abstract
Microgravity (MG) effect is a weightlessness phenomenon caused by the distance from the ground or low gravity of other planets outside the earth’s atmosphere. The various effects of MG have been corroborated in human and animal studies and modeled in cell-based analogs. However, the impact of MG on siRNA performance remains to be elucidated, which is crucial for aerospace medicine. In this study, we prepared nucleic acid nanomicelles (EAASc/siRNA) by using tri-block copolymer of PEG45-PAMA40-P(C7A36-DBA37) (EAASc) and siRNA and explored its working mechanism under simulated microgravity (SMG) condition generated by a random positioning machine (RPM). The binding ability of EAASc to siRNA and silence activity were firstly confirmed in normal gravity (NG) environment. Evaluation of PLK1 mRNA expression revealed that gene inhibition efficiencies were increased by 28.7% (HepG2) and 28.9% (A549) under SMG condition, compared with those under NG condition. In addition, mechanism exploration indicated that morphology and migration capability of cancer cells were significantly changed, the internalization of EAASc/siRNA by cells was magnified when the cells were incubated with RPM. No significant difference was observed regarding the expression profiles of genes involved in RNA interference (RNAi) pathway, including Ago2, Dicer, TRBP, and so on. Taken together, siRNA activity was elevated under SMG condition owning to increased cellular internalization. This study, for the first time to our knowledge, provides valuable theory for development and application of siRNA therapeutic in space in the future.
Collapse
|
21
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
22
|
Maeshima R, Moulding D, Stoker AW, Hart SL. MYCN Silencing by RNAi Induces Neurogenesis and Suppresses Proliferation in Models of Neuroblastoma with Resistance to Retinoic Acid. Nucleic Acid Ther 2020; 30:237-248. [PMID: 32240058 PMCID: PMC7415885 DOI: 10.1089/nat.2019.0831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is the most common solid tumor in childhood. Twenty percent of patients display MYCN amplification, which indicates a very poor prognosis. MYCN is a highly specific target for an NB tumor therapy as MYCN expression is absent or very low in most normal cells, while, as a transcription factor, it regulates many essential cell activities in tumor cells. We aim to develop a therapy for NB based on MYCN silencing by short interfering RNA (siRNA) molecules, which can silence target genes by RNA interference (RNAi), a naturally occurring method of gene silencing. It has been shown previously that MYCN silencing can induce apoptosis and differentiation in MYCN amplified NB. In this article, we have demonstrated that siRNA-mediated silencing of MYCN in MYCN-amplified NB cells induced neurogenesis in NB cells, whereas retinoic acid (RA) treatment did not. RA can differentiate NB cells and is used for treatment of residual disease after surgery or chemotherapy, but resistance can develop. In addition, MYCN siRNA treatment suppressed growth in a MYCN-amplified NB cell line more than that by RA. Our result suggests that gene therapy using RNAi targeting MYCN can be a novel therapy toward MYCN-amplified NB that have complete or partial resistance toward RA.
Collapse
Affiliation(s)
- Ruhina Maeshima
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Dale Moulding
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Andrew W. Stoker
- Developmental Biology & Cancer Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Stephen L. Hart
- Genetics and Genomic Medicine Department, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
23
|
Zhang M, Weng Y, Cao Z, Guo S, Hu B, Lu M, Guo W, Yang T, Li C, Yang X, Huang Y. ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32289-32300. [PMID: 32584027 DOI: 10.1021/acsami.0c06614] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small interfering RNA (siRNA) shows excellent pharmaceutical prospects in treating diverse life-threatening diseases. Photodynamic therapy (PDT) is a clinically employed noninvasive treatment method that can trigger selective damage toward targeted tissue and cells. However, insufficient delivery of siRNA and photosensitizer to cancer cells remarkably hindered the application of siRNA and PDT in the treatment of cancer. In this study, a unique reactive oxygen species (ROS)-activatable polyplex, which consists of the PEGylated cationic polymer, ROS-cleavable linker, photosensitizer Ce6, and RRM2-against siRNA, termed PPTC/siRNA, was engineered. Upon irradiation of near-infrared (NIR) light, the polyplex efficiently generated ROS, which triggered degradation of the ROS-sensitive linker, disassembling the complex, destabilization of the cell membrane, and significantly accelerated cellular entry and endosomal escape of siRNA. Besides achieving effective siRNA internalization and gene silence in cancer cells in vitro, PPTC/siRNA synergistically inhibited tumor growth in both cell line-derived xenograft and patient-derived xenograft hepatocellular carcinoma murine models by repressing the RRM2 expression (reducing cell proliferation) and triggering photodynamic killing (enhancing cell apoptosis). The proposed polyplex also showed ideal safety profiles both in cell line and in animal. It provides a novel strategy for NIR-triggered RNAi and PDT combinational cancer treatment.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhua Weng
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Ziyang Cao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Shuai Guo
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Hu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Mei Lu
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Tongren Yang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Chunhui Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xianzhu Yang
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, P. R. China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai 519085, P. R. China
| |
Collapse
|
24
|
