1
|
Arima Y, Okayasu Y, Yoshioka D, Nagai Y, Kobayashi Y. Multiphoton-Driven Photocatalytic Defluorination of Persistent Perfluoroalkyl Substances and Polymers by Visible Light. Angew Chem Int Ed Engl 2024; 63:e202408687. [PMID: 38896058 DOI: 10.1002/anie.202408687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/08/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Perfluoroalkyl substances (PFASs) and fluorinated polymers (FPs) have been extensively utilized in various industries, whereas their extremely high stability poses environmental persistence and difficulty in waste treatment. Current decomposition approaches of PFASs and FPs typically require harsh conditions such as heating over 400 °C. Thus, there is a pressing need to develop a new technique capable of decomposing them under mild conditions. Here, we demonstrated that perfluorooctanesulfonate (PFOS), known as a "persistent chemical," and Nafion, a widely utilized sulfonated FP for ion-exchange membranes, can be efficiently decomposed into fluorine ions under ambient conditions via the irradiation of visible LED light onto semiconductor nanocrystals (NCs). PFOS was completely defluorinated within 8-h irradiation of 405-nm LED light, and the turnover number of the C-F bond dissociation per NC was 17200. Furthermore, 81 % defluorination of Nafion was achieved for 24-h light irradiation, demonstrating the efficient photocatalytic properties under visible light. We revealed that this decomposition is driven by cooperative mechanisms involving light-induced ligand displacements and Auger-induced electron injections via hydrated electrons and higher excited states. This study not only demonstrates the feasibility of efficiently breaking down various PFASs and FPs under mild conditions but also paves the way for advancing toward a sustainable fluorine-recycling society.
Collapse
Affiliation(s)
- Yuzo Arima
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Daisuke Yoshioka
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yuki Nagai
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
2
|
Wang CW, Liu X, Qiao T, Khurana M, Akimov AV, Son DH. Photoemission of the Upconverted Hot Electrons in Mn-Doped CsPbBr 3 Nanocrystals. NANO LETTERS 2022; 22:6753-6759. [PMID: 35939549 DOI: 10.1021/acs.nanolett.2c02342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hot electrons play a crucial role in enhancing the efficiency of photon-to-current conversion or photocatalytic reactions. In semiconductor nanocrystals, energetic hot electrons capable of photoemission can be generated via the upconversion process involving the dopant-originated intermediate state, currently known only in Mn-doped cadmium chalcogenide quantum dots. Here, we report that Mn-doped CsPbBr3 nanocrystals are an excellent platform for generating hot electrons via upconversion that can benefit from various desirable exciton properties and the structural diversity of metal halide perovskites (MHPs). Two-dimensional Mn-doped CsPbBr3 nanoplatelets are particularly advantageous for hot electron upconversion due to the strong exciton-dopant interaction mediating the upconversion process. Furthermore, nanoplatelets reveal evidence for the hot electron upconversion via long-lived dark excitons in addition to bright excitons that may enhance the upconversion efficiency. This study establishes the feasibility of hot electron upconversion in MHP hosts and demonstrates the potential merits of two-dimensional MHP nanocrystals in the upconversion process.
Collapse
Affiliation(s)
- Chih-Wei Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xiaohan Liu
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Tian Qiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mohit Khurana
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Alexey V Akimov
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
- Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Gogoi K, Chattopadhyay A. Surface Engineering of Quantum Dots for Self-Powered Ultraviolet Photodetection and Information Encryption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2668-2676. [PMID: 35164501 DOI: 10.1021/acs.langmuir.1c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We demonstrate fabrication of photodetectors in the UVC and UVA regions, based on surface engineering of Mn2+-doped ZnS Qdot. Mn2+-doped ZnS Qdot exhibited UVC detection with a responsivity of 0.3 ± 0.02 A·W-1 and detectivity of 1.7 ± 0.2 1011 Jones. Following this, the Qdot was surface modified with 8-hydroxyquinoline 5-sulfonic acid ligand, which resulted in the formation of a bluish green zinc quinolate complex (Zn(QS)2) at the Qdot surface (defined as the quantum dot complex, QDC) exhibiting overall white photoluminescence. The detector developed with QDC as the photoactive material exhibited a responsivity of 0.2 ± 0.02 A·W-1 and detectivity of 1.2 ± 0.2 1011 Jones in the UVA band. This shift in the detection band from UVC in Qdot to UVA in QDC, through the surface complexation mechanism, is a new approach for tuning spectral detection featured in this work. Besides, the self-powered response of both the detectors exhibited attractive photoelectric characteristics. The detectors were incorporated in a portable prototype to show their potential application toward selective UVC and UVA spectral detection. Additionally, the dual-mode emission of the QDC was used for data encryption and decryption.
Collapse
Affiliation(s)
- Kasturi Gogoi
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
Wang C, Orrison C, Son DH. Hot electrons generated from Mn‐doped quantum dots via upconversion for photocatalysis applications. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chih‐Wei Wang
- Department of Chemistry Texas A&M University College Station Texas USA
| | - Connor Orrison
- Department of Chemistry Texas A&M University College Station Texas USA
| | - Dong Hee Son
- Department of Chemistry Texas A&M University College Station Texas USA
| |
Collapse
|
5
|
Qiao T, Liu X, Rossi D, Khurana M, Lin Y, Wen J, Cheon J, Akimov AV, Son DH. Magnetic Effect of Dopants on Bright and Dark Excitons in Strongly Confined Mn-Doped CsPbI 3 Quantum Dots. NANO LETTERS 2021; 21:9543-9550. [PMID: 34762431 DOI: 10.1021/acs.nanolett.1c03114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We investigated the magnetic effect of Mn2+ ions on an exciton of Mn-doped CsPbI3 quantum dots (QDs), where we looked for the signatures of an exciton magnetic polaron known to produce a large effective magnetic field in Mn-doped CdSe QDs. In contrast to Mn-doped CdSe QDs that can produce ∼100 T of magnetic field upon photoexcitation, manifested as a large change in the energy and relaxation dynamics of a bright exciton, Mn-doped CsPbI3 QDs exhibited little influence of a magnetic dopant on the behavior of a bright exciton. However, a μs-lived dark exciton in CsPbI3 QDs showed 40% faster decay in the presence of Mn2+, equivalent to the effect of ∼3 T of an external magnetic field. While further study is necessary to fully understand the origin of the large difference in the magneto-optic property of an exciton in two systems, we consider that the difference in antiferromagnetic coupling of the dopants is an important contributing factor.
Collapse
Affiliation(s)
- Tian Qiao
- Department of Chemistry, Texas A&M University, College Station, Texas 777843, United States
| | - Xiaohan Liu
- Department of Physics, Texas A&M University, College Station, Texas 777843, United States
| | - Daniel Rossi
- Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Mohit Khurana
- Department of Physics, Texas A&M University, College Station, Texas 777843, United States
| | - Yulin Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Alexey V Akimov
- Department of Physics, Texas A&M University, College Station, Texas 777843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 777843, United States
- Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
7
|
Orrison C, Meeder JR, Zhang B, Puthenpurayil J, Hall MB, Nippe M, Son DH. Efficient Redox-Neutral Photocatalytic Formate to Carbon Monoxide Conversion Enabled by Long-Range Hot Electron Transfer from Mn-Doped Quantum Dots. J Am Chem Soc 2021; 143:10292-10300. [PMID: 34191502 DOI: 10.1021/jacs.1c03844] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Energetic hot electrons generated in Mn-doped quantum dots (QDs) via exciton-to-hot-electron upconversion possess long-range transfer capability. The long-range hot electron transfer allowed for superior efficiency in various photocatalytic reduction reactions compared to conventional QDs, which solely rely on the transfer of band edge electrons. Here we show that the synergistic action of the interfacial hole transfer to the initial reactant and subsequent long-range hot electron transfer to an intermediate species enables highly efficient redox-neutral photocatalytic reactions, thereby extending the benefits of Mn-doped QDs beyond reduction reactions. The photocatalytic conversion of formate (HCOO-) to carbon monoxide (CO), which is an important route to obtain a key component of syngas from an abundant source, is an exemplary redox-neutral reaction that exhibits a drastic enhancement of catalytic efficiency by Mn-doped QDs. Mn-doped QDs increased the formate to CO conversion rate by 2 orders of magnitude compared to conventional QDs with high selectivity. Spectroscopic study of charge transfer processes and the computational study of reaction intermediates revealed the critical role of long-range hot electron transfer to an intermediate species lacking binding affinity to the QD surface for efficient CO production. Specifically, we find that the formate radical (HCOO)•, formed after the initial hole transfer from the QD to HCOO-, undergoes isomerization to the (HOCO)• radical that subsequently is reduced to yield CO and OH-. Long-range hot electron transfer is particularly effective for reducing the nonbinding (HOCO)• radical, resulting in the large enhancement of CO production by overcoming the limitation of interfacial electron transfer.