Yang T, Li C, Wang X, Zhao D, Zhang M, Cao H, Liang Z, Xiao H, Liang XJ, Weng Y, Huang Y. Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioact Mater 2020; 5:1053-1061. [PMID: 32691013 PMCID: PMC7355334 DOI: 10.1016/j.bioactmat.2020.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 01/20/2023] Open
Abstract
mRNA is a novel class of therapeutic modality that holds great promise in vaccination, protein replacement therapy, cancer immunotherapy, immune cell engineering etc. However, optimization of mRNA molecules and efficient in vivo delivery are quite important but challenging for its broad application. Here we present an ionizable lipid nanoparticle (iLNP) based on iBL0713 lipid for in vitro and in vivo expression of desired proteins using codon-optimized mRNAs. mRNAs encoding luciferase or erythropoietin (EPO) were prepared by in vitro transcription and formulated with proposed iLNP, to form iLP171/mRNA formulations. It was revealed that both luciferase and EPO proteins were successfully expressed by human hepatocellular carcinoma cells and hepatocytes. The maximum amount of protein expression was found at 6 h post-administration. The expression efficiency of EPO with codon-optimized mRNA was significantly higher than that of unoptimized mRNA. Moreover, no toxicity or immunogenicity was observed for these mRNA formulations. Therefore, our study provides a useful and promising platform for mRNA therapeutic development.
Collapse
Affiliation(s)
- Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoxia Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Deyao Zhao
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.,Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Erqi, Zhengzhou, 450000, China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Huiqing Cao
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Zicai Liang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.,Suzhou Ribo Life Science Co. Ltd., Jiangsu, 215300, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Polymer Physical and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China.,School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085, China
| |
Collapse
|
25
|
Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther 2020; 5:101. [PMID: 32561705 PMCID: PMC7305320 DOI: 10.1038/s41392-020-0207-x] [Citation(s) in RCA: 768] [Impact Index Per Article: 153.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023] Open
Abstract
RNA interference (RNAi) is an ancient biological mechanism used to defend against external invasion. It theoretically can silence any disease-related genes in a sequence-specific manner, making small interfering RNA (siRNA) a promising therapeutic modality. After a two-decade journey from its discovery, two approvals of siRNA therapeutics, ONPATTRO® (patisiran) and GIVLAARI™ (givosiran), have been achieved by Alnylam Pharmaceuticals. Reviewing the long-term pharmaceutical history of human beings, siRNA therapy currently has set up an extraordinary milestone, as it has already changed and will continue to change the treatment and management of human diseases. It can be administered quarterly, even twice-yearly, to achieve therapeutic effects, which is not the case for small molecules and antibodies. The drug development process was extremely hard, aiming to surmount complex obstacles, such as how to efficiently and safely deliver siRNAs to desired tissues and cells and how to enhance the performance of siRNAs with respect to their activity, stability, specificity and potential off-target effects. In this review, the evolution of siRNA chemical modifications and their biomedical performance are comprehensively reviewed. All clinically explored and commercialized siRNA delivery platforms, including the GalNAc (N-acetylgalactosamine)-siRNA conjugate, and their fundamental design principles are thoroughly discussed. The latest progress in siRNA therapeutic development is also summarized. This review provides a comprehensive view and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China
| | - Liping Zhong
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, 530021, Guangxi, People's Republic of China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China
| | - Ling Peng
- Aix-Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Equipe Labellisée Ligue Contre le Cancer, 13288, Marseille, France
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, 100081, Beijing, People's Republic of China.
| | - Yongxiang Zhao
- National Center for International Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Collaborative Innovation Center for Targeting Tumor Theranostics, Guangxi Medical University, 530021, Guangxi, People's Republic of China.
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 100190, Beijing, People's Republic of China.
| |
Collapse
|
26
|
Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J Control Release 2020; 323:203-224. [PMID: 32320817 DOI: 10.1016/j.jconrel.2020.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
Nano-drug/gene delivery systems (DDS) are powerful weapons for the targeted delivery of various therapeutic molecules in treatment of tumors. Nano systems are being extensively investigated for drug and gene delivery applications because of their exceptional ability to protect the payload from degradation in vivo, prolong circulation of the nanoparticles (NPs), realize controlled release of the contents, reduce side effects, and enhance targeted delivery among others. However, the specific properties required for a DDS vary at different phase of the complex delivery process, and these requirements are often conflicting, including the surface charge, particle size, and stability of DDS, which severely reduces the efficiency of the drug/gene delivery. Therefore, researchers have attempted to fabricate structure, size, or charge changeable DDS by introducing various tumor microenvironment (TME) stimuli-responsive elements into the DDS to meet the varying requirements at different phases of the delivery process, thus improving drug/gene delivery efficiency. This paper summarizes the most recent developments in TME stimuli-responsive DDS and addresses the aforementioned challenges.