Collapse
Affiliation(s)
- Connor Orrison
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jeremy R Meeder
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Bowen Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Puthenpurayil
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.,Center for Nanomedicine, Institute for Basic Science and Graduate Program of Nano Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Burke R, Bren KL, Krauss TD. Semiconductor nanocrystal photocatalysis for the production of solar fuels. J Chem Phys 2021; 154:030901. [DOI: 10.1063/5.0032172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rebeckah Burke
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
9
|
Jin H, Goryca M, Janicke MT, Crooker SA, Klimov VI. Exploiting Functional Impurities for Fast and Efficient Incorporation of Manganese into Quantum Dots. J Am Chem Soc 2020; 142:18160-18173. [PMID: 32927952 DOI: 10.1021/jacs.0c08510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The incorporation of manganese (Mn) ions into Cd(Zn)-chalcogenide QDs activates strong spin-exchange interactions between the magnetic ions and intrinsic QD excitons that have been exploited for color conversion, sunlight harvesting, electron photoemission, and advanced imaging and sensing. The ability to take full advantage of novel functionalities enabled by Mn dopants requires accurate control of doping levels over a wide range of Mn contents. This, however, still represents a considerable challenge. Specific problems include the difficulty in obtaining high Mn contents, considerable broadening of QD size dispersion during the doping procedure, and large batch-to-batch variations in the amount of incorporated Mn. Here, we show that these problems originate from the presence of unreacted cadmium (Cd) complexes whose abundance is linked to uncontrolled impurities participating in the QD synthesis. After identifying these impurities as secondary phosphines, we modify the synthesis by introducing controlled amounts of "functional" secondary phosphine species. This allows us to realize a regime of nearly ideal QD doping when incorporation of magnetic ions occurs solely via addition of Mn-Se units without uncontrolled deposition of Cd-Se species. Using this method, we achieve very high per-dot Mn contents (>30% of all cations) and thereby realize exceptionally strong exciton-Mn exchange coupling with g-factors of ∼600.
Collapse
Affiliation(s)
- Ho Jin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.,Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Mateusz Goryca
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Scott A Crooker
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Lemelin V, Bass AD, Cloutier P, Sanche L. Low energy (1-19 eV) electron scattering from condensed thymidine (dT) I: absolute vibrational excitation cross sections. Phys Chem Chem Phys 2019; 21:23808-23817. [PMID: 31503266 DOI: 10.1039/c9cp03447a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Absolute cross sections (CSs) for vibrational excitation by electrons of energy between 1-19 eV scattering from condensed thymidine (dT) were measured by means of high-resolution electron energy loss spectroscopy (HREELS). The CSs were extracted from electron energy loss spectra of dT condensed on multilayers film of Ar held at about 20 K under ultra-high vacuum (∼1 × 10-11 Torr). dT is one of the most complex molecules to be studied in condensed phase by HREELS. The magnitudes of the vibrational CSs lie within the 10-17 cm2 range. Structures observed in the energy dependence of the vibrational CSs under 3 eV and around 4 eV were compared with previous results of gas- and solid-phase studies on dT and related molecules (e.g., thymine and tetrahydrofuran). These structures were attributed to the formation of shape resonances.
Collapse
Affiliation(s)
- V Lemelin
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des radiations, Université de Sherbrooke, Québec J1H 5N4, Canada.
| | | | | | | |
Collapse
|
11
|
Singh R, Liu W, Lim J, Robel I, Klimov VI. Hot-electron dynamics in quantum dots manipulated by spin-exchange Auger interactions. NATURE NANOTECHNOLOGY 2019; 14:1035-1041. [PMID: 31591527 DOI: 10.1038/s41565-019-0548-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The ability to effectively manipulate non-equilibrium 'hot' carriers could enable novel schemes for highly efficient energy harvesting and interconversion. In the case of semiconductor materials, realization of such hot-carrier schemes is complicated by extremely fast intraband cooling (picosecond to subpicosecond time scales) due to processes such as phonon emission. Here we show that using magnetically doped colloidal semiconductor quantum dots we can achieve extremely fast rates of spin-exchange processes that allow for 'uphill' energy transfer with an energy-gain rate that greatly exceeds the intraband cooling rate. This represents a dramatic departure from the usual situation where energy-dissipation via phonon emission outpaces energy gains due to standard Auger-type energy transfer at least by a factor of three. A highly favourable energy gain/loss rate ratio realized in magnetically doped quantum dots can enable effective schemes for capturing kinetic energy of hot, unrelaxed carriers via processes such as spin-exchange-mediated carrier multiplication and upconversion, hot-carrier extraction and electron photoemission.
Collapse
Affiliation(s)
- Rohan Singh
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Wenyong Liu
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Jaehoon Lim
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Chemical Engineering, Ajou University, Suwon, Republic of Korea
- Department of Energy System Research, Ajou University, Suwon, Republic of Korea
| | - István Robel
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Victor I Klimov
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
12
|
Parobek D, Qiao T, Son DH. Energetic hot electrons from exciton-to-hot electron upconversion in Mn-doped semiconductor nanocrystals. J Chem Phys 2019; 151:120901. [PMID: 31575181 DOI: 10.1063/1.5119398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Generation of hot electrons and their utilization in photoinduced chemical processes have been the subjects of intense research in recent years mostly exploring hot electrons in plasmonic metal nanostructures created via decay of optically excited plasmon. Here, we present recent progress made in generation and utilization of a different type of hot electrons produced via biphotonic exciton-to-hot electron "upconversion" in Mn-doped semiconductor nanocrystals. Compared to the plasmonic hot electrons, those produced via biphotonic upconversion in Mn-doped semiconductor nanocrystals possess much higher energy, enabling more efficient long-range electron transfer across the high energy barrier. They can even be ejected above the vacuum level creating photoelectrons, which can possibly produce solvated electrons. Despite the biphotonic nature of the upconversion process, hot electrons can be generated with weak cw excitation equivalent to the concentrated solar radiation without requiring intense or high-energy photons. This perspective reviews recent work elucidating the mechanism of generating energetic hot electrons in Mn-doped semiconductor nanocrystals, detection of these hot electrons as photocurrent or photoelectron emission, and their utilization in chemical processes such as photocatalysis. New opportunities that the energetic hot electrons can open by creating solvated electrons, which can be viewed as the longer-lived and mobile version of hot electrons more useful for chemical processes, and the challenges in practical utilization of energetic hot electrons are also discussed.
Collapse
Affiliation(s)
- David Parobek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Tian Qiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
13
|
Wang S, Shen C, Xu Y, Zhong Y, Wang C, Yang S, Wang G. An Improved Metal-to-Ligand Charge Transfer Mechanism for Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2019; 12:4221-4228. [PMID: 31364799 DOI: 10.1002/cssc.201901609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/28/2019] [Indexed: 06/10/2023]
Abstract
It is of great significance to fabricate a full-spectrum-active photocatalysts for more efficient utilization of solar energy. An improved metal-to-ligand charge transfer (MLCT) mechanism is proposed for a photocatalyst based on graphitic carbon nitride (g-C3 N4 ). UV/Vis spectroscopy indicates that the as-prepared photocatalyst absorbs light at λ<1100 nm. The rather stable photocatalyst is found to be 26.1 times more active in photocatalytic hydrogen evolution (868.9 μmol h-1 g-1 ) than bulk g-C3 N4 (B-CN) under visible light. The material exhibits high activity under near-infrared (NIR) irradiation (49.1 μmol h-1 g-1 ). The mechanism of photocatalytic activity and stability are investigated by both experiment and theory. This proposed mechanism may have great potential for engineering renewable photocatalysts in the future.