Collapse
|
27
|
Wei S, Liu X, Zhou J, Zhang J, Dong A, Huang P, Wang W, Deng L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int J Biol Macromol 2020; 155:153-162. [PMID: 32224179 DOI: 10.1016/j.ijbiomac.2020.03.182] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/31/2022]
Abstract
Bacterial infections caused by S. aureus are prevalent all over the world. Antibiotic-loaded hydrogel has been reported as a promising drug delivery system for the treatment. However, the direct incorporation of antibiotics into the hydrogel leads to quick initial burst release, which results in a sub-inhibition concentration of antibiotics in local environment and induces the antibiotic resistance of bacteria. In this work, a novel dual-crosslinked nanocomposite hydrogel (imine bond and nanoparticle crosslinking) was prepared based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles. Dual-crosslinked nanocomposite structure endowed the hydrogel with considerable mechanical and injectable properties. Dual pH responses were introduced into the hydrogel, and a controlled clindamycin release was observed in the acidic environment, which might avoid inducing the antibiotic resistance of bacteria. What's more, the antibacterial results demonstrated an excellent antibacterial activity of the hydrogel for not only E. coli and S. aureus, but also Methicillin-resistant S. aureus (MRSA). Nearly 90% of bacteria was killed after contacting with the hydrogel. In addition, the in vitro cell cytotoxicity test results showed that the hydrogel owned good biocompatibility. The in vitro cell viability was >90%. Above all, this dual-crosslinked nanocomposite hydrogel owned possibility for potential antibacterial applications.
Collapse
Affiliation(s)
- Shibo Wei
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiang Liu
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
28
|
Weng Y, Li C, Yang T, Hu B, Zhang M, Guo S, Xiao H, Liang XJ, Huang Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol Adv 2020; 40:107534. [PMID: 32088327 DOI: 10.1016/j.biotechadv.2020.107534] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
Messenger RNA (mRNA)-based therapeutics hold the potential to cause a major revolution in the pharmaceutical industry because they can be used for precise and individualized therapy, and enable patients to produce therapeutic proteins in their own bodies without struggling with the comprehensive manufacturing issues associated with recombinant proteins. Compared with the current therapeutics, the production of mRNA is much cost-effective, faster and more flexible because it can be easily produced by in vitro transcription, and the process is independent of mRNA sequence. Moreover, mRNA vaccines allow people to develop personalized medications based on sequencing results and/or personalized conditions rapidly. Along with the great potential from bench to bedside, technical obstacles facing mRNA pharmaceuticals are also obvious. The stability, immunogenicity, translation efficiency, and delivery are all pivotal issues need to be addressed. In the recently published research results, these issues are gradually being overcome by state-of-the-art development technologies. In this review, we describe the structural properties and modification technologies of mRNA, summarize the latest advances in developing mRNA delivery systems, review the preclinical and clinical applications, and put forward our views on the prospect and challenges of developing mRNA into a new class of drug.
Collapse
Affiliation(s)
- Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Tongren Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS), Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
29
|
He C, Yue H, Xu L, Liu Y, Song Y, Tang C, Yin C. siRNA release kinetics from polymeric nanoparticles correlate with RNAi efficiency and inflammation therapy via oral delivery. Acta Biomater 2020; 103:213-222. [PMID: 31812844 DOI: 10.1016/j.actbio.2019.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 01/26/2023]
Abstract
Despite many efforts in the rational design of nanoparticles (NPs) to overcome the biological barriers to small interfering RNA (siRNA) delivery for improving gene silencing efficiency, little is known about the correlations between siRNA release kinetics and RNA interference (RNAi) efficiency and inflammation therapy via oral delivery. On the basis of mannose-modified trimethyl chitosan-cysteine (MTC) polymers, seven types of MTC NPs containing tumor necrosis factor (TNF)-α siRNA were prepared through ionic gelation. The siRNA release kinetics from MTC NPs were finely tuned by adjusting the kinds and amounts of the crosslinkers involved. These MTC NPs exhibited no disparities in siRNA protection against enzymatic degradation in physiological fluids and cellular uptake in macrophages; however, they showed distinct in vitro siRNA release profiles and intracellular unpacking kinetics. MTC NPs with relatively rapid and sustained siRNA release were responsible for efficient, prompt, and prolonged RNAi, contributing to desired therapeutic efficacy in acute and chronic inflammatory murine models following oral delivery. However, MTC NPs insufficiently releasing siRNA could not elicit effective RNAi. Collectively, the present investigation might provide broad insights into the optimization of siRNA nanocarriers with respect to their release kinetics for improving RNAi efficacies aiming at different types of inflammatory diseases. STATEMENT OF SIGNIFICANCE: siRNA release kinetics in the cytoplasm and pathological characteristics of diseases themselves determine the therapeutic efficacy of siRNA delivery. Herein, by adjusting the kinds and amounts of the crosslinkers involved, we developed seven types of MTC NPs containing TNF-α siRNA with distinct siRNA release kinetics. MTC NPs with relatively rapid and sustained siRNA release were responsible for prompt and prolonged RNAi, respectively, contributing to desired therapeutic efficacy in acute and chronic inflammation following oral delivery. These results might provide broad insights into the optimization of siRNA nanocarriers in respect to their release kinetics for improving therapeutic outcomes toward different clinical requirements.
Collapse
|
30
|
Kokkinos J, Ignacio RMC, Sharbeen G, Boyer C, Gonzales-Aloy E, Goldstein D, Australian Pancreatic Cancer Genome Initiative Apgi, McCarroll JA, Phillips PA. Targeting the undruggable in pancreatic cancer using nano-based gene silencing drugs. Biomaterials 2020; 240:119742. [PMID: 32088410 DOI: 10.1016/j.biomaterials.2019.119742] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/03/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is predicted to be the second leading cause of cancer-related death by 2025. The best chemotherapy only extends survival by an average of 18 weeks. The extensive fibrotic stroma surrounding the tumor curbs therapeutic options as chemotherapy drugs cannot freely penetrate the tumor. RNA interference (RNAi) has emerged as a promising approach to revolutionize cancer treatment. Small interfering RNA (siRNA) can be designed to inhibit the expression of any gene which is important given the high degree of genetic heterogeneity present in pancreatic tumors. Despite the potential of siRNA therapies, there are hurdles limiting their clinical application such as poor transport across biological barriers, limited cellular uptake, degradation, and rapid clearance. Nanotechnology can address these challenges. In fact, the past few decades have seen the conceptualization, design, pre-clinical testing and recent clinical approval of a RNAi nanodrug to treat disease. In this review, we comment on the current state of play of clinical trials evaluating siRNA nanodrugs and review pre-clinical studies investigating the efficacy of siRNA therapeutics in pancreatic cancer. We assess the physiological barriers unique to pancreatic cancer that need to be considered when designing and testing new nanomedicines for this disease.
Collapse
Affiliation(s)
- John Kokkinos
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia
| | - Rosa Mistica C Ignacio
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - George Sharbeen
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia; Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Estrella Gonzales-Aloy
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - David Goldstein
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Prince of Wales Hospital, Prince of Wales Clinical School, Sydney, NSW, 2052, Australia
| | | | - Joshua A McCarroll
- Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia; Tumour Biology & Targeting Program, Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, NSW, Australia, 2031; School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, NSW, 2052, Australia.
| | - Phoebe A Phillips
- Pancreatic Cancer Translational Research Group, Lowy Cancer Research Centre, School of Medical Sciences, UNSW, Sydney, NSW, 2052, Australia; Australian Centre for Nanomedicine, UNSW, Sydney, NSW, 2052, Australia.
| |
Collapse
|
31
|
Gao Z, Mu W, Tian Y, Su Y, Sun H, Zhang G, Li A, Yu D, Zhang N, Hao J, Liu Y, Cui J. Self-assembly of paramagnetic amphiphilic copolymers for synergistic therapy. J Mater Chem B 2020; 8:6866-6876. [DOI: 10.1039/d0tb00405g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Theranostic nanoparticles composed of amphiphilic paramagnetic polymers are assembled for dual mode imaging and synergistic therapy.