Collapse
Affiliation(s)
- Sicong Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Chao Shen
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Yanqi Xu
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Yunhao Zhong
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Shengyang Yang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, China
| | - Guoxiu Wang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia
| |
Collapse
|
14
|
Khorsandgolchin G, Sanche L, Cloutier P, Wagner JR. Strand Breaks Induced by Very Low Energy Electrons: Product Analysis and Mechanistic Insight into the Reaction with TpT. J Am Chem Soc 2019; 141:10315-10323. [PMID: 31244176 DOI: 10.1021/jacs.9b03295] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous experimental studies show that 5-15 eV electrons induce strand breaks in DNA at energies below the ionization threshold of DNA components. In this energy range, DNA damage arises principally by the formation of transient negative ions, decaying into dissociative electron attachment (DEA) and electronic excitation of dissociative states. Here, we carried out LC-MS/MS analysis of the degradation products arising from bombardment of TpT, a DNA model compound, irradiated with very low energy electrons (vLEEs; ∼1.8 eV). The formation of thymidine 5'-monophosphate (TMP5') together with 2',3'-dideoxythymidine (ddT3') can be explained by cleavage of the C3'-O bond of TpT, whereas thymidine 3'-monophosphate (TMP3') and 2',5'-dideoxythymidine (ddT5') are formed by cleavage of the C5'-O bond. The formation of ddT3' and ddT5' decreased upon irradiation of either TMP5' or TMP3', and even further in the case of thymidine, underlining the critical role of the phosphate group. Interestingly, the yield of TMP5' and TMP3' was higher than that of the corresponding ddT3' and ddT5' products, suggesting alternative fates of C3' and C5'-centered sugar radicals. In contrast, the release of thymine from TpT was minor (<20%) and did not result in the formation of expected products from DEA-mediated cleavage at the N-glycosidic bond. Lastly, vLEE induced the conversion of thymine to 5,6-dihydrothymine (5,6-dhT) within TpT, a reaction likely involving thymine anion radicals. In summary, we show that a major pathway of vLEEs involves DEA-mediated cleavage of the C3'-O and C5'-O bonds of TpT, resulting in the formation of specific fragments, which represent a prompt single strand break in DNA.
Collapse
Affiliation(s)
- Ghazal Khorsandgolchin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| |
Collapse
|
15
|
Dong Y, Gao Y, Liu W, Gao T, Zheng Y, Sanche L. Clustered DNA Damage Induced by 2-20 eV Electrons and Transient Anions: General Mechanism and Correlation to Cell Death. J Phys Chem Lett 2019; 10:2985-2990. [PMID: 31099579 DOI: 10.1021/acs.jpclett.9b01063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mechanisms of action of low-energy electrons (LEEs) generated in large quantities by ionizing radiation constitute an essential element of our understanding of early events in radiolysis and radiobiology. We present the 2-20 eV electron energy dependence of the yields of base damage (BD), BD-related cross-links (CLs), and non-double-strand break (NDSB) clustered damage induced in DNA. These new yield functions are generated by the impact of LEEs on plasmid DNA films. The damage is analyzed by gel electrophoresis with and without enzyme treatment. Maxima at 5 and 10 eV in BDs and BD-related CLs yield functions, and two others, at 6 and 10 eV, in those of NDSB clustered damage are ascribed to core-excited transient anions that decay into bond-breaking channels. The mechanism causing all types of DNA damages can be attributed to the capture of a single electron by a base followed by multiple different electron transfer pathways.
Collapse
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Wenhui Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Ting Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Faculty of Chemistry , Fuzhou University , Fuzhou 350116 , P. R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine , Université de Sherbrooke , Sherbrooke , QC , Canada J1H 5N4
| |
Collapse
|
16
|
Ashalley E, Gryczynski K, Wang Z, Salamo G, Neogi A. Plasmonically-powered hot carrier induced modulation of light emission in a two-dimensional GaAs semiconductor quantum well. NANOSCALE 2019; 11:3827-3836. [PMID: 30633286 DOI: 10.1039/c8nr07489e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A hot-electron-enabled route to controlling light with dissipative loss compensation in semiconductor quantum light emitters has been realized for tunable quantum optoelectronic devices via a two-species plasmon system. The dual species nano-plasmonic system is achieved by combining UV-plasmonic gallium metal nanoparticles (GaNPs) with visible-plasmonic gold metal nanoparticles (AuNPs) on a near-infrared two-dimensional GaAs/AlGaAs quantum well emitter. It has been demonstrated that while hot carrier-powered charge-transfer processes can result in semiconductor doping and increased optical absorption, photo-generated carrier density in the quantum well can also be modulated by off-resonant plasmonic interaction without thermal dissipation. Merging these essential emitter-friendly optical characteristics in the two-species plasmon system, we effectively modulate the frequency of the emitted light. The wavelength of the emitted light is tuned by the plasmonically powered hot electron process induced by the AuNPs with a 10-fold emission enhancement induced by the GaNPs. The additional plasmonic element provides functionality to achieving an active plasmonic light emitter that is otherwise far from reach with conventional single plasmonic material-based semiconductors.