Collapse
|
32
|
Ding F, Yang S, Gao Z, Guo J, Zhang P, Qiu X, Li Q, Dong M, Hao J, Yu Q, Cui J. Antifouling and pH-Responsive Poly(Carboxybetaine)-Based Nanoparticles for Tumor Cell Targeting. Front Chem 2019; 7:770. [PMID: 31824916 PMCID: PMC6883901 DOI: 10.3389/fchem.2019.00770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Nanocarriers with responsibility and surface functionality of targeting molecules have been widely used to improve therapeutic efficiency. Hence, we report the assembly of pH-responsive and targeted polymer nanoparticles (NPs) composed of poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) as the core and poly(carboxybetaine methacrylate) (PCBMA) as the shell, functionalized with cyclic peptides containing Arginine-Glycine-Aspartic acid-D-Phenylalanine-Lysine (RGD). The resulting polymer NPs (PDPA@PCBMA-RGD NPs) can maintain the pH-responsivity of PDPA (pKa ~6.5) and low-fouling property of PCBMA that significantly resist non-specific interactions with RAW 264.7 and HeLa cells. Meanwhile, PDPA@PCBMA-RGD NPs could specifically target αvβ3 integrin-expressed human glioblastoma (U87) cells. The pH-responsiveness and low-fouling properties of PDPA@PCBMA NPs are comparable to PDPA@poly(ethylene glycol) (PDPA@PEG) NPs, which indicates that PCBMA is an alternative to PEG for low-fouling coatings. The advantage of PDPA@PCBMA NPs lies in the presence of carboxyl groups on their surfaces for further modification (e.g., RGD functionalization for cell targeting). The reported polymer NPs represent a new carrier that have the potential for targeted therapeutic delivery.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Shuang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jianman Guo
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Mingdong Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
33
|
Ulkoski D, Bak A, Wilson JT, Krishnamurthy VR. Recent advances in polymeric materials for the delivery of RNA therapeutics. Expert Opin Drug Deliv 2019; 16:1149-1167. [PMID: 31498013 DOI: 10.1080/17425247.2019.1663822] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: The delivery of nucleic acid therapeutics through non-viral carriers face multiple biological barriers that reduce their therapeutic efficiency. Despite great progress, there remains a significant technological gap that continues to limit clinical translation of these nanocarriers. A number of polymeric materials are being exploited to efficiently deliver nucleic acids and achieve therapeutic effects. Areas covered: We discuss the recent advances in the polymeric materials for the delivery of nucleic acid therapeutics. We examine the use of common polymer architectures and highlight the challenges that exist for their development from bench side to clinic. We also provide an overview of the most notable improvements made to circumvent such challenges, including structural modification and stimuli-responsive approaches, for safe and effective nucleic acid delivery. Expert opinion: It has become apparent that a universal carrier that follows 'one-size' fits all model cannot be expected for delivery of all nucleic acid therapeutics. Carriers need to be designed to exhibit sensitivity and specificity toward individual targets diseases/indications, and relevant subcellular compartments, each of which possess their own unique challenges. The ability to devise synthetic methods that control the molecular architecture enables the future development that allow for the construction of 'intelligent' designs.
Collapse
Affiliation(s)
- David Ulkoski
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Boston , USA
| | - Annette Bak
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca , Gothenburg , Sweden
| | - John T Wilson
- Department of Chemical and Biomolecular Engineering, Vanderbilt University , Nashville , TN , USA
| | | |
Collapse
|
34
|
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019; 13:961. [PMID: 31537986 PMCID: PMC6753017 DOI: 10.3332/ecancer.2019.961] [Citation(s) in RCA: 378] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year, cancer is responsible for millions of deaths worldwide and, even though much progress has been achieved in medicine, there are still many issues that must be addressed in order to improve cancer therapy. For this reason, oncological research is putting a lot of effort towards finding new and efficient therapies which can alleviate critical side effects caused by conventional treatments. Different technologies are currently under evaluation in clinical trials or have been already introduced into clinical practice. While nanomedicine is contributing to the development of biocompatible materials both for diagnostic and therapeutic purposes, bioengineering of extracellular vesicles and cells derived from patients has allowed designing ad hoc systems and univocal targeting strategies. In this review, we will provide an in-depth analysis of the most innovative advances in basic and applied cancer research.
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
35
|
Zheng M, Liu Y, Wang Y, Zhang D, Zou Y, Ruan W, Yin J, Tao W, Park JB, Shi B. ROS-Responsive Polymeric siRNA Nanomedicine Stabilized by Triple Interactions for the Robust Glioblastoma Combinational RNAi Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903277. [PMID: 31348581 DOI: 10.1002/adma.201903277] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/26/2019] [Indexed: 05/24/2023]
Abstract
Small interfering RNA (siRNA) holds inherent advantages and great potential for treating refractory diseases. However, lack of suitable siRNA delivery systems that demonstrate excellent circulation stability and effective at-site delivery ability is currently impeding siRNA therapeutic performance. Here, a polymeric siRNA nanomedicine (3I-NM@siRNA) stabilized by triple interactions (electrostatic, hydrogen bond, and hydrophobic) is constructed. Incorporating extra hydrogen and hydrophobic interactions significantly improves the physiological stability compared to an siRNA nanomedicine analog that solely relies on the electrostatic interaction for stability. The developed 3I-NM@siRNA nanomedicine demonstrates effective at-site siRNA release resulting from tumoral reactive oxygen species (ROS)-triggered sequential destabilization. Furthermore, the utility of 3I-NM@siRNA for treating glioblastoma (GBM) by functionalizing 3I-NM@siRNA nanomedicine with angiopep-2 peptide is enhanced. The targeted Ang-3I-NM@siRNA exhibits superb blood-brain barrier penetration and potent tumor accumulation. Moreover, by cotargeting polo-like kinase 1 and vascular endothelial growth factor receptor-2, Ang-3I-NM@siRNA shows effective suppression of tumor growth and significantly improved survival time of nude mice bearing orthotopic GBM brain tumors. New siRNA nanomedicines featuring triple-interaction stabilization together with inbuilt self-destruct delivery ability provide a robust and potent platform for targeted GBM siRNA therapy, which may have utility for RNA interference therapy of other tumors or brain diseases.
Collapse
Affiliation(s)
- Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuanyuan Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Zou
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Weimin Ruan
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jinlong Yin
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, 10408, South Korea
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
36
|
Wang H, Ding S, Zhang Z, Wang L, You Y. Cationic micelle: A promising nanocarrier for gene delivery with high transfection efficiency. J Gene Med 2019; 21:e3101. [PMID: 31170324 DOI: 10.1002/jgm.3101] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Micelles have demonstrated an excellent ability to deliver several different types of therapeutic agents, including chemotherapy drugs, proteins, small-interfering RNA and DNA, into tumor cells. Cationic micelles, comprising self-assemblies of amphiphilic cationic polymers, have exhibited tremendous promise with respect to the delivery of therapy genes and gene transfection. To date, research in the field has focused on achieving an enhanced stability of the micellar assembly, prolonged circulation times and controlled release of the gene. This review focuses on the micelles as a nanosized carrier system for gene delivery, the system-related modifications for cytoplasm release, stability and biocompatibility, and clinic trials. In accordance with the development of synthetic chemistry and self-assembly technology, the structures and functionalities of micelles can be precisely controlled, and hence the synthetic micelles not only efficiently condense DNA, but also facilitate DNA endocytosis, endosomal escape, DNA uptake and nuclear transport, resulting in a comparable gene transfection of virus.
Collapse
Affiliation(s)
- Haili Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Shenggang Ding
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ze Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Longhai Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Yezi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
37
|
Hu B, Weng Y, Xia XH, Liang XJ, Huang Y. Clinical advances of siRNA therapeutics. J Gene Med 2019; 21:e3097. [PMID: 31069898 DOI: 10.1002/jgm.3097] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/26/2022] Open
Abstract
Small interfering RNA (siRNA) enables efficient target gene silencing by employing a RNA interference (RNAi) mechanism, which can compromise gene expression and regulate gene activity by cleaving mRNA or repressing its translation. Twenty years after the discovery of RNAi in 1998, ONPATTRO™ (patisiran) (Alnylam Pharmaceuticals, Inc.), a lipid formulated siRNA modality, was approved for the first time by United States Food and Drug Administration and the European Commission in 2018. With this milestone achievement, siRNA therapeutics will soar in the coming years. Here, we review the discovery and the mechanisms of RNAi, briefly describe the delivery technologies of siRNA, and summarize recent clinical advances of siRNA therapeutics.
Collapse
Affiliation(s)
- Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xin-Hua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, P. R. China.,School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| |
Collapse
|
38
|
Peng D, Gao H, Huang P, Shi X, Zhou J, Zhang J, Dong A, Tang H, Wang W, Deng L. Host-guest supramolecular hydrogel based on nanoparticles: co-delivery of DOX and siBcl-2 for synergistic cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:877-893. [DOI: 10.1080/09205063.2019.1612602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dan Peng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Huijie Gao
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaoguang Shi
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianhua Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Anjie Dong
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Hua Tang
- Tianjin Life Science Research Center and School of basic medical sciences, Tianjin Medical University, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liandong Deng
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
39
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
40
|
Huang D, Zhao D, Li J, Wu Y, Du L, Xia XH, Li X, Deng Y, Li Z, Huang Y. Continuous Vector-free Gene Transfer with a Novel Microfluidic Chip and Nanoneedle Array. Curr Drug Deliv 2019; 16:164-170. [PMID: 30332957 DOI: 10.2174/1567201815666181017095044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/24/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Delivery of foreign cargoes into cells is of great value for bioengineering research and therapeutic applications. OBJECTIVE In this study, we proposed and established a carrier-free gene delivery platform utilizing staggered herringbone channel and silicon nanoneedle array, to achieve high-throughput in vitro gene transfection. METHODS With this microchip, fluidic micro vortices could be induced by the staggered-herringboneshaped grooves within the channel, which increased the contact frequency of the cells with the channel substrate. Transient disruptions on the cell membrane were well established by the nanoneedle array on the substrate. RESULT Compared to the conventional nanoneedle-based delivery system, proposed microfluidic chip achieved flow-through treatment with high gene transfection efficiency (higher than 20%) and ideal cell viability (higher than 95%). CONCLUSION It provides a continuous processing environment that can satisfy the transfection requirement of large amounts of biological molecules, showing high potential and promising prospect for both basic research and clinical application.