Collapse
Affiliation(s)
- Eric Ashalley
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Karol Gryczynski
- Department of Physics, University of North Texas, Denton, Texas 76203, USA.
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Gregory Salamo
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, USA
| | - Arup Neogi
- Department of Physics, University of North Texas, Denton, Texas 76203, USA.
| |
Collapse
|
17
|
Synthesis of ZnS@CdS–Te composites with p–n heterostructures for enhanced photocatalytic hydrogen production by microwave-assisted hydrothermal method. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Mårsell E, Boström E, Harth A, Losquin A, Guo C, Cheng YC, Lorek E, Lehmann S, Nylund G, Stankovski M, Arnold CL, Miranda M, Dick KA, Mauritsson J, Verdozzi C, L'Huillier A, Mikkelsen A. Spatial Control of Multiphoton Electron Excitations in InAs Nanowires by Varying Crystal Phase and Light Polarization. NANO LETTERS 2018; 18:907-915. [PMID: 29257889 DOI: 10.1021/acs.nanolett.7b04267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We demonstrate the control of multiphoton electron excitations in InAs nanowires (NWs) by altering the crystal structure and the light polarization. Using few-cycle, near-infrared laser pulses from an optical parametric chirped-pulse amplification system, we induce multiphoton electron excitations in InAs nanowires with controlled wurtzite (WZ) and zincblende (ZB) segments. With a photoemission electron microscope, we show that we can selectively induce multiphoton electron emission from WZ or ZB segments of the same wire by varying the light polarization. Developing ab initio GW calculations of first to third order multiphoton excitations and using finite-difference time-domain simulations, we explain the experimental findings: While the electric-field enhancement due to the semiconductor/vacuum interface has a similar effect for all NW segments, the second and third order multiphoton transitions in the band structure of WZ InAs are highly anisotropic in contrast to ZB InAs. As the crystal phase of NWs can be precisely and reliably tailored, our findings open up for new semiconductor optoelectronics with controllable nanoscale emission of electrons through vacuum or dielectric barriers.
Collapse
Affiliation(s)
- Erik Mårsell
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Emil Boström
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Anne Harth
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Arthur Losquin
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Chen Guo
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Yu-Chen Cheng
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Eleonora Lorek
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Sebastian Lehmann
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Gustav Nylund
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Martin Stankovski
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Cord L Arnold
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Miguel Miranda
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Kimberly A Dick
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Johan Mauritsson
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Claudio Verdozzi
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Anne L'Huillier
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| | - Anders Mikkelsen
- Department of Physics, Lund University , P.O. Box 118, 221 00 Lund, Sweden
| |
Collapse
|
19
|
Makarov NS, Lim J, Lin Q, Lewellen JW, Moody NA, Robel I, Pietryga JM. Quantum Dot Thin-Films as Rugged, High-Performance Photocathodes. NANO LETTERS 2017; 17:2319-2327. [PMID: 28253617 DOI: 10.1021/acs.nanolett.6b05175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Typical use of colloidal quantum dots (QDs) as bright, tunable phosphors in real applications relies on engineering of their surfaces to suppress the loss of excited carriers to surface trap states or to the surrounding medium. Here, we explore the utility of QDs in an application that actually exploits their propensity toward photoionization, namely within efficient and robust photocathodes for use in next-generation electron guns. In order to establish the relevance of QD films as photocathodes, we evaluate the efficiency of electron photoemission of films of a variety of compositions in a typical electron gun configuration. By quantifying photocurrent as a function of excitation photon energy, excitation intensity and pulse duration, we establish the role of hot electrons in photoemission within the multiphoton excitation regime. We also demonstrate the effect of QD structure and film deposition methods on efficiency, which suggests numerous pathways for further enhancements. Finally, we show that QD photocathodes offer superior efficiencies relative to standard copper cathodes and are robust against degradation under ambient conditions.
Collapse
Affiliation(s)
- Nikolay S Makarov
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Jaehoon Lim
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Qianglu Lin
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - John W Lewellen
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Nathan A Moody
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - István Robel
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Jeffrey M Pietryga
- Chemistry Division and ‡Accelerator Operations and Technology Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| |
Collapse
|