Collapse
Affiliation(s)
- Dong Huang
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Deyao Zhao
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Jinhui Li
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Yuting Wu
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Lili Du
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Xin-Hua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiaoqiong Li
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Yulin Deng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhihong Li
- Institute of Molecular Medicine; Institute of Microelectronics, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Peking University, Beijing 100871, China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotheranotics, Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
41
|
Singh S, Maurya PK. Nanomaterials-Based siRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. NANOTECHNOLOGY IN MODERN ANIMAL BIOTECHNOLOGY 2019. [PMCID: PMC7121101 DOI: 10.1007/978-981-13-6004-6_3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Ribonucleic acid interference (RNAi) is a potential alternative therapeutic approach to knock down the overexpression of genes in several disorders especially cancers with underlying genetic dysfunctions. For silencing of specific genes involved in cell cycle, small/short interfering ribonucleic acids (siRNAs) are being used clinically. The siRNA-based RNAi is more efficient, specific and safe antisense technology than other RNAi approaches. The route of siRNA administration for siRNA therapy depends on the targeted site. However, certain hurdles like poor stability of siRNA, saturation, off-target effect, immunogenicity, anatomical barriers and non-targeted delivery restrict the successful siRNA therapy. Thus, advancement of an effective, secure, and long-term delivery system is prerequisite to the medical utilization of siRNA. Polycationic nanocarriers mediated targeted delivery system is an ideal system to remove these hurdles and to increase the blood retention time and rate of intracellular permeability. In this chapter, we will mainly discuss the different biocompatible, biodegradable, non-toxic (organic, inorganic and hybrid) nanocarriers that encapsulate and shield the siRNA from the different harsh environment and provides the increased systemic siRNA delivery.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, Ahmedabad University, Ahmedabad, Gujarat India
| | | |
Collapse
|
42
|
CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation ability for combined photothermal and siRNA therapy. Acta Biomater 2019; 86:416-428. [PMID: 30611792 DOI: 10.1016/j.actbio.2019.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Combined photothermal and gene therapy provides a promising modality toward cancer treatment, yet facile integration and controlled codelivery of gene payloads and photothermal conversion agents (PTCAs) remains a great challenge. Inspired by the robust wet adhesion of marine mussels, we present a rationally designed nanosystem constructed by using hybrid mesoporous polydopamine nanoparticles (MPDA) with sub-100 nm sizes and a high photothermal conversion efficiency of 37%. The surface of the particles were modified with tertiary amines by the facile Michael addition/Schiff base reactions of PDA to realize high siRNA loading capacity (10 wt%). Moreover, a successful calcium phosphate (CaP) coating via biomineralization was constructed on the cationic nanoparticle to prohibit premature release of siRNA. The CaP coating underwent biodegradation in weakly-acidic subcellular conditions (lysosomes). The synergistic integration of tertiary amines and catechol moieties on the subsequently exposed surfaces was demonstrated to feature the destabilization/disruption ability toward model cellular membranes via the greatly enhanced interfacial adhesion and interactions. Consequently, sufficient permeability of lysosomal membranes, and in turn, a high lysosomal escape efficiency, was realized, which then resulted in high gene silencing efficiencies via sufficient cytosolic delivery of siRNA. When an efficient knocking down (65%) of survivin (an inhibitor of apoptosis proteins) was combined with a subsequent photothermal ablation, remarkably higher therapeutic efficiencies were observed both in vitro and in vivo, as compared with monotherapy. The system may help to pave a new avenue on the utilization of bio-adhesive surfaces for handling the obstacles of combined photothermal and gene therapy. STATEMENT OF SIGNIFICANCE: Polydopamine (PDA) based porous photothermal-conversion agent (PTCA) with sufficiently high conversion efficiency was employed to deliver photothermal/gene therapy modalities towards cancer treatment. CaP coating via PDA-induced biomineralization was constructed to prohibit premature release of siRNA loaded in the pore space of the nanocarriers. Responsive degradation of CaP also led to the exposure of membrane-lytic surfaces built through the synergistic integration of tertiary amines and catechol moieties, and in turn the significantly enhanced lysosomal escape and cytosol siRNA delivery. Therapeutic targeting of survivin was successfully applied for activation of apoptosis and programmed cell death. Combined photothermal and gene therapy improved therapeutic effectiveness.
Collapse
|
43
|
Wang J, He X, Shen S, Cao Z, Yang X. ROS-Sensitive Cross-Linked Polyethylenimine for Red-Light-Activated siRNA Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1855-1863. [PMID: 30582800 DOI: 10.1021/acsami.8b18697] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The extremely inefficient endosomal escape and intracellular release are the central barriers for effective nanocarrier-mediated RNA interference (RNAi) therapeutics. Accelerating endosomal escape and triggering intracellular release with red or near-infrared light are of particular interest due to its spatiotemporal controllability, great tissue penetration, and minimal phototoxicity. As a proof-of-concept, we explored an innovative siRNA delivery system, TKPEI-Ce6, that is prepared by the linking reaction of branched polyethylenimine, a reactive oxygen species (ROS)-labile crosslinker, poly(ethylene glycol), and chlorin e6 (Ce6). TKPEI-Ce6 efficiently condensed siRNA to form the nanoscale complex TKPEI-Ce6/siRNA. Under red-light irradiation (660 nm), the conjugated Ce6 produced ROS, which could accelerate endosomal escape by the destruction of the endosomal membranes and then trigger the cytosolic release of siRNA by cleaving the thioketal linker and further disrupting the nanostructure of the TKPEI-Ce6/siRNA. Therefore, the superior silencing efficiency of siRNA was collectively realized toward an anticancer therapy. This concept also provides new avenues for light-controlled site-specific downregulation of targeted gene expression in vivo, facilitating precise treatment of numerous diseases.
Collapse
|
44
|
Huang W, Wang X, Wang C, Du L, Zhang J, Deng L, Cao H, Dong A. Structural exploration of hydrophobic core in polycationic micelles for improving siRNA delivery efficiency and cell viability. J Mater Chem B 2019; 7:965-973. [DOI: 10.1039/c8tb02706d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Improving siRNA delivery efficiency often encounters a dilemma with poor or decreased biocompatibility for polycationic micelles.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Changrong Wang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Lili Du
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Jianhua Zhang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Liandong Deng
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Anjie Dong
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
45
|
Peeler DJ, Sellers DL, Pun SH. pH-Sensitive Polymers as Dynamic Mediators of Barriers to Nucleic Acid Delivery. Bioconjug Chem 2018; 30:350-365. [PMID: 30398844 DOI: 10.1021/acs.bioconjchem.8b00695] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The nonviral delivery of exogenous nucleic acids (NA) into cells for therapeutic purposes has rapidly matured into tangible clinical impact. Synthetic polymers are particularly attractive vectors for NA delivery due to their relatively inexpensive production compared to viral alternatives and their highly tailorable chemical properties; indeed, many preclinical investigations have revealed the primary biological barriers to nonviral NA delivery by systematically varying polymeric material properties. This review focuses on applications of pH-sensitive chemistries that enable polymeric vectors to serially address multiple biological barriers to NA delivery. In particular, we focus on recent innovations with in vivo evaluation that dynamically enable colloidal stability, cellular uptake, endosomal escape, and nucleic acid release. We conclude with a summary of successes to date and projected areas for impactful future research.
Collapse
Affiliation(s)
- David J Peeler
- Department of Bioengineering and Molecular Engineering and Sciences Institute , University of Washington , Seattle , Washington 98195 , United States
| | - Drew L Sellers
- Department of Bioengineering and Molecular Engineering and Sciences Institute , University of Washington , Seattle , Washington 98195 , United States
| | - Suzie H Pun
- Department of Bioengineering and Molecular Engineering and Sciences Institute , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
46
|
|
47
|
Du L, Wang C, Meng L, Cheng Q, Zhou J, Wang X, Zhao D, Zhang J, Deng L, Liang Z, Dong A, Cao H. The study of relationships between pKa value and siRNA delivery efficiency based on tri-block copolymers. Biomaterials 2018; 176:84-93. [DOI: 10.1016/j.biomaterials.2018.05.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/14/2018] [Accepted: 05/27/2018] [Indexed: 12/20/2022]
|
48
|
Nonviral Gene Therapy for Cancer: A Review. Diseases 2018; 6:diseases6030057. [PMID: 29970866 PMCID: PMC6164850 DOI: 10.3390/diseases6030057] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/29/2022] Open
Abstract
Although the development of effective viral vectors put gene therapy on the road to commercialization, nonviral vectors show promise for practical use because of their relative safety and lower cost. A significant barrier to the use of nonviral vectors, however, is that they have not yet proven effective. This apparent lack of interest can be attributed to the problem of the low gene transfer efficiency associated with nonviral vectors. The efficiency of gene transfer via nonviral vectors has been reported to be 1/10th to 1/1000th that of viral vectors. Despite the fact that new gene transfer methods and nonviral vectors have been developed, no significant improvements in gene transfer efficiency have been achieved. Nevertheless, some notable progress has been made. In this review, we discuss studies that report good results using nonviral vectors in vivo in animal models, with a particular focus on studies aimed at in vivo gene therapy to treat cancer, as this disease has attracted the interest of researchers developing nonviral vectors. We describe the conditions in which nonviral vectors work more efficiently for gene therapy and discuss how the goals might differ for nonviral versus viral vector development and use.
Collapse
|
49
|
Influence of supramolecular layer-crosslinked structure on stability of dual pH-Responsive polymer nanoparticles for doxorubicin delivery. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Dai J, Han S, Ju F, Han M, Xu L, Zhang R, Sun Y. Preparation and evaluation of tumour microenvironment response multistage nanoparticles for epirubicin delivery and deep tumour penetration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:860-873. [DOI: 10.1080/21691401.2018.1470528] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Jialing Dai
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Fang Ju
- Department of Oncology, No. 2 Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mei Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Lisa Xu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Ruoyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, China
| |
Collapse
